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Outline

Problem: Getting rid of bureaucracy in proofs

Cut Elimination by Experiments: Gentzen’s structure is too rigid

Open Deduction (Deep Inference): locality (atomicity + linearity)

Deep Inference and Proof Complexity: proofs are small, so it is OK

Atomic Flows: locality brings geometry

Normalisation With Atomic Flows: geometry is enough to
normalise

The Future, Incorporating Substitution: more geometry, more
efficiency, more naturality
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Figure 2: From sequent calculus to proof nets via coherence graphs

2.3.4 Exercise Reduce in (6) the leftmost instance of id to atomic version. And draw the proof net according
to the method in Figure 1. What does change compared to the net in (9)?

For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing through the
cut, i.e., by keeping the information that there is a cut. What is meant by this is shown in Figure 4.

2.3.5 Exercise Compare the net obtained in Figure 4 with your result of Exercise 2.3.4.

Now, we indeed get the same result with both methods, and it might seem foolish to emphasize the different
nature of the two methods if they yield the same notion of proof net. The point to make here is that this is
the case only for MLL−, which is a very fortunate coincidence. For any other logic, which is more sophisticated,
like classical logic or larger fragments of linear logic, the two methods yield different notions of proof nets. We
will come back to this in later sections when we discuss these logics.

2.4 From deep inference to proof nets

The flow graph method has the advantage of being independent from the formalism that is used for describing
the deductive system for the logic. We will now repeat exactly the same exercise we did for the sequent calculus

RR n 6013

Picture taken from [Straßburger, 2006]

I From ‘different’ Gentzen sequent proofs we get proof nets
(Girard),

I but they are too small: for propositional logic, they probably
do not form a proof system.
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instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:
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instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
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Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
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perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
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a ∨ ā
f
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a

a ∨ a
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a
identity weakening contraction

a ∧ ā
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f

a
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,

and by the following two logical inference rules:

A∧ [B ∨C ]
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(A∧B) ∨C

(A∧B) ∨ (C ∧D)
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switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete for propositional logic.
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denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).
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In addition to these rules, there is a rule
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of the following equations:
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.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
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We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.
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{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation
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I Negation on atoms only.
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to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete for propositional logic.
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(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
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FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).
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(a ∧ [ā ∨ t]) ∧ ā
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s
a ∧ ā
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the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)
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ai↓
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s
a ∧ ā
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=
(a ∧ t) ∨ (t ∧ ā)
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s
([a ∨ t] ∧ ā) ∨ t
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(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
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(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t
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Examples in Open Deduction (Deep Inference)

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
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m
[a ∨ t] ∧ [t ∨ ā]
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f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
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ā ∨
t
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ā ∨ a

+

s

a ∧
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When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

In Gentzen:

I no locality for (co)contraction (counterexample in
[Brünnler, 2004]),

I no local reduction of cut into atomic form.



Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction:

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
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(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
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ac↓
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ac↑
(a ∧ a) ∧ ā
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Deep Inference and Proof Complexity

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:

• deep-inference proof systems are as powerful as Frege ones, even when both are
extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.

These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.
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The notation " # indicates that formalism " polynomially simulates formalism
# ; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic
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−→ = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms
and
it has a normalisation theory
and
its cut-free proof systems are more powerful than Gentzen ones
and
cut elimination is quasipolynomial (instead of exponential).
(See [Jěrábek, 2009, Bruscoli and Guglielmi, 2009,
Bruscoli et al., 2010]).
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(See [Jěrábek, 2009, Bruscoli and Guglielmi, 2009,
Bruscoli et al., 2010]).



Deep Inference and Proof Complexity

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:

• deep-inference proof systems are as powerful as Frege ones, even when both are
extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.

These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

op. ded. +
extension

op. ded. +
substitution

Frege +
extension

Frege +
substitution

!

4

3
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(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t
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FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below proofs, their (atomic) flows are shown:

I only structural information is retained in flows;

I logical information is lost;

I flow size is polynomially related to derivation size.
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=
(a ∧ t) ∨ (t ∧ ā)
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=
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s
([a ∨ t] ∧ ā) ∨ t
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=
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s
a ∧ ā
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ā ∨ a

+

s

a ∧
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ā
f

∨
a

a ∧ a

∧ ā
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s
([a ∨ t] ∧ ā) ∨ t
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(ā ∧ [a ∨ t]) ∨ t

s
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→
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Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

Each flow reduction corresponds to a correct proof reduction.
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specifies that
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Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations:

I much easier,

I we get natural, syntax-independent induction measures.
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Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,
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We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:
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,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I Open problem: does cocontraction yield exponential
compression?
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FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.
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not contain any ai↑ generators whose inputs are typed by a
and ā.
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where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have
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I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.
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FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.
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The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):
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if and only if in Gφ there is no path from an ai↓-vertex to an
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Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.
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not contain any ai↑ generators whose inputs are typed by a
and ā.
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φ′

a ā
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How Do We Break Paths?

With the path breaker [Guglielmi et al., 2010b]:

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .
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Even if there is a path between identity and cut on the left, there
is none on the right.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.
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I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.
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Example for n = 2

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is
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FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

I Only n + 1 copies of the proof are stitched together.

I Note local cocontraction (= better sharing, not available in
Gentzen).
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the notion of proof system give us a natural target
for designing formalisms. Our goal is the answer to:

Question Which formalism describes the proof sys-
tems with the most abstract proofs?

The question is vague but it is useful to understand
this project and our previous work on deep infer-
ence. Our goal is to design a formalism of efficient
and natural proof systems, and the idea is to pro-
gressively refine the syntax, while being guided by
semantics (naturality) and while making sure that
the complexity of proofs decreases (efficiency).

Proof semantics itself is not set in stone, it is an ac-
tive field of research, very close to the semantics
of programming languages and especially game se-
mantics. Proof theory and semantics have had for
decades a very fruitful interaction that continues to-
day. This is also true of this project, where Guglielmi
and McCusker represent the two disciplines.

Following Girard’s intuition, we are interested in se-
mantics that capture the special geometric nature
of proofs that has surfaced in our previous work in
deep inference. In fact, deep inference [15, 18] is
based on a free proof composition mechanism that
generalises and preserves analyticity, while bounding
the complexity of each inference step, in a property
that we call locality. It turns out that we can exploit
locality to obtain geometric models of normalisation
of finer granularity than that of proof nets.

We have already made three steps closing in on our
target, by designing three mutually compatible gen-
eralisations of Gentzen formalisms. They are com-
patible because they represent different levels of ab-
straction for proofs of the same nature, enjoying the
same normalisation dynamics. The formalisms are:

Calculus of structures (2001) It generalises Gentzen
and has later been developed into a complete
proof theory encompassing a wider range of

logics than Gentzen’s [15, 2].
Atomic flows (2008) They prove that normalisa-

tion is an independent phenomenon from syn-
tax and suggests further abstractions for for-
malisms. Atomic flows, contrary to proof nets,
are purely geometric objects [16, 19].

Open deduction (2010) Inspired by atomic flows, it
removes a specific and pervasive kind of bu-
reaucracy while generalising and preserving
all the properties of the more syntactic for-
malisms [18].16

In deep inference we can express important logics
for the verification of process algebras that cannot
be expressed in Gentzen theory [3, 17, 33]. So, our
formalisms are more powerful than the traditional
ones also in terms of expressivity.
Atomic flows and open deduction come from
project P217. At the end of that project we formu-
lated a few proposals for a new formalism and made
a preliminary study of some associated properties.
This project, if approved, will conclude that line of
research by defining Formalism B18, which is our
main goal, represented as a red cross in Fig. 1.

2.2 National Importance

Formal verification of computer systems has proved
to be a much more difficult enterprise than ex-
pected at its beginnings, and some prominent re-
searchers even speculated that formal methods
were doomed to fail, as argued in the famous 1979
article [9]. However, progress has been steady and
formal verification is now an important tool in the
design of computer systems. For example, MIT’s
Technology Review lists crash-proof code as one of
the ten 2011 emerging technologies likely to change

16Open deduction was formerly known as Formalism A.
17Project Démosthène, see Sect. 1.4 - Previous Funding.
18The name is provisional.

6

Achieving the power of Frege + extension (possibly optimal proof
system) by incorporating substitution, guided by flow geometry:

the world.19 The development of formal verification
is now internationally perceived as strategic, for rea-
sons that are summarised in [1], where high profile
researchers counter the criticism of [9].
In the UK, our research is categorised by EPSRC as
Theory of Computation (maintain action) and Verifica-
tion and Correctness (grow action). As the reasons for
the maintain/grow actions recite, the UK is a recog-
nised world leader in logic-based approaches, the-
ory of computation has strong links with verification
and correctness, and this in turn has relevance to
the cross-ICT prioritiesMany-Core Architectures and
Concurrency in Embedded and Distributed Systems and
Towards an Intelligent Information Infrastructure.
Our project will help establishing in the UK a strong
group on deep inference, which has been described
many times by prominent scientists as one of the
few main innovations in proof theory.

2.3 Research Hypothesis and Objectives

We want to design Formalism B such that it ex-
presses proof systems with the following charac-
teristics:

• They have minimal complexity relative to all
known proof systems (efficiency).

• The proofs they represent are closer to se-
mantics than those of existing proof systems
(naturality).

At the core of Formalism B there is a substitution
notion for atomic flows that ensures low complexity
and the removal of a certain kind of proof bureau-
cracy. The set of atomic flows must then be closed
under substitution and subjected to certain equa-
tions. For example, this is what should happen when
the atomic flow on the right inside the parentheses
is substituted into the atomic flow on the left:

� � �
→ = .

The picture describes part of a proof in a dag-like
proof system ( represents dag sharing) where a
contraction ( ) occurs. The idea is that the geo-
metric properties of the substitution’s result are suf-
ficient to describe the dynamics of normalisation,
and the size of the atomic flows is polynomially re-
lated to the size of the proofs that they represent.

19http://www.technologyreview.com/article/372�6/.

At the end of P2 Guglielmi felt that appealing to
strong semantic principles was necessary in order
to choose the further properties of Formalism B. To
this purpose, in project P320, McCusker observed
that the crucial notion of atomic flow composition
can be associated with the category-theoretic prop-
erty of extra-naturality. The calculus of functors and
extra-natural transformations has an elegant repre-
sentation via string diagrams [10], and that will be
the starting point of this project.
After defining it, we want to equip Formalism B with
a basic study of its normalisation, complexity and
expressiveness properties. We then leave room for
two high profile but risky investigations: polynomial
normalisation in deep inference and a computational
interpretation of deep inference via atomic flows.

2.4 Programme and Methodology

The four core researchers and their expertise are:

AG A Guglielmi, deep inference, proof theory;
GM G McCusker, categorical and game semantics;
PB P Bruscoli, deep inference, proof complexity;
RA research assistant (to be hired), semantics.

The main goal of the entire project is the design of
Formalism B as a generalisation of open deduction.
We need to assess the consequences of the design
in the broadest possible perspective, in order to
avoid idiosyncrasies that could undermine its adop-
tion. The Mathematical Foundations group in Bath
provides a perspective that goes beyond proof the-
ory and normalisation. In particular, McCusker’s ex-
perience in semantics of logic and of programming
languages [6, 24, 25, 26] will be central, via category
theory as an organisational tool [24], and via geome-
try as a foundational tool [25, 27].
There are two themes, Efficiency and Naturality.21

Eff Efficiency

This theme will be mainly about understanding the
absolute and relative complexity of propositional
classical logic proofs in deep inference and their
atomic flows, when the following parameters vary:
a) depth of inference; b) presence or absence of the
cut rule (analyticity); c) presence or absence of ex-
tension and of substitution. All these mechanisms
can compress proofs, and because Formalism B aims
at compactness, they have an impact on its design,

20Project REDO, see Sect. 1.4 - Previous Funding.
21See a Gantt chart in Sect. 4 -Work Plan.
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Work is in progress.



Formalism B: Incorporating Substitution

Syntax Semantics

Truth
tables

late 1800s

Frege
systems

∼1900

Gentzen
formalisms

1935

Calculus of
structures

2001

Open
deduction

2010

Formalism B

Atomic
flows

2008

Girard
proof nets

1987

Proof systems (proof complexity)

Normalisation and analyticity
(proof theory)

Deep inference

Figure 1: Converging towards proof systems with normalisation and analyticity and that are as close as possible to natural
semantic structures; the horizontal line carries formalisms of increasing abstraction.

the notion of proof system give us a natural target
for designing formalisms. Our goal is the answer to:

Question Which formalism describes the proof sys-
tems with the most abstract proofs?

The question is vague but it is useful to understand
this project and our previous work on deep infer-
ence. Our goal is to design a formalism of efficient
and natural proof systems, and the idea is to pro-
gressively refine the syntax, while being guided by
semantics (naturality) and while making sure that
the complexity of proofs decreases (efficiency).

Proof semantics itself is not set in stone, it is an ac-
tive field of research, very close to the semantics
of programming languages and especially game se-
mantics. Proof theory and semantics have had for
decades a very fruitful interaction that continues to-
day. This is also true of this project, where Guglielmi
and McCusker represent the two disciplines.

Following Girard’s intuition, we are interested in se-
mantics that capture the special geometric nature
of proofs that has surfaced in our previous work in
deep inference. In fact, deep inference [15, 18] is
based on a free proof composition mechanism that
generalises and preserves analyticity, while bounding
the complexity of each inference step, in a property
that we call locality. It turns out that we can exploit
locality to obtain geometric models of normalisation
of finer granularity than that of proof nets.

We have already made three steps closing in on our
target, by designing three mutually compatible gen-
eralisations of Gentzen formalisms. They are com-
patible because they represent different levels of ab-
straction for proofs of the same nature, enjoying the
same normalisation dynamics. The formalisms are:

Calculus of structures (2001) It generalises Gentzen
and has later been developed into a complete
proof theory encompassing a wider range of

logics than Gentzen’s [15, 2].
Atomic flows (2008) They prove that normalisa-

tion is an independent phenomenon from syn-
tax and suggests further abstractions for for-
malisms. Atomic flows, contrary to proof nets,
are purely geometric objects [16, 19].

Open deduction (2010) Inspired by atomic flows, it
removes a specific and pervasive kind of bu-
reaucracy while generalising and preserving
all the properties of the more syntactic for-
malisms [18].16

In deep inference we can express important logics
for the verification of process algebras that cannot
be expressed in Gentzen theory [3, 17, 33]. So, our
formalisms are more powerful than the traditional
ones also in terms of expressivity.
Atomic flows and open deduction come from
project P217. At the end of that project we formu-
lated a few proposals for a new formalism and made
a preliminary study of some associated properties.
This project, if approved, will conclude that line of
research by defining Formalism B18, which is our
main goal, represented as a red cross in Fig. 1.

2.2 National Importance

Formal verification of computer systems has proved
to be a much more difficult enterprise than ex-
pected at its beginnings, and some prominent re-
searchers even speculated that formal methods
were doomed to fail, as argued in the famous 1979
article [9]. However, progress has been steady and
formal verification is now an important tool in the
design of computer systems. For example, MIT’s
Technology Review lists crash-proof code as one of
the ten 2011 emerging technologies likely to change

16Open deduction was formerly known as Formalism A.
17Project Démosthène, see Sect. 1.4 - Previous Funding.
18The name is provisional.

6

Achieving the power of Frege + extension (possibly optimal proof
system) by incorporating substitution, guided by flow geometry:

the world.19 The development of formal verification
is now internationally perceived as strategic, for rea-
sons that are summarised in [1], where high profile
researchers counter the criticism of [9].
In the UK, our research is categorised by EPSRC as
Theory of Computation (maintain action) and Verifica-
tion and Correctness (grow action). As the reasons for
the maintain/grow actions recite, the UK is a recog-
nised world leader in logic-based approaches, the-
ory of computation has strong links with verification
and correctness, and this in turn has relevance to
the cross-ICT prioritiesMany-Core Architectures and
Concurrency in Embedded and Distributed Systems and
Towards an Intelligent Information Infrastructure.
Our project will help establishing in the UK a strong
group on deep inference, which has been described
many times by prominent scientists as one of the
few main innovations in proof theory.

2.3 Research Hypothesis and Objectives

We want to design Formalism B such that it ex-
presses proof systems with the following charac-
teristics:

• They have minimal complexity relative to all
known proof systems (efficiency).

• The proofs they represent are closer to se-
mantics than those of existing proof systems
(naturality).

At the core of Formalism B there is a substitution
notion for atomic flows that ensures low complexity
and the removal of a certain kind of proof bureau-
cracy. The set of atomic flows must then be closed
under substitution and subjected to certain equa-
tions. For example, this is what should happen when
the atomic flow on the right inside the parentheses
is substituted into the atomic flow on the left:

� � �
→ = .

The picture describes part of a proof in a dag-like
proof system ( represents dag sharing) where a
contraction ( ) occurs. The idea is that the geo-
metric properties of the substitution’s result are suf-
ficient to describe the dynamics of normalisation,
and the size of the atomic flows is polynomially re-
lated to the size of the proofs that they represent.

19http://www.technologyreview.com/article/372�6/.

At the end of P2 Guglielmi felt that appealing to
strong semantic principles was necessary in order
to choose the further properties of Formalism B. To
this purpose, in project P320, McCusker observed
that the crucial notion of atomic flow composition
can be associated with the category-theoretic prop-
erty of extra-naturality. The calculus of functors and
extra-natural transformations has an elegant repre-
sentation via string diagrams [10], and that will be
the starting point of this project.
After defining it, we want to equip Formalism B with
a basic study of its normalisation, complexity and
expressiveness properties. We then leave room for
two high profile but risky investigations: polynomial
normalisation in deep inference and a computational
interpretation of deep inference via atomic flows.

2.4 Programme and Methodology

The four core researchers and their expertise are:

AG A Guglielmi, deep inference, proof theory;
GM G McCusker, categorical and game semantics;
PB P Bruscoli, deep inference, proof complexity;
RA research assistant (to be hired), semantics.

The main goal of the entire project is the design of
Formalism B as a generalisation of open deduction.
We need to assess the consequences of the design
in the broadest possible perspective, in order to
avoid idiosyncrasies that could undermine its adop-
tion. The Mathematical Foundations group in Bath
provides a perspective that goes beyond proof the-
ory and normalisation. In particular, McCusker’s ex-
perience in semantics of logic and of programming
languages [6, 24, 25, 26] will be central, via category
theory as an organisational tool [24], and via geome-
try as a foundational tool [25, 27].
There are two themes, Efficiency and Naturality.21

Eff Efficiency

This theme will be mainly about understanding the
absolute and relative complexity of propositional
classical logic proofs in deep inference and their
atomic flows, when the following parameters vary:
a) depth of inference; b) presence or absence of the
cut rule (analyticity); c) presence or absence of ex-
tension and of substitution. All these mechanisms
can compress proofs, and because Formalism B aims
at compactness, they have an impact on its design,

20Project REDO, see Sect. 1.4 - Previous Funding.
21See a Gantt chart in Sect. 4 -Work Plan.
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Work is in progress.



Conclusion

I Deep inference and atomic flows reach geometry by exploiting
locality;

I locality = linearity + atomicity, so we are doing an extreme
form of linear logic;

I proof complexity is being taken into account to design a new,
efficient and natural formalism for proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/TMENPS.pdf

Deep inference web site: http://alessio.guglielmi.name/res/cos/
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Brünnler, K. and Tiu, A. F. (2001).

A local system for classical logic.
In Nieuwenhuis, R. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 2250
of Lecture Notes in Computer Science, pages 347–361. Springer-Verlag.
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

Bruscoli, P. and Guglielmi, A. (2009).

On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):14:1–34.
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae.
In Clarke, E. M. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), volume
6355 of Lecture Notes in Computer Science, pages 136–153. Springer-Verlag.
http://cs.bath.ac.uk/ag/p/QPNDI.pdf.

Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.
In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 135–150. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
http://drops.dagstuhl.de/opus/volltexte/2010/2649.

Guglielmi, A., Gundersen, T., and Straßburger, L. (2010b).

Breaking paths in atomic flows for classical logic.
In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 284–293. IEEE.
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf.
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