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» Example, a Frege system:

AD(BDA),
> Axioms: (AD(BDC))D((ADB)D>(AD0)),
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» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

» Due to implicational completeness: if A D B then A proves B.



Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology



Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology

» - super proof system? Probably not; hard.
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» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology

» - super proof system? Probably not; hard.

» J optimal (polynomially simulating all others) proof system?
50/50; perhaps feasible.
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Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
I A .
3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.
Most studied, proof theory.
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Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:
1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).
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[Briinnler and Tiu, 2001] |«1— anl— w0
ava a a
identity weakening contraction
» Atomic rules:
ana a a
aiT aWT— acT
f t ana
cut cowea/eening cocontraction
AAN[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC  "[AVC]A[BVD]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.
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Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)
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Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

a b
v

E.g., atomic cocontraction: ana bAb A
m— an

[ev PIAfav D]

a

In Gentzen:

» no locality for (co)contraction (counterexample in
[Briinnler, 2004]),

» no local reduction of cut into atomic form.
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Slogans

Deep inference = locality (+ symmetry).
Locality = linearity + atomicity.
Geometry = syntax independence (elimination of bureaucracy).

Locality — geometry — semantics of proofs.
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Deep Inference and Proof Complexity

_ open _

cut-free =

op. ded. op- ded. op. ded. + op. ded. +

/ ] extension __ substitution
2
-
Briinnler open

)
1% 04 Frege - | 3 5 *
Cook- Krajféck-Pudlék '89
Statman '78

Reckhow 74 Frege+ —  —  Frege+

X . o
cutfree — extension < substitution
Gentzen

Gentzen Cool-Reckhow '79
~

— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms

and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones
and

cut elimination is quasipolynomial (instead of exponential).
(See [Jetabek, 2009, Bruscoli and Guglielmi, 2009,

Bruscoli et al., 2010]).
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Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;

> logical information is lost;

> flow size is polynomially related to derivation size.
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Each flow reduction corresponds to a correct proof reduction.
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Eg., U — T specifies that
w| o
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We can operate on flow reductions instead than on derivations:
» much easier,

» we get natural, syntax-independent induction measures.
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Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

» Open problem: does cocontraction yield exponential
compression? Conjecture: yes.
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Simple, exponential cut elimination; proof generates 2"
experiments.
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Generalising the Cut-Free Form

v

Normalised proof: T \T//l\

T

Normalised derivation: I I I I I

v

v

The symmetric form is called streamlined.

v

Cut elimination is a corollary of streamlining.

> We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



How Do We Break Paths?
With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there
is none on the right.
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We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ana)rd)
B Bvas||

BvVv[Bv([ava]rA)
BvBVY|
BV[BV[BV(anra)]]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Finding something like this is unthinkable without flows.



Example for n =2
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Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.
» Note local cocontraction (= better sharing, not available in
Gentzen).
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» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.

(1, 2) [Guglielmi et al., 2010b]; (3) [Bruscoli et al., 2010].
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Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.
> If true, excellent bureaucracy-free formalism.

> Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).



Conclusion

» Cut elimination does not depend on logical rules.
> It only depends on structural information, i.e., geometry.

» Normalisation can be made robust.

This talk is available at http://cs.bath.ac.uk/ag/t/RSPT.pdf
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