
Some News on the Proof Complexity
of Deep Inference

Alessio Guglielmi

University of Bath and LORIA & INRIA Nancy-Grand Est

11 November 2009
This talk is available at http://cs.bath.ac.uk/ag/t/dipc.pdf

http://cs.bath.ac.uk/ag/t/dipc.pdf

Outline
Aims of the talk:

I Put some of the current deep-inference research in the wider
context of proof complexity.

I State a surprising result on cut elimination being at most
quasipolynomial in deep inference (instead of exponential).

I Provide an introduction for the following talk by Tom, who
will get into some details of quasipolynomial cut elimination.

Contents:

Overview of Complexity Classes

Proof Systems

Compressing Proofs

Deep Inference

Atomic Flows

Cut Elimination

Concluding Remarks

Overview of (Some!)
Complexity Classes

SAT / \ , / \ VAL

co-hp Gae9gT6
PRodt4p5

I NP = class of problems that are verifiable in polynomial time.

I SAT = ‘Is a propositional formula satisfiable?’ (Yes: here is a
satisfying assignment.)

I co-NP = class of problems that are disqualifiable in
polynomial time.

I VAL = ‘Is a propositional formula valid?’ (No: here is a
falsifying assignment.)

I P = class of problems that can be solved in polynomial time.

I NP 6= co-NP implies P 6= NP.

Proof Systems

I Proof complexity = proof size.

I Proof system = algorithm that verifies proofs in polynomial
time on their size.

I Important question: What is the relation between size of
tautologies and size of minimal proofs?

Example of Proof System: Frege

Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

Modus ponens, or cut, rule:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

.

Example:

a t(;;)) ") (a: ({^>
")

>q) ((^>(o>a))>(nJ^)

;;a;il iar(o, tq)) > (a. : r)
a)q

Robustness: all Frege systems are polynomially equivalent.

Example of Proof System: Gentzen Sequent Calculus

One axiom, many rules.

Example:

This is a special case of Frege, important because it admits
complete and analytic proof systems (i.e., cut-free proof systems,
by which consistency proofs can be obtained).

Frege and Gentzen systems are polynomially equivalent.

Example of Proof System: Deep Inference

Proofs can be composed by the same operators as formulae.

Example:
(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

a ∧
�

ā ∨
t

ā ∨ a

�

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā

=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ�
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ� are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

� Below derivations, their (atomic) flows are shown.

� Only structural information is retained in flows.

� Logical information is lost.

� Flow size is polynomially related to derivation size.

This is a generalisation of Frege, which admits complete and local
proof systems (i.e., where steps can be verified in constant time).

Frege and deep-inference systems are polynomially equivalent.

The calculus of structures (CoS) is now a completely developed
deep inference formalism.

Proof Complexity and the NP Vs. co-NP Problem

I Theorem [Cook & Reckhow(1974)]:

There exists an efficient proof system
iff

NP = co-NP

where ‘efficient’ = admitting proofs that are verifiable in
polynomial time over the size of the proved formula.

I Is there an always efficient proof system? Probably not, and
this is, obviously, hard.

I Is there an optimal proof system? (in the sense that it
polynomially simulates all others.) We don’t know, and this is
perhaps feasible.

Compressing Proofs 1

Thus, an important question is:
How can we make proofs smaller?

These are known mechanisms:

1. Use higher orders (for example, second order propositional, for
propositional formulae).

2. Add substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

3. Add Tseitin extension: p ↔ A (where p is a fresh atom).

4. Use the same sub-proof many times, via the cut rule.

5. Use the same sub-proof many times, in dag-ness, or
cocontraction.

Only 5 is allowed in analytic proof systems.
4 is the most studied form of compression, and the main topic of
this talk, together with 5.

Compressing Proofs 2

Some facts:

I Substitution and extension are equivalent when added to
Frege and to deep inference (not a trivial result).

I Any of these systems is usually called EF (for Extended Frege)
and is considered the most interesting candidate as optimal
proof system.

I Deep inference has the best representation for EF (the
equivalence between extension and substitution becomes
almost trivial).

I The EF compression in deep inference leads to a
bureaucracy-free formalism (but this is a topic for another
talk).

Proof Complexity and Deep Inference

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:
• deep-inference proof systems are as powerful as Frege ones, even when both are

extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.
These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

CoS +
extension

CoS +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

CoS

Gentzen

open

2

Cook-
Reckhow ’74

analytic
CoS

analytic
Gentzen

Brünnler
’041×

Statman ’78×

open

The notation " # indicates that formalism " polynomially simulates formalism
; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: April 19, 2009.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.

1

Deep inference has as small proofs as the best systems (2,3,4,5,*)
and
it has a normalisation theory
and
its analytic proof systems are more powerful than Gentzen ones (1)
and
cut elimination is nO(log n), i.e., quasipolynomial (instead of
exponential).
(See [Jěrábek(2009), Bruscoli & Guglielmi(2009),
Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot]).

(Proof) System SKS
[Brünnler & Tiu(2001)]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α

Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and "); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α

Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and "); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Plus an ‘=’ linear rule (associativity, commutativity, units).
I Rules are applied anywhere inside formulae.
I Negation on atoms only.
I Cut is atomic.
I SKS is complete and implicationally complete for

propositional logic.

(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā

=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I Below derivations, their (atomic) flows are shown.

I Only structural information is retained in flows.

I Logical information is lost.

I Flow size is polynomially related to derivation size.

Flow Reductions: (Co)Weakening (1)

Consider these flow reductions:26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

Each of them corresponds to a correct derivation reduction.

Flow Reductions: (Co)Weakening (2)

For example,

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

specifies that

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 25

Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations: it
is much easier and we get natural, syntax-independent induction
measures.

Flow Reductions: (Co)Contraction

Consider these flow reductions:

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

w↓-c↓ :
1

2
→ 1,2 c↑-w↑ :

2

1 → 1,2

w↓-i↑ : 1 → 1 i↓-w↑ : 1 → 1

w↓-w↑ : →

w↓-c↑ :
1 2

→
1 2

c↓-w↑ :
1 2 → 1 2

c↓-i↑ :
31 2 →

31 2

i↓-c↑ :
31 2

→
31 2

c↓-c↑ :
1 2

3 4

→

1 2

3 4

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I They conserve the number and length of paths.

I Note that they can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (sharing?).

I Open problem: does cocontraction provide exponential
compression? Conjecture: yes.

Normalisation
Overview

I None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

I Quasipolynomial procedures are surprising.

I Conjecture: polynomial normalisation is possible.

(1) [Guglielmi & Gundersen(2008)]; (2,4) forthcoming; (3)
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Cut Elimination (on Proofs) by ‘Experiments’

Experiment:

We do:

Simple, exponential cut elimination; proof generates 2n

experiments. (No use of cocontraction!)

Quasipolynomial
Cut Elimination
by
Threshold Functions

TTYJVi.,YT

24 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

φ′0

φ

θ1...
θk

φ′
k

ψkφ

θk+1

φ

φ′n

θn

...

· · · · · ·

α

FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

Only n + 1 copies of the proof are stitched together. It’s
complicated, Tom will explain, but note local cocontraction (=
better sharing, not available in Gentzen).

Some Comments

(that don’t all follow from what precedes)

I (Exponential) normalisation does not depend on logical rules.

I It only depends on structural information, i.e., geometry.

I Normalisation is extremely robust.

I Deep inference’s locality is key.

I Complexity-wise, deep inference is as powerful as the best
formalisms,

I and more powerful if analiticity is requested.

I Deep inference is the continuation of Girard politics with
other means.

In my opinion, much of the future of structural proof theory is in
geometric methods: we have to free ourselves from the tyranny of
syntax (so, war to bureaucracy!).

References

Brünnler, K., & Tiu, A. F. (2001).

A local system for classical logic.
In R. Nieuwenhuis, & A. Voronkov (Eds.) LPAR 2001 , vol. 2250 of Lecture Notes in Computer Science, (pp. 347–361).
Springer-Verlag.
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

Bruscoli, P., & Guglielmi, A. (2009).

On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2), 1–34.
Article 14. http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., & Parigot, M. (2009).

Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae.
Submitted. http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf.

Cook, S., & Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).
In Proceedings of the 6th annual ACM Symposium on Theory of Computing , (pp. 135–148). ACM Press.

Guglielmi, A., & Gundersen, T. (2008).

Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1:9), 1–36.
http://www.lmcs-online.org/ojs/viewarticle.php?id=341.

Jěrábek, E. (2009).

Proof complexity of the cut-free calculus of structures.
Journal of Logic and Computation, 19(2), 323–339.
http://www.math.cas.cz/~jerabek/papers/cos.pdf.

http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://www.math.cas.cz/~jerabek/papers/cos.pdf

	Overview of Complexity Classes
	Proof Systems
	Compressing Proofs
	Deep Inference
	Atomic Flows
	Cut Elimination
	Concluding Remarks

