Towards More Efficient and Natural Proof Systems

Alessio Guglielmi

University of Bath

Joint work with Paola Bruscoli, Tom Gundersen, Michel Parigot and Lutz Straßburger

23 May 2012

This talk is available at http://cs.bath.ac.uk/ag/t/TMENPS.pdf Deep inference web site: http://alessio.guglielmi.name/res/cos/

Outline

Problem: Getting rid of bureaucracy in proofs

Cut Elimination by Experiments: Gentzen's structure is too rigid Open Deduction (Deep Inference): locality (atomicity + linearity) Deep Inference and Proof Complexity: proofs are small, so it is OK Atomic Flows: locality brings geometry Normalisation With Atomic Flows: geometry is enough to normalise

The Future, Incorporating Substitution: more geometry, more efficiency, more naturality

Problem: getting rid of bureaucracy in proofs

$ \begin{split} & \operatorname{id} \frac{1}{\otimes} \frac{1}{\begin{vmatrix} -a^+, a \end{vmatrix}} & \operatorname{id} \frac{1}{\models a, a^+} \\ & \frac{1}{\otimes} \frac{1}{\models a^+, a \otimes a, a^+} & \operatorname{id} \frac{1}{\models a^+, a} \\ & \otimes \frac{1}{\models a^+, g(a \otimes a), a^+} & \operatorname{id} \frac{1}{\models a^+, a} \\ & \operatorname{sech} \frac{1}{\models a^+, g(a \otimes a), a, a^+ \otimes a^+} \\ & \frac{1}{\otimes} \frac{1}{\models a^+, g(a \otimes a), a, a^+ \otimes a^+} \\ & \frac{1}{\otimes} \frac{1}{\models a^+, g(a \otimes a), a, g^+, g^+, a^+)} \\ & \downarrow \end{split} $	$ \begin{array}{c} \operatorname{id} \underbrace{ \begin{array}{c} \overset{\operatorname{id}}{\to} \underbrace{ - a_{a} \overset{\operatorname{id}}{\to} a^{+}, a \\ & \otimes \underbrace{ \begin{array}{c} & & & \\ & \otimes \underbrace{ - a_{a} \overset{\operatorname{id}}{\to} a^{+}, a \\ & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & - a_{a} & & \\ \end{array} \\ & & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ & & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \\ & & & \\ \end{array} \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & & \\ \end{array} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \overset{\operatorname{id}}{\to} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \end{array} \\ \end{array} \\ $ \\ \overset{\operatorname{id}}{\to} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \end{array} \\ \end{array} \\ \overset{\operatorname{id}}{\to} \end{array} \\ \\ \overset{\operatorname{id}}{\to} \end{array} \\ \end{array} \\ \\ \overset{\operatorname{id}}{\to} \end{array} \\ \\ \overset{\operatorname{id}}{\to} \end{array} \\ \\ \\ \\	$\begin{split} & \underset{\otimes}{\overset{\operatorname{id}}{\overset{\operatorname{F}}a^{-1},a}} \underbrace{\overset{\operatorname{id}}{\overset{\operatorname{F}}a,a^{-1}}}_{\overset{\operatorname{F}}{\overset{\operatorname{F}}a^{-1},a^{-2},a^{-2}}} \underbrace{\overset{\operatorname{F}}{\overset{\operatorname{F}}a^{-1},a^{-1},a^{-2},a^{-2}}}_{\overset{\operatorname{F}}{\overset{\operatorname{F}}a^{-1},a^{-1},a^{-2},a$
$ \begin{array}{l} \operatorname{id} & \frac{1}{\operatorname{s}} \underbrace{ \begin{array}{c} \frac{1}{1+\sqrt{1-\lambda_{1}}} & \operatorname{id} & \frac{1}{\operatorname{s}} \underbrace{ \begin{array}{c} \frac{1}{1+\sqrt{1-\lambda_{1}}} \\ \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\sqrt{1-\lambda_{1}}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\lambda_{1}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \frac{1}{\sqrt{1-\lambda_{1}}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\lambda_{1}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\lambda_{1}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \frac{1}{\sqrt{1-\lambda_{1}}} & \frac{1}{\sqrt{1-\lambda_{1}}} \\ \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\lambda_{1}} & \frac{1}{\sqrt{1-\lambda_{1}}} \end{array}}{2} \underbrace{ \begin{array}{c} \frac{1}{1+\lambda_{1}} & \frac{1}{$	$ \overset{\text{id}}{\qquad \qquad \qquad$	$\begin{array}{c} \displaystyle \overset{\text{id}}{=} \frac{\vdash \underline{a}^{+}, \overline{a}_{1}}{2}, \overrightarrow{\text{id}} \vdash \underline{f}_{2} \xrightarrow{a}_{2}, \\ \\ \otimes \frac{\vdash \underline{a}^{+}, \overline{a}^{+}, \overline{a}^$
$\vdash a^{\perp} \varphi(a \otimes d), a \varphi(a^{\perp} \otimes a^{\perp})$	$\downarrow \qquad \qquad$	$\vdash a^{\pm} \overline{\mathcal{G}(a^{\otimes}a)}, a^{\otimes} \overline{\mathcal{G}(a^{\pm} \otimes a^{\pm})}$
$\overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{a}{\bigvee}}} \overset{a}{\underset{\mathbb{Q}}{\overset{a^{\perp}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{a^{\perp}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigvee}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigcup}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\bigg}}} \overset{a^{\perp}}}{\underset{\mathbb{Q}}{\overset{\mathbb{Q}}{\overset{\mathbb{Q}}{\overset{\mathbb{Q}}}}} \overset{a^{\perp}}}{\overset{a^{\perp}}}} $	$\bigvee_{\mathcal{P}}^{a^{\perp}} \otimes \bigvee_{\mathcal{P}}^{a^{\perp}} \otimes \bigvee_{\mathcal{P}}^{a^{\perp}} \otimes$	ken from [Straßburger, 2006]

 From 'different' Gentzen sequent proofs we get proof nets (Girard),

Problem: getting rid of bureaucracy in proofs

$\begin{array}{c} \frac{\mathrm{d}}{2} \frac{-a^{\perp}_{-a}}{a} & \mathrm{id} \frac{-a,a^{\perp}_{-a}}{ba^{\perp}_{-a} \otimes a,a^{\perp}_{-a}} \\ \approx \frac{-a^{\perp}_{-a} \otimes a,a^{\perp}_{-a}}{ba^{\perp}_{-a} \otimes (a \otimes a),a^{\perp}_{-a} \otimes a^{\perp}_{-a}} \\ \approx \frac{-a^{\perp}_{-a} \otimes (a \otimes a),a^{\perp}_{-a} \otimes a^{\perp}_{-a}}{e^{\perp}_{-a} \otimes (a \otimes a),a,a^{\perp}_{-a} \otimes a^{\perp}_{-a}} \\ \approx \frac{-a^{\perp}_{-a} \otimes (a \otimes a),a,a^{\perp}_{-a} \otimes a^{\perp}_{-a}}{a} \\ \downarrow \end{array}$	$ \begin{array}{c} \operatorname{id} \underbrace{\frac{\operatorname{id} - a_{-a} - \operatorname{id} - a_{-a} - a_{-a$	$\begin{split} & \underset{\substack{(\mathbf{d} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c} \frac{d}{d} \frac{1}{-\frac{d^2-\lambda}{2}} & \frac{dd}{d} \frac{1}{-\frac{d^2-\lambda}{2}} \\ \frac{d}{d} \frac{1}{-\frac{d^2-\lambda}{2}} & \frac{dd}{d} \frac{1}{-\frac{d^2-\lambda}{2}} \\ \frac{d}{d} \frac{1}{-\frac{d}{2}} \frac{1}{-\frac{d}{2}} \frac{d}{d} (\frac{d}{d} \frac{\lambda}{2}) \frac{\lambda}{2} \\ \frac{d}{d} \frac{1}{-\frac{d}{2}} \frac{1}{-\frac{d}{2}} \frac{d}{d} (\frac{d}{d} \frac{\lambda}{2}) \frac{\lambda}{2} \\ \frac{d}{d} \frac{1}{-\frac{d}{2}} \frac{1}{-\frac{d}{2}} \frac{d}{d} (\frac{d}{d} \frac{\lambda}{2}) \frac{\lambda}{2} \\ \frac{d}{d} \frac{d}{d} \frac{1}{-\frac{d}{2}} \frac{d}{d} \frac{d}{d} \frac{d}{d} \frac{1}{-\frac{d}{2}} \frac{d}{d} \frac{d}{d} \frac{d}{d} \frac{1}{-\frac{d}{2}} \\ \frac{d}{d} \frac{d}$	$ \overset{\text{id}}{\underset{\substack{ \overset{ \scriptstyle 0}}{\overset{\scriptstyle 0}}{\overset{\scriptstyle 0}} + \frac{1}{\sqrt{\lambda_{\perp}}}}} \overset{\text{id}}{\underset{\substack{ \overset{\scriptstyle 0}}{\overset{\scriptstyle 0}} + \frac{1}{\sqrt{\lambda_{\perp}}}}}} \overset{\text{id}}{\underset{\substack{ }}{\overset{\scriptstyle 0}} + \frac{1}{\sqrt{\lambda_{\perp}}}}}} \overset{\text{id}}{\underset{\substack{ }} + \frac{1}{\sqrt{\lambda_{\perp}}}}} \overset{\text{id}}{\underset{\substack{ 0}} + \frac{1}{\sqrt{\lambda_{\perp}}}}}} \overset{\text{id}}{\underset{\substack{ 0}} + \frac{1}{\sqrt{\lambda_{\perp}}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}}} \overset{\text{id}}{\underset{\substack{ 0}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} \overset{\text{id}}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} \overset{\text{id}}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} \overset{\text{id}}{\overset{\scriptstyle 0} + \frac{1}{\sqrt{\lambda_{\perp}}}} \overset{\text{id}}{\overset{\scriptstyle 0} \overset{\scriptstyle 0} \overset{\scriptstyle 0} }{\overset{\scriptstyle 0} \overset{\overset{\scriptstyle 0} $	$ \begin{array}{c} \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} \\ & & & \operatorname{exch} & \operatorname{id} & \operatorname{id} & \operatorname{id} \\ & & & \operatorname{exch} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} \\ & & & & \operatorname{exch} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} \\ & & & & & & \\ & & & & & & \\ & & & & $
$+ \frac{1}{2} \overline{\varphi}(4 \otimes 4), \frac{1}{4} \overline{\varphi}(4 \otimes 4), \frac{1}{$	$+ d^{\perp} \mathfrak{F}(a \otimes b), d \mathfrak{F}(b^{\perp} \otimes b^{\perp})$	$\downarrow a^{\pm}\overline{2}(a\otimes \overline{a}), \overline{a}\overline{2}(a^{\pm}\otimes a^{\pm})$

Picture taken from [Straßburger, 2006]

- From 'different' Gentzen sequent proofs we get proof nets (Girard),
- but they are too small: for propositional logic, they probably do not form a proof system.

Proof Systems

• Proof system = algorithm checking proofs in polytime.

Proof Systems

- Proof system = algorithm checking proofs in polytime.
- Theorem (Cook and Reckhow):

∃ *super* proof system iff NP = co-NP

where

super = with polysize proofs over the proved tautology

WITH U CUTS

||∝

CUT-FREE

ALL POSSIBLE

āva

fva

Simple, exponential cut elimination;

- Simple, exponential cut elimination;
- proof generates 2ⁿ experiments, where n is the number of atoms;

- Simple, exponential cut elimination;
- proof generates 2ⁿ experiments, where n is the number of atoms;
- fairly syntax independent method.

- Simple, exponential cut elimination;
- proof generates 2ⁿ experiments, where n is the number of atoms;
- fairly syntax independent method.

The secret of success is in the proof composition mechanism.

(Proof) System SKS [Brünnler and Tiu, 2001]

Atomic rules:

(Proof) System SKS [Brünnler and Tiu, 2001]

Atomic rules:

Linear rules:

 $s\frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} \qquad m \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]}$ switch medial

- (Proof) System SKS [Brünnler and Tiu, 2001]
 - Atomic rules:

Linear rules:

Plus an '=' linear rule (associativity, commutativity, units).

- (Proof) System SKS [Brünnler and Tiu, 2001]
 - Atomic rules:

Linear rules:

 $s\frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} \qquad m \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]}$ switch medial

- Plus an '=' linear rule (associativity, commutativity, units).
- Negation on atoms only.

- (Proof) System SKS [Brünnler and Tiu, 2001]
 - Atomic rules:

Linear rules:

 $s\frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} \qquad m \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]}$ switch medial

- Plus an '=' linear rule (associativity, commutativity, units).
- Negation on atoms only.
- Cut is atomic.

- (Proof) System SKS [Brünnler and Tiu, 2001]
 - Atomic rules:

Linear rules:

$$\begin{array}{c} \stackrel{s}{\overset{A \wedge [B \vee C]}{(A \wedge B) \vee C}}{} & \stackrel{m}{\overset{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]}} \\ switch & medial \end{array}$$

- Plus an '=' linear rule (associativity, commutativity, units).
- Negation on atoms only.
- Cut is atomic.
- SKS is complete for propositional logic.

$$\frac{\frac{a}{a \wedge a} \vee \frac{b}{b \wedge b}}{[a \vee b] \wedge [a \vee b]} \wedge \frac{a}{a \wedge a} \\
\frac{\frac{t}{a \vee \bar{a}}}{[a \vee t] \wedge [a \vee b]} \\
\frac{\frac{t}{a \vee \bar{a}}}{[a \vee t] \wedge [t \vee \bar{a}]} \\
\frac{\frac{s}{a \wedge \bar{a}}}{[s \frac{a \wedge \bar{a}}{f} \vee t} \vee t]$$

Proofs are composed by the same operators as formulae.

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic (the medial rule, m, is impossible in Gentzen).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic (the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)

Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time (so, they are small).

Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time (so, they are small).

E.g., atomic cocontraction:

$$m\frac{\frac{a}{a \wedge a} \vee \frac{b}{b \wedge b}}{[a \vee b] \wedge [a \vee b]} \wedge \frac{a}{a \wedge a}$$

Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time (so, they are small).

E.g., atomic cocontraction:

$$m \frac{\frac{a}{a \wedge a} \vee \frac{b}{b \wedge b}}{[a \vee b] \wedge [a \vee b]} \wedge \frac{a}{a \wedge a}$$

In Gentzen:

- no locality for (co)contraction (counterexample in [Brünnler, 2004]),
- no local reduction of cut into atomic form.

Deep inference = locality (+ symmetry).

Deep inference = locality (+ symmetry).

Locality = linearity + atomicity.

Deep inference = locality (+ symmetry).

Locality = linearity + atomicity.

Geometry = syntax independence (elimination of bureaucracy).

Deep inference = locality (+ symmetry).

Locality = linearity + atomicity.

Geometry = syntax independence (elimination of bureaucracy).

Locality \rightarrow geometry \rightarrow semantics of proofs.

 \rightarrow = 'polynomially simulates'.

 \rightarrow = 'polynomially simulates'.

Open deduction has as small proofs as the best formalisms

 \longrightarrow = 'polynomially simulates'.

Open deduction has as small proofs as the best formalisms and

it has a normalisation theory

 \longrightarrow = 'polynomially simulates'.

Open deduction has as small proofs as the best formalisms and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones

 \longrightarrow = 'polynomially simulates'.

Open deduction has as small proofs as the best formalisms and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones and

cut elimination is quasipolynomial (instead of exponential). (See [Jeřábek, 2009, Bruscoli and Guglielmi, 2009, Bruscoli et al., 2010]).

Below proofs, their (atomic) flows are shown:

Below proofs, their (atomic) flows are shown:

only structural information is retained in flows;

Below proofs, their (atomic) flows are shown:

- only structural information is retained in flows;
- logical information is lost;

Below proofs, their (atomic) flows are shown:

- only structural information is retained in flows;
- logical information is lost;
- flow size is polynomially related to derivation size.

Flow Reductions: (Co)Weakening (1)

Flow Reductions: (Co)Weakening (1)

Each flow reduction corresponds to a correct proof reduction.

We can operate on flow reductions instead than on derivations:

much easier,

We can operate on flow reductions instead than on derivations:

- much easier,
- we get natural, syntax-independent induction measures.

Flow Reductions: (Co)Contraction

Flow Reductions: (Co)Contraction

These reductions conserve the number and length of paths.

Flow Reductions: (Co)Contraction

- These reductions conserve the number and length of paths.
- Open problem: does cocontraction yield exponential compression?

Normalised proof:

Normalised derivation:

Normalised proof:

Normalised derivation:

• The symmetric form is called streamlined.

Normalised proof:

Normalised derivation:

- The symmetric form is called streamlined.
- Cut elimination is a corollary of streamlining.

Normalised proof:

Normalised derivation:

- The symmetric form is called streamlined.
- Cut elimination is a corollary of streamlining.
- We just need to break the paths between identities and cuts, and (co)weakenings do the rest.

How Do We Break Paths?

With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there is none on the right.

$$\begin{array}{c} A \\ \| \{\mathsf{c}\uparrow,\mathsf{a}i\downarrow,=\} \\ (([a \lor \overline{a}] \land A) \land A) \land A \\ (\Psi \land A) \land A \\ (B \lor (a \land \overline{a})] \land A) \land A \\ \Phi_a \land A \\ [B \lor ([a \lor \overline{a}] \land A)] \land A \\ [B \lor \Psi] \land A \\ [B \lor \Psi] \land A \\ B \lor [B \lor ([a \lor \overline{a}] \land A)] \\ B \lor [B \lor ([a \lor \overline{a}] \land A)] \\ B \lor [B \lor ([a \lor \overline{a}] \land A)] \\ B \lor [B \lor ([a \lor \overline{a}] \land A)] \\ B \lor [B \lor [B \lor (a \land \overline{a})]] \\ \| \{\mathsf{c}\downarrow,\mathsf{a}i\uparrow,=\} \\ B \end{array}$$

 We can compose this as many times as there are paths between identities and cut.

- We can compose this as many times as there are paths between identities and cut.
- ▶ We obtain a family of normalisers that only depends on *n*.

- We can compose this as many times as there are paths between identities and cut.
- ▶ We obtain a family of normalisers that only depends on *n*.
- The construction is exponential.

- We can compose this as many times as there are paths between identities and cut.
- We obtain a family of normalisers that only depends on *n*.
- The construction is exponential.
- Finding something like this is unthinkable without flows.

φ.

Y

÷

φ.

 ϕ_1

\$

TT YLYA

• Only n + 1 copies of the proof are stitched together.

ττ γ[⊥]Υ, [¢]

- Only n + 1 copies of the proof are stitched together.
- Note local cocontraction (= better sharing, not available in Gentzen).

Formalism B: Incorporating Substitution

Formalism B: Incorporating Substitution

Achieving the power of Frege + extension (possibly optimal proof system) by incorporating substitution, guided by flow geometry:

$$(\land/\curlyvee) \rightarrow \bigcirc = \bigcirc$$

Work is in progress.

 Deep inference and atomic flows reach geometry by exploiting locality;

- Deep inference and atomic flows reach geometry by exploiting locality;
- locality = linearity + atomicity, so we are doing an extreme form of linear logic;

- Deep inference and atomic flows reach geometry by exploiting locality;
- locality = linearity + atomicity, so we are doing an extreme form of linear logic;
- proof complexity is being taken into account to design a new, efficient and natural formalism for proofs.

- Deep inference and atomic flows reach geometry by exploiting locality;
- locality = linearity + atomicity, so we are doing an extreme form of linear logic;
- proof complexity is being taken into account to design a new, efficient and natural formalism for proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/TMENPS.pdf Deep inference web site: http://alessio.guglielmi.name/res/cos/

Brünnler, K. (2004).

Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin. http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

Brünnler, K. and Tiu, A. F. (2001).

A local system for classical logic.

In Nieuwenhuis, R. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 2250 of Lecture Notes in Computer Science, pages 347–361. Springer-Verlag, http://www.iam.unibe.ch/eki/Papers/lcl-lpar.pdf.

References

Bruscoli, P. and Guglielmi, A. (2009).

On the proof complexity of deep inference. ACM Transactions on Computational Logic, 10(2):14:1-34. http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae. In Clarke, E. M. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), volume 6355 of Lecture Notes in Computer Science, pages 136–153. Springer-Verlag. http://cs.bath.ac.uk/ag/p/QPNDL.jdv

Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.

In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 135–150. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. http://drops.dagstuhl.de/opus/volltexte/2010/2649.

Guglielmi, A., Gundersen, T., and Straßburger, L. (2010b).

Breaking paths in atomic flows for classical logic.

In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 284–293. IEEE. http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf.

Jeřábek, E. (2009).

Proof complexity of the cut-free calculus of structures. Journal of Logic and Computation, 19(2):323–339. http://www.math.cas.cz/~jerabek/papers/cos.pdf.

Straßburger, L. (2006).

Proof nets and the identity of proofs. Technical Report 6013, INRIA. http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf.