Towards More Efficient and Natural
Proof Systems

Alessio Guglielmi
University of Bath

Joint work with
Paola Bruscoli, Tom Gundersen, Michel Parigot and Lutz StraBburger

23 May 2012

This talk is available at http://cs.bath.ac.uk/ag/t/TMENPS.pdf
Deep inference web site: http://alessio.guglielmi.name/res/cos/


http://cs.bath.ac.uk/ag/t/TMENPS.pdf
http://alessio.guglielmi.name/res/cos/

Outline

Problem: Getting rid of bureaucracy in proofs

Cut Elimination by Experiments: Gentzen's structure is too rigid
Open Deduction (Deep Inference): locality (atomicity + linearity)
Deep Inference and Proof Complexity: proofs are small, so it is OK

Atomic Flows: locality brings geometry

Normalisation With Atomic Flows: geometry is enough to
normalise

The Future, Incorporating Substitution: more geometry, more
efficiency, more naturality
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> From ‘different’ Gentzen sequent proofs we get proof nets

(Girard),
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» From ‘different’ Gentzen sequent proofs we get proof nets

(Girard),

> but they are too small: for propositional logic, they probably
do not form a proof system.



Proof Systems

» Proof system = algorithm checking proofs in polytime.



Proof Systems

» Proof system = algorithm checking proofs in polytime.
» Theorem (Cook and Reckhow):

3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology
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» Simple, exponential cut elimination;

> proof generates 2”7 experiments, where n is the number of
atoms;

> fairly syntax independent method.

The secret of success is in the proof composition mechanism.
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(Proof) System SKS

[Briinnler and Tiu, 2001] Lt L jave
ava a a
identity weakening contraction
> Atomic rules:
ana a a
aif aw] — act
f t aha
cut coweakening cocontraction
Anr[BVvC] (ArB)v(CAD)
> Linear rules: “ArB)VC  "[AvVCIA[BVD]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
> Negation on atoms only.
» Cut is atomic.
» SKS is complete for propositional logic.
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Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)
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Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

a b
v

E.g., atomic cocontraction: ana bAb A
m— an

[ev PIAfav D]

a

In Gentzen:

» no locality for (co)contraction (counterexample in
[Briinnler, 2004]),

» no local reduction of cut into atomic form.
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Slogans

Deep inference = locality (+ symmetry).
Locality = linearity + atomicity.
Geometry = syntax independence (elimination of bureaucracy).

Locality — geometry — semantics of proofs.
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Deep Inference and Proof Complexity

_ open _

cut-free =

op. ded. op- ded. op. ded. + op. ded. +

/ ] extension __ substitution
2
-
Briinnler open

)
1% 04 Frege - | 3 5 *
Cook- Krajféck-Pudlék '89
Statman '78

Reckhow 74 Frege+ —  —  Frege+

X . o
cutfree — extension < substitution
Gentzen

Gentzen Cool-Reckhow '79
~

— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms

and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones
and

cut elimination is quasipolynomial (instead of exponential).
(See [Jetabek, 2009, Bruscoli and Guglielmi, 2009,

Bruscoli et al., 2010]).
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Atomic Flows

_ t
t ahlaVv
\

ava s—— _

m— av A a a b
[avt]a[tva] an— v a
s—[ T a v " ana bAb A —
a a ana me— a
e f ‘ [avi]n[av D]

aha Vv ot = —
vVt aha
f an

f
Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;

> logical information is lost;

> flow size is polynomially related to derivation size.
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Each flow reduction corresponds to a correct proof reduction.
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Eg., U — T specifies that
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We can operate on flow reductions instead than on derivations:
» much easier,

» we get natural, syntax-independent induction measures.
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Flow Reductions: (Co)Contraction

vi- LA AT TR
X0

> These reductions conserve the number and length of paths.

» Open problem: does cocontraction yield exponential
compression?
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v

Normalised proof: T \T//l\

v

Normalised derivation: I

v

The symmetric form is called streamlined.

v

Cut elimination is a corollary of streamlining.

> We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



How Do We Break Paths?
With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there
is none on the right.
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A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ana)rd)
B Bvas||

BvVv[Bv([ava]rA)
BvBVY|
BV[BV[BV(anra)]]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Finding something like this is unthinkable without flows.
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Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.
» Note local cocontraction (= better sharing, not available in
Gentzen).
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Formalism B: Incorporating Substitution

Proof systems (proof complexity)

Normalisation and analyticity
(proof theory)

Formalism B Deep inference
Truth Frege Gentzen Calculus of  Open Atomic Girard
tables systems | formalisms | structures  deduction flows proof nets
Syntax Semantics
late 1800s  ~1900 ‘ 1935 [ 2001 2010 2008 | 1987 ‘
I
J

Achieving the power of Frege + extension (possibly optimal proof
system) by incorporating substitution, guided by flow geometry:

(A/Y) =y =

Work is in progress.
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Conclusion

» Deep inference and atomic flows reach geometry by exploiting
locality;

> locality = linearity 4+ atomicity, so we are doing an extreme
form of linear logic;

» proof complexity is being taken into account to design a new,
efficient and natural formalism for proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/TMENPS. pdf
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Logos Verlag, Berlin
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

References

Briinnler, K. and Tiu, A. F. (2001).

A local system for classical logic.

In Nieuwenhuis, R. and Voronkov, A., editors, Logic for P ing, Artificial Intelli , and ing (LPAR), volume 2250
of Lecture Notes in Computer Science, pages 347-361. Springer-Verlag.
http://www.iam.unibe.ch/~kai/Papers/lcl-1lpar.pdf.

Bruscoli, P. and Guglielmi, A. (2009).

On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):14:1-34,
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae

In Clarke, E. M. and Voronkov, A., editors, Logic for P Artificial (LPAR-16), volume
6355 of Lecture Notes in Computer Sc:ence pages 136-153. Sprmger Verlag.

http://cs.bath.ac.uk/ag/p/QPNDI.pdf.

Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.

In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPlcs), pages 135-150. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
http://drops.dagstuhl.de/opus/volltexte/2010/2649

Guglielmi, A., Gundersen, T., and StraBburger, L. (2010b).

Breaking paths in atomic flows for classical logic.
In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 284-293. |IEEE
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

JeFébek, E. (2000).

Proof complexity of the cut-free calculus of structures.
Journal of Logic and Computation, 19(2):323-339
http://www.math.cas.cz/~jerabek/papers/cos.pdf.

StraBburger, L. (2006).

Proof nets and the identity of proofs.
Technical Report 6013, INRIA
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf


http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/QPNDI.pdf
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf

	Problem: Getting rid of bureaucracy in proofs
	Cut Elimination by Experiments: Gentzen's structure is too rigid
	Open Deduction (Deep Inference): locality (atomicity + linearity)
	Deep Inference and Proof Complexity: proofs are small, so it is OK
	Atomic Flows: locality brings geometry
	Normalisation With Atomic Flows: geometry is enough to normalise
	The Future, Incorporating Substitution: more geometry, more efficiency, more naturality

