Removing Syntax From Proof Theory

Alessio Guglielmi
University of Bath

Joint work with
Paola Bruscoli, Tom Gundersen, Michel Parigot and Lutz StraBburger

9 December 2010

This talk is available at http://cs.bath.ac.uk/ag/t/RSPT.pdf

http://cs.bath.ac.uk/ag/t/RSPT.pdf

Outline

Proof Complexity and the Oddness of the Cut

Open Deduction (Deep Inference)
Propositional Logic and System SKS
Examples
Summary

Deep Inference and Proof Complexity

Atomic Flows
Examples
Flow Reductions

Normalisation
Cut Elimination: Experiments
Streamlining: Generalised Cut Elimination
The Path Breaker
Quasipolynomial Cut Elimination
Overview

Conjecture

Conclusion

Proof Systems

> Proof system = algorithm checking proofs in polytime.

Proof Systems

> Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
> Axioms: (AD(B2C))D((ADB)D(AD0)),
(-B2>=A4)>((~BD>A)D> B),
and rules (often just modus ponens, or cut): A 233_

) ((ase)22) (0‘3((0:7 SENE) <(o\>(¢ >al> @ 0)
w2(a2a) (83(w5a)) > (a2a)
T asa

>

Proof Systems

> Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
> Axioms: (AD(BDC))D((ADB)D>(AD0)),
(-B2>=A4)>((~BD>A)D> B),
and rules (often just modus ponens, or cut): A 233_

e (onyae) (oo llens) 7%));)(((”(0‘)9‘)‘))(@0\)

" 02 (aa) (8>(m2a1)) 5 (asad
IS G sl N Ll
& 2o0Q

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

Proof Systems

> Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
> Axioms: (AD(BDC))D((ADB)D>(AD0)),
(-B2>=A4)>((~BD>A)D> B),
and rules (often just modus ponens, or cut): A 233_

e (onyae) (oo llens) 7%));)(((”(0‘)9‘)‘))(@0\)

" 02 (aa) (8>(m2a1)) 5 (asad
IS G sl N Ll
& 2o0Q

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

» Due to implicational completeness: if A D B then A proves B.

Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology

Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology

» - super proof system? Probably not; hard.

Proof Complexity and the NP Vs. co-NP Problem

» Theorem [Cook and Reckhow, 1974]:
3 super proof system
iff
NP = co-NP

where

super = with polysize proofs over the proved tautology

» - super proof system? Probably not; hard.

» J optimal (polynomially simulating all others) proof system?
50/50; perhaps feasible.

Compressing Proofs

How can we make proofs smaller?

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:
1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <+ A (where p is a fresh atom).

o A
3. Substitution: sub—.
Ao

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <+ A (where p is a fresh atom).
_ A :
3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
I A .
3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
I A .
3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.
Most studied, proof theory.

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

» Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:
1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).

(Proof) System SKS
[Briinnler and Tiu, 2001]

» Atomic rules:

t
ail —
ava

identity

ana
f
cut

ail

f
aw| —
a

weakening

aWT —

t

coweakening

avVa
ac]

a
contraction

a
acl

aha
cocontraction

(Proof) System SKS
[Briinnler and Tiu, 2001]

» Atomic rules:

» Linear rules:

t f ava
ail — aw| — ac]
ava a a
identity weakening contraction
aha a
ail aw] — acl
f t ana
cut coweakening cocontraction
AAN[BVC] (ArB)v(CAD)

s

m

(ArB)vC [AvC]Ar[BvD]

switch medial

(Proof) System SKS

.. . t f
[Briinnler and Tiu, 2001] |«1— al— 2
ava a a
identity weakening contraction
» Atomic rules:
aha a a
ail aw] — acl
f t ana
cut coweakening cocontraction
AAN[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC "[AVC]A[BVD]
switch medial

» Plus an ‘=" linear rule (associativity, commutativity, units).

(Proof) System SKS

. . t f
[Briinnler and Tiu, 2001] |«1— al— 2
ava a a
identity weakening contraction
» Atomic rules:
aha a
ail aw] — acl
f t ana
cut coweakening cocontraction
AAN[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC "[AVC]A[BVD]
switch medial

» Plus an

» Negation on atoms only.

=" linear rule (associativity, commutativity, units).

(Proof) System SKS

>

v

. . t f v
[Briinnler and Tiu, 2001] |«1— anl— w0
ava a a
identity weakening contraction
Atomic rules:
ana a
ail aw] — acl
f t aha
cut coweakening cocontraction
AAN[BVC] (ArB)v(CAD)
Linear rules: ‘ArB)VC "[AVC]A[BVD]
switch medial
Plus an '="linear rule (associativity, commutativity, units).

v

v

v

Negation on atoms only.

Cut is atomic.

(Proof) System SKS

. . t f vV
[Briinnler and Tiu, 2001] |«1— anl— w0
ava a a
identity weakening contraction
» Atomic rules:
ana a a
aiT aWT— acT
f t ana
cut cowea/eening cocontraction
AAN[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC "[AVC]A[BVD]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.

Examples in Open Deduction
a b

v
> ana bLAb A

"TavAfav D]

a

an

Examples in Open Deduction
a b

v
> ana bLAb A

"TavAfav D]

a

an

Examples in Open Deduction
a b

v
> ana bLAb A

"TavAfav D]

a

an

~+

Q
<
[

[ﬂVt A

[aVt

—

tva]

Aa

aha v ot

Proofs are composed by the same operators as formulae.

Examples in Open Deduction
a b

v
> ana bLAb A

"TavP]ALav]

a

an

avVa
m
[avt]A[tva]
> -
[avt]ra
S
aha Vot
vt

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

Examples in Open Deduction
a b

v
> ana bLAb A

"TavP]ALav]

a

an

—+

ava
m

[avt]A[tva]

> -

[avt]ra

LT
aha Vot

vt

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction: ana bnab

[ev PIAfav D]

A

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

a b
v

E.g., atomic cocontraction: ana bAb A
m— an

[ev PIAfav D]

a

In Gentzen:

» no locality for (co)contraction (counterexample in
[Briinnler, 2004]),

» no local reduction of cut into atomic form.

Slogans

Deep inference = locality (+ symmetry).

Slogans

Deep inference = locality (+ symmetry).

Locality = linearity + atomicity.

Slogans

Deep inference = locality (+ symmetry).
Locality = linearity + atomicity.

Geometry = syntax independence (elimination of bureaucracy).

Slogans

Deep inference = locality (+ symmetry).
Locality = linearity + atomicity.
Geometry = syntax independence (elimination of bureaucracy).

Locality — geometry — semantics of proofs.

Deep Inference and Proof Complexity

_ open_

cutfree ~ = ded
op. ded. Op- ded. op. ded. + op. ded. +
]z extension __ substitution
4
/ Briinnler — open= =7 s
1X 04 Frege 3 5 *
\ ICOOI" Krajitek Pudldk '89
Statman 78 Reckhow 74 Frege+ — — Frege+
cutfree — T extension < substitution
Gentzen CoolcReckhow 79

Gentzen _

— = ‘polynomially simulates’.

Deep Inference and Proof Complexity

_ open—_
cutfree =~ P> ded
op. ded.
op. ded. P op. ded. + op. ded. +
extension __ substitution
2 4
Briina open— — 7|
runnler - 5 *
1% 04 Frege - | 3 5
Cook Krajiéek-Pudldk 89
B — T
Statman ’78 Reckhow 74 Frege + Frege +
X . o
cut-free — G extension < substitution
Gentzen entzen Cook-Reckhow 79
~
— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms

Deep Inference and Proof Complexity

_ open_

cut-free ~ >
op. ded. op. ded. op. ded. + op. ded. +
]2 extension __ substitution
4
/ Briinnler — open— ~7 .
1% 04 Frege 3 5 *
\ Icook Krajitek-Pudlik '$9
Statman 78 Reckhow 74 Frege+ — — Frege+
cutfree — T extension < substitution
Gentzen _ Gentzen CookReckhow 79

— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms

and
it has a normalisation theory

Deep Inference and Proof Complexity

_ open _

cutfree ~ >
op. ded. op. ded. op. ded. + op. ded. +
]2 extension __ substitution
4
/ Briinnler — open— ~7 .
1% 04 Frege 3 5 *
\ Icook Krajitek-Pudlik '$9
Statman 78 Reckhow 74 Frege+ — — Frege+
cutfree — T extension < substitution
Gentzen _ Gentzen CookReckhow 79

— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms
and
it has a normalisation theory

and
its cut-free proof systems are more powerful than Gentzen ones

Deep Inference and Proof Complexity

_ open _

cut-free =

op. ded. op- ded. op. ded. + op. ded. +

/] extension __ substitution
2
-
Briinnler open

)
1% 04 Frege - | 3 5 *
Cook- Krajféck-Pudlék '89
Statman '78

Reckhow 74 Frege+ — — Frege+

X . o
cutfree — extension < substitution
Gentzen

Gentzen Cool-Reckhow '79
~

— = ‘polynomially simulates’.

Open deduction has as small proofs as the best formalisms

and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones
and

cut elimination is quasipolynomial (instead of exponential).
(See [Jetabek, 2009, Bruscoli and Guglielmi, 2009,

Bruscoli et al., 2010]).

(Atomic) Flows

_ t
t ahlaVv
e \

ava s

e av A a a b
"Tavi]afeva] an— v “
SW a v " ana Ab A —
a a aha m— a
Ty B f [av PInfav D]
alha vV t = —
vVt aha
f an

= &ﬂ s

Below proofs, their (atomic) flows are shown:

(Atomic) Flows

_ t
t ahlaVv
e \

ava s

_ av A a a b
"Tavi]afeva] an— v
SW a v A ana bAb A

a a ana me———

f vilalavb
T _ v/ Trav 7]
vVt anha
f an

f
O E M AN A
Below proofs, their (atomic) flows are shown:

» only structural information is retained in flows;

a

a

(Atomic) Flows

_ t
t ahlaVv
\

ava s—— _

m— av A a a b
[avt]a[tva] an— v a
s—[T a v " ana bAb A —
a a ana me— a
e f ‘ [avi]n[av D]

aha Vv ot = —
vVt aha
f an

f
O E M AN A
Below proofs, their (atomic) flows are shown:

» only structural information is retained in flows;

> logical information is lost;

(Atomic) Flows

_ t
t ahlaVv
\

ava s—— _

m— av A a a b
[avt]a[tva] an— v a
s—[T a v " ana bAb A —
a a ana me— a
e f ‘ [avi]n[av D]

aha Vv ot = —
vVt aha
f an

f
Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;

> logical information is lost;

> flow size is polynomially related to derivation size.

Flow Reductions: (Co)Weakening (1)

Yo A

Flow Reductions: (Co)Weakening (1)

Yoo A
11 -1 I7T -7
IH

A ooty Y - 44

Each flow reduction corresponds to a correct proof reduction.

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

t
5{4(\/&} §|:tv;i|
‘ becomes olat Jt} H

{5 4

d

a

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

) efot]

‘ . becomes olat Jt} H
{5 4
d
d ;
a

We can operate on flow reductions instead than on derivations:

» much easier,

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

) efot]

‘ . becomes olat Jt} H
{5 4
d
d ;
a

We can operate on flow reductions instead than on derivations:
» much easier,

» we get natural, syntax-independent induction measures.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

Flow Reductions: (Co)Contraction

LA AT TR
X-0F

» These reductions conserve the number and length of paths.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.

» They can blow up a derivation exponentially.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

» Open problem: does cocontraction yield exponential
compression? Conjecture: yes.

Cut Elimination by ‘Experiments’

Experiment:

AA X

tAf

— O

Cut Elimination by ‘Experiments’

&V a
N
fva
Experiment:
AA X
1\
tAf
Alc
« PosUBLE
ASSILNNENTS
¢
—
We do: 3
““ < Simacron
WITH

coTS CoT-FREE

Cut Elimination by ‘Experiments’

oV a
N
fva
Experiment:
AA X
1\
tAf
Alc
« PoslIBLE
ASSIGNAENTS
¢
—
We do: &1
“* < misTNCTou
WITH
78
coTS CoT-FREE

Simple, exponential cut elimination; proof generates 2"
experiments.

Generalising the Cut-Free Form

» Normalised proof: T_F\T//L\

H

Generalising the Cut-Free Form

» Normalised proof:

» Normalised derivation:

A

H

Generalising the Cut-Free Form

v

v

v

v

Normalised proof: T \T//l\

T

Normalised derivation: I I I

The symmetric form is called streamlined.

Cut elimination is a corollary of streamlining.

Generalising the Cut-Free Form

v

Normalised proof: T \T//l\

T

Normalised derivation: I I I I I

v

v

The symmetric form is called streamlined.

v

Cut elimination is a corollary of streamlining.

> We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.

How Do We Break Paths?
With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there
is none on the right.

We Can Do This on Derivations, of Course
A
fletait=}

((J[avalnA)ynA)yn A
(\IIAA)AA“
([Bv(ana)rnd)n A
A ®ondl
[avalrn A [Bv ([avalnA)]aA
\p” — [BV\II]/\A“
BV (ana) BV ([BV(anra)]rA)
B Bvas||
BvI[BV(lava]rA4)]
Bv[Bv\Il]“
BVv[Bv[Bv(ara)]
[fetait.=1
B

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

» We obtain a family of normalisers that only depends on n.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

» We obtain a family of normalisers that only depends on n.

» The construction is exponential.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ana)rd)
B Bvas||

BvVv[Bv([ava]rA)
BvBVY|
BV[BV[BV(anra)]]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Finding something like this is unthinkable without flows.

Example for n =2

’A
ﬁ
[] []

Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.

Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.
» Note local cocontraction (= better sharing, not available in
Gentzen).

Normalisation

Overview
SUnHETRIC GENERAL[SATI oW
v ELININATION STREAMLIN|NG
e SInPLT < oPTIMISABLE’
ExPoNENTIAL EPERINENTS, on'cmu&c(©

+ ‘Pam BREAKER” @)

QuRSIt’oL‘wonl%\L * BY THRESHOLD ~ THRESHOLD

O(1ogu FUNCTI . FUNCTIONS +

(e. w '3) v oS @ PATH BREARER
(FORTHCTING)

» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.

(1, 2) [Guglielmi et al., 2010b]; (3) [Bruscoli et al., 2010].

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.

> If true, excellent bureaucracy-free formalism.

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.
> If true, excellent bureaucracy-free formalism.

> Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).

Conclusion

» Cut elimination does not depend on logical rules.
> It only depends on structural information, i.e., geometry.

» Normalisation can be made robust.

This talk is available at http://cs.bath.ac.uk/ag/t/RSPT.pdf

http://cs.bath.ac.uk/ag/t/RSPT.pdf

rinler, K. (2001). References

Deep Inference and Symmetry in Classical Proofs.
Logos Verlag, Berlin
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

Briinnler, K. and Tiu, A. F. (2001).

A local system for classical logic.

In Nieuwenhuis, R. and Voronkov, A., editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Science, pages 347-361.
Springer-Verlag.

http://www.iam.unibe.ch/~kai/Papers/lcl-1lpar.pdf.

Bruscoli, P. and Guglielmi, A. (2009).

On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):1-34.
Article 14. http://cs.bath.ac.uk/ag/p/PrComplDI.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae.
Accepted by LPAR-16. http://cs.bath.ac.uk/ag/p/QPNDI.pdf.

Cook, S. and Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).
In Proceedings of the 6th annual ACM Symposium on Theory of Computing, pages 135-148. ACM Press.

Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.

In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 135-150. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik
http://drops.dagstuhl.de/opus/volltexte/2010/2649

Guglielmi, A., Gundersen, T., and StraBburger, L. (2010b).

Breaking paths in atomic flows for classical logic.
In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science, pages 284-293. IEEE
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

Jetdbek, E. (2009).
Proof complexity of the cut-free calculus of structures.

Journal of Logic and Computation, 19(2):323-339.
http://www.math.cas.cz/~jerabek/papers/cos.pdf.

http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/QPNDI.pdf
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf

	Proof Complexity and the Oddness of the Cut
	Open Deduction (Deep Inference)
	Propositional Logic and System SKS
	Examples
	Summary

	Deep Inference and Proof Complexity
	Atomic Flows
	Examples
	Flow Reductions

	Normalisation
	Cut Elimination: Experiments
	Streamlining: Generalised Cut Elimination
	The Path Breaker
	Quasipolynomial Cut Elimination
	Overview

	Conjecture
	Conclusion

