Redesigning Logical Syntax
with a Bit of Topology

Alessio Guglielmi
University of Bath

Joint work with
Paola Bruscoli, Tom Gundersen, Michel Parigot and Lutz StraBburger

31 May 2011

This talk is available at http://cs.bath.ac.uk/ag/t/RDLS.pdf
It requires Acrobat 9 or later

http://cs.bath.ac.uk/ag/t/RDLS.pdf

The Dream

The Dream

» No syntax, no symbols, no words.
» An alien could understand this proof.

> Is something like this possible for every proof?

The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_pick_rev t t') = ColorO.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.
move=> Het /=; set cprr := ctree_pick rev_rec.
case Detl: (cprr _ _ _ tl) => [|el etl].
case Det2: (cprr _ _ _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_pick_rev t t') = ColorO.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.

move=> Het /=; set cprr := ctree_pick rev_rec.

case Detl: (cprr _ _ _ tl) => [|el etl].

case Det2: (cprr _ _ _ t2) => [|e2 et2].

by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:
» How do we determine whether two proofs are ‘the same'?

» Can we free proofs from the idiosyncrasies of language?

The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_pick_rev t t') = ColorO.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.

move=> Het /=; set cprr := ctree_pick rev_rec.

case Detl: (cprr _ _ _ tl) => [|el etl].

case Det2: (cprr _ _ _ t2) => [|e2 et2].

by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:
» How do we determine whether two proofs are ‘the same'?

» Can we free proofs from the idiosyncrasies of language?

Solving these is necessary for the universal mathematics database.

Outline of the Talk
Strategy

Proof Complexity and the Oddness of the Cut

Open Deduction (Deep Inference)
Propositional Logic and System SKS
Examples

Atomic Flows
Examples
Flow Reductions

Normalisation
Cut Elimination: Experiments
Streamlining: Generalised Cut Elimination
The Path Breaker
Quasipolynomial Cut Elimination
Overview

Conjecture

Conclusion

Strategy:

We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
» by time expensive algorithms,

> that nonetheless allow us to control and analyse them.

aka LlyabL

" ad>l,ak L

Dg——//™™

ata adlkFadl
atav(@>l) albl “a>ltav(@dl) ad>l,LFL1

\;a,(a\/(uDL))DLFL " aedL,(@v(@dLl)>Llk L
- S av(@dl),(avV(@d>L))>LFL
fav@d> Dk ((av@d>L)>1)>L

RL

Strategy:
We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
» by time expensive algorithms,

> that nonetheless allow us to control and analyse them.

aka LlyabL

" ad>l,ak L

Dg——//™™

ata adlkFadl
atav(@>l) albl “a>ltav(@dl) ad>l,LFL1
\;a,(a\/(uDL))DLFL " aedL,(@v(@dLl)>Llk L

- S av(@dl),(avV(@d>L))>LFL

fav@d> Dk ((av@d>L)>1)>L

RL

But Gentzen
» only knew classical logic, which is poor for algorithms;
» only wanted finiteness, while we want more: efficiency;

» had no idea of proof complexity.

Strategy:

. while we keep proof complexity under control, ...
Proof complexity = proof size (for propositional logic).

Strategy:

. while we keep proof complexity under control, ...
Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Strategy:

. while we keep proof complexity under control, ...
Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook and Reckhow, 1974]:

there exists a proof system yielding ‘short’ proofs for every tautology
>
coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

Strategy:
. while we keep proof complexity under control, ...
Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.
Theorem [Cook and Reckhow, 1974]:
there exists a proof system yielding ‘short’ proofs for every tautology

YN
coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:
» we want to keep proof size low (and possibly making it lower),
» but not too low (otherwise we probably don’t have proof
systems).

Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.
(Gentzen's material is too rigid!)

Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.
(Gentzen's material is too rigid!)

We want proof systems whose inference steps are verifiable in
constant time.
a b

. . i —V
Example (‘atomic cocontraction’): ara bab A —

"viintve)

Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.
(Gentzen's material is too rigid!)

We want proof systems whose inference steps are verifiable in

constant time.
a b

. . i —V
Example (‘atomic cocontraction’): ara bab A —

"viintve)

We call this property locality.

Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.

Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
» Axioms: (AD(BDC))D>((ADB)D(ADC)),
(-BD>-A4)D>((-BD>A)DB),
and rules, often just modus ponens, or cut: A ’;DB

i S

a2 ((ase)22) (a3 ((ove) 7“\))3((&7(015“»)(%)0«3
" wd(e2a) (03(aa)) 5 (asad
T asa

Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
» Axioms: (AD(BDC))D>((ADB)D(ADC)),
(-B>-A) D> ((-B>A)DB),
and rules, often just modus ponens, or cut: A ’;DB
o 02 ((b>e)22) (a2((onn))m)))((;m_@;;—:)
¥ 0o (aa) CISTVEIE™S)
— asa

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
» Axioms: (AD(BDC))D>((ADB)D(ADC)),
(-B>-A) D> ((-B>A)DB),
and rules, often just modus ponens, or cut: A ’;DB
o 02 ((b>e)22) (a2((onn))m)))((;m_@;;—:)
¥ 0o (aa) CISTVEIE™S)
— asa

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

» Due to implicational completeness: if A D B then A proves B.

Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
» Axioms: (AD(BDC))D>((ADB)D(ADC)),
(-B>-A) D> ((-B>A)DB),
and rules, often just modus ponens, or cut: A ’;DB
o 02 ((b>e)22) (a2((onn))u\))g((;;m_&;;::)
¥ wd(ada) CISTVEIE™S)
— asa

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

» Due to implicational completeness: if A D B then A proves B.

We envy the syntax-independence of proof complexity!

Compressing Proofs

How can we make proofs smaller?

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:
1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom).

A
3. Substitution: sub—.
Ao

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom).
A .

3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
A .

3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
A .

3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.
Most studied, proof theory.

|dea of Cut Elimination

cuT ELINNATION

N
VY ¥

B—C B-0D A= B BSC Asg BHD
AoB B2 cab asc T asd
fiss CAR A- caD

N

PROOF (oMPRESSEN

» Cuts are lifted and then eliminated against identity axioms.

> (Hyper-)exponential growth (in Gentzen).

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

> Frege is robust.

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;

> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;
> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof

theory).

So:
1. Can we capture cut and analyticity independently of syntax?

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;
> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).
So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;
> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:
1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).

(Proof) System SKS
[Briinnler and Tiu, 2001]

» Atomic rules:

t
ail

ava
identity
aha

f

cut

ail

f
awl —

a
weakening

a

aWT —

coweakening

avVa
ac]

a
contraction

a

acl
aha

cocontraction

(Proof) System SKS
[Briinnler and Tiu, 2001]

» Atomic rules:

» Linear rules:

t f ava
ail - aw| — ac]
ava a a
identity weakening contraction
ana a a
ail aw] — acl
f aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)

S

m

(ArB)vC [AvC]Ar[BvD]

switch medial

(Proof) System SKS

[Brinnler and Tiu, 2001] | i iz
ava a a
identity weakening contraction
» Atomic rules:
ana a a
aiT awT— acT
f t aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC [AVC]A[BVD]
switch medial

» Plus an ‘=" linear rule (associativity, commutativity, units).

(Proof) System SKS
[Briinnler and Tiu, 2001]

v

v

v

v

t f ava
ail - aw| — ac|
ava a a
identity weakening contraction
Atomic rules:)
ana a a
ail aw] — acl
f aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)
Linear rules: ‘ArB)VC [AVC]A[BVD]
switch medial
Plus an ‘=" linear rule (associativity, commutativity, units).

Negation on atoms only.

(Proof) System SKS

v

v

[Brinnler and Tiu, 2001] | i iz
ava a a
identity weakening contraction
Atomic rules:
aha a a
ail aw] — acl
f aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)
Linear rules: ‘ArB)VC [AVC]A[BVD]
switch medial
Plus an ‘=" linear rule (associativity, commutativity, units).

v

v

v

Negation on atoms only.

Cut is atomic.

(Proof) System SKS

[Brinnler and Tiu, 2001] | i iz
ava a a
identity weakening contraction
> Atomic rules:
ana a a
ail aw] — acl
f t aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC [AVC]A[BVD]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.

Open Deduction

a b

> aha bAab

"[avIIA[av D]

A

Open Deduction

Open Deduction

ava
m
[avt]a[tva]
> =
[avt]ra
S
aha Vot
VvVt

Proofs are composed by the same operators as formulae.

Open Deduction

ava
m
[avt]a[tva]
> =
[avt]ra
S
aha Vot
VvVt

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

Open Deduction

ava
m
[ave] A [tva]
> =
[avt]ra
S
aha Vot
VvVt

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction: ana bnab

"TavIIA[av D]

A

Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

a b

\%
E.g., atomic cocontraction: ana bAb A

"TavIIA[av D]

a

a N

In Gentzen:

» no locality for (co)contraction (counterexample in
[Briinnler, 2004]),

» no local reduction of cut into atomic form.

(Atomic) Flows

_ t
t anh|lav—-
— Vv

ava s
—_————= av AN a a
rn[ﬂvt]/\[tvd] an— v a
ST a v —_ ana Ab A —
a a ana a
f Aavh
T _ i [avi]afavib]
vt aha
f an

= &M fa s

Below proofs, their (atomic) flows are shown:

(Atomic) Flows

_ t
t anh|lav—-
— Vv

ava s
S — av A a
rn[ﬂvt]/\[tvd] an—
) [avt]ra - ana
S
ana Vot = -
vt aha
f an

= vl

Below proofs, their (atomic) flows are shown:

A A

» only structural information is retained in flows;

(Atomic) Flows

_ t
t anh|lav—-
— Vv

ava s
S Y av A a a
rn[ﬂvt]/\[tvd] an— v
ST a vT ana Ab A
a a aha m—
f vilafavh
T _ [710 LT
vVt aha
f an

= &M fa s

Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;

> logical information is lost;

a

(Atomic) Flows

_ t
t anh|lav—-
— Vv

ava s
S Y av A a a
rn[avt]/\[tvd] an— v
ST a vT ana Ab A
a a aha m—
f vilafavh
T _ [710 LT
vVt aha
f an

= &;J fa s

Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;
> logical information is lost;

> flow size is polynomially related to derivation size.

Flow Reductions: (Co)Weakening (1)

Yo A

Flow Reductions: (Co)Weakening (1)

Yoo A
11 -1 I7T -7
IH

A ooty Y - 44

Each flow reduction corresponds to a correct proof reduction.

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

t
5{4(\/&} §|:tv;i|
‘ becomes olat Jt} H

{5 4

d

a

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

) efot]

‘ . becomes olat Jt} H
{5 4
d
d ;
a

We can operate on flow reductions instead than on derivations:

» much easier,

Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

) efot]

‘ . becomes olat Jt} H
{5 4
d
d ;
a

We can operate on flow reductions instead than on derivations:
» much easier,

» we get natural, syntax-independent induction measures.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

Flow Reductions: (Co)Contraction

LA AT TR
X-0F

» These reductions conserve the number and length of paths.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.

» They can blow up a derivation exponentially.

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

» Open problem: does cocontraction yield exponential
compression? Conjecture: yes.

Cut Elimination by ‘Experiments’

Experiment:

AA X

tAf

— Ol

Cut Elimination by ‘Experiments’

oV o
A
fva
Experiment:
AA X
1\
tAf
¢
—
We do: [«
WITH

TS COT-FREE

Alc

PosSIBLE
ASSIGNAENTS

(Y]

<« 4
DISTUNCTION

Cut Elimination by ‘Experiments’

Experiment:
AA X
1\
tAf
Alc
« PosUBLE
ASSIGNNENTS
We do:

(Y74
< DISTUNCTION

WiTH
w
coTS CVT-FREE

Simple, exponential cut elimination; proof generates 2"
experiments.

Generalising the Cut-Free Form

» Normalised proof: W_F\T//L\

H

Generalising the Cut-Free Form

» Normalised proof:

» Normalised derivation:

YA

Generalising the Cut-Free Form

» Normalised proof: YA T
I
_FT.
» Normalised derivation: I
I
» The symmetric form is called streamlined.
>

Cut elimination is a corollary of streamlining.

Generalising the Cut-Free Form

Normalised proof: T \T//l\

v

v

Normalised derivation: I

v

The symmetric form is called streamlined.

v

Cut elimination is a corollary of streamlining.

v

We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.

How Do We Break Paths?
With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there
is none on the right.

We Can Do This on Derivations, of Course
A
fletait=}

((J[avalnA)ynA)yn A
(\IIAA)AA“
([Bv(ana)rnd)n A
A ®ondl
[avalrn A [Bv ([avalnA)]aA
\p” — [BV\II]/\A“
BV (ana) BV ([BV(anra)]rA)
B Bvas||
BvI[BV(lava]rA4)]
Bv[Bv\Il]“
BVv[Bv[Bv(ara)]
[fetait.=1
B

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

» We obtain a family of normalisers that only depends on n.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ara)]r4)
B Bvas||
BV ([ava] A 4)]
Bv[BvY] ||
BV[BY[BY(anra)]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

» We obtain a family of normalisers that only depends on n.

» The construction is exponential.

We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ana)rd)
B Bvas||

BvVv[Bv([ava]rA)
BvBVY|
BV[BV[BV(anra)]]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Finding something like this is unthinkable without flows.

Example for n =2 —T
E— LA A
. e
[] []

|
| A |
‘J_F dH ‘W_F QH‘ ‘W_F H‘
sl el s
7 Tl 7
EaRRIRARRRE:
|] |
[T TH

Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.

Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.
» Note local cocontraction (= better sharing, not available in
Gentzen).

Normalisation

Overview
SUnHETRIC GENERAL[SATI oW
v ELININATION STREAMLIN|NG
e SInPLT < oPTIMISABLE’
ExPoNENTIAL EPERINENTS, on'cmu&c(©

+ ‘Pam BREAKER” @)

QuRSIt’oL‘wonl%\L * BY THRESHOLD ~ THRESHOLD

O(1ogu FUNCTI . FUNCTIONS +

(e. w '3) v oS @ PATH BREARER
(FORTHCTING)

» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.

(1, 2) [Guglielmi et al., 2010b]; (3) [Bruscoli et al., 2010].

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.

> If true, excellent bureaucracy-free formalism.

Conjecture

REPLACE

)

PRoof
NET *

» We think that % might make for a proof system.
> If true, excellent bureaucracy-free formalism.

> Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).

Conclusion

» Normalisation does not depend on logical rules.
> It only depends on structural information, i.e., geometry.

» This is crucial progress for capturing the essence of proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/RDLS.pdf

http://cs.bath.ac.uk/ag/t/RDLS.pdf

References

Briinnler, K. (2004).

Deep Inference and Symmetry in Classical Proofs.
Logos Verlag, Berlin
http://www.iam.unibe.ch/~kai/Papers/phd.pdf

Briinnler, K. and Tiu, A. F. (2001).

A local system for classical logic.

In Nieuwenhuis, R. and Voronkov, A., editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Science, pages 347-361.
Springer-Verlag.

http://www.iam.unibe.ch/~kai/Papers/lcl-1lpar.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae.

In Clarke, E. M. and Voronkov, A., editors, LPAR-16, volume 6355 of Lecture Notes in Computer Science, pages 136-153
Springer-Verlag.

http://cs.bath.ac.uk/ag/p/QPNDI.pdf

Cook, S. and Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).

In Proceedings of the 6th annual ACM Symposium on Theory of Computing, pages 135-148. ACM Press.
Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.

In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPlcs), pages 135-150. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
http://drops.dagstuhl.de/opus/volltexte/2010/2649.

Guglielmi, A., Gund, , T., and StraBburger, L. (2010b).

Breaking paths in atomic flows for classical logic.
In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science, pages 284-293. IEEE.
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/QPNDI.pdf
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

	Strategy
	Proof Complexity and the Oddness of the Cut
	Open Deduction (Deep Inference)
	Propositional Logic and System SKS
	Examples

	Atomic Flows
	Examples
	Flow Reductions

	Normalisation
	Cut Elimination: Experiments
	Streamlining: Generalised Cut Elimination
	The Path Breaker
	Quasipolynomial Cut Elimination
	Overview

	Conjecture
	Conclusion

