
Redesigning Logical Syntax
with a Bit of Topology

Alessio Guglielmi

University of Bath

Joint work with
Paola Bruscoli, Tom Gundersen, Michel Parigot and Lutz Straßburger

31 May 2011

This talk is available at http://cs.bath.ac.uk/ag/t/RDLS.pdf

It requires Acrobat 9 or later

http://cs.bath.ac.uk/ag/t/RDLS.pdf


The Dream




The Dream

I No syntax, no symbols, no words.

I An alien could understand this proof.

I Is something like this possible for every proof?



The Reality Page 1 of 1untitled text

Printed: 03/05/2009 3 May 14:45:20 Printed For: Alessio Guglielmi

Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
  move=> Het /=; set cprr := ctree_pick_rev_rec.
  case Det1: (cprr _ _ _ t1) => [|e1 et1].
    case Det2: (cprr _ _ _ t2) => [|e2 et2].
      by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
    by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
  by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg

Page 1 of 1

I 100s of similar pieces in the four colour theorem proof in Coq.

I Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:

I How do we determine whether two proofs are ‘the same’?

I Can we free proofs from the idiosyncrasies of language?

Solving these is necessary for the universal mathematics database.



The Reality Page 1 of 1untitled text

Printed: 03/05/2009 3 May 14:45:20 Printed For: Alessio Guglielmi

Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
  move=> Het /=; set cprr := ctree_pick_rev_rec.
  case Det1: (cprr _ _ _ t1) => [|e1 et1].
    case Det2: (cprr _ _ _ t2) => [|e2 et2].
      by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
    by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
  by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg

Page 1 of 1

I 100s of similar pieces in the four colour theorem proof in Coq.

I Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:

I How do we determine whether two proofs are ‘the same’?

I Can we free proofs from the idiosyncrasies of language?

Solving these is necessary for the universal mathematics database.



The Reality Page 1 of 1untitled text

Printed: 03/05/2009 3 May 14:45:20 Printed For: Alessio Guglielmi

Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
  move=> Het /=; set cprr := ctree_pick_rev_rec.
  case Det1: (cprr _ _ _ t1) => [|e1 et1].
    case Det2: (cprr _ _ _ t2) => [|e2 et2].
      by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
    by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
  by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg

Page 1 of 1

I 100s of similar pieces in the four colour theorem proof in Coq.

I Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:

I How do we determine whether two proofs are ‘the same’?

I Can we free proofs from the idiosyncrasies of language?

Solving these is necessary for the universal mathematics database.



Outline of the Talk
Strategy

Proof Complexity and the Oddness of the Cut

Open Deduction (Deep Inference)
Propositional Logic and System SKS
Examples

Atomic Flows
Examples
Flow Reductions

Normalisation
Cut Elimination: Experiments
Streamlining: Generalised Cut Elimination
The Path Breaker
Quasipolynomial Cut Elimination
Overview

Conjecture

Conclusion



Strategy:
We conserve the existing proof theory properties . . .

Gentzen’s major breakthrough (1930s):

I proofs can be analytic, i.e., built in finitary ways,

I by time expensive algorithms,

I that nonetheless allow us to control and analyse them.

But Gentzen

I only knew classical logic, which is poor for algorithms;

I only wanted finiteness, while we want more: efficiency;

I had no idea of proof complexity.



Strategy:
We conserve the existing proof theory properties . . .

Gentzen’s major breakthrough (1930s):

I proofs can be analytic, i.e., built in finitary ways,

I by time expensive algorithms,

I that nonetheless allow us to control and analyse them.

But Gentzen

I only knew classical logic, which is poor for algorithms;

I only wanted finiteness, while we want more: efficiency;

I had no idea of proof complexity.



Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook and Reckhow, 1974]:

there exists a proof system yielding ‘short’ proofs for every tautology
↔

coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we probably don’t have proof
systems).



Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook and Reckhow, 1974]:

there exists a proof system yielding ‘short’ proofs for every tautology
↔

coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we probably don’t have proof
systems).



Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook and Reckhow, 1974]:

there exists a proof system yielding ‘short’ proofs for every tautology
↔

coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we probably don’t have proof
systems).



Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook and Reckhow, 1974]:

there exists a proof system yielding ‘short’ proofs for every tautology
↔

coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we probably don’t have proof
systems).



Strategy:
. . . and we remove bureaucracy.

Idea: Let’s use the smallest conceivable bricks to build proofs.
(Gentzen’s material is too rigid!)

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’):

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We call this property locality.



Strategy:
. . . and we remove bureaucracy.

Idea: Let’s use the smallest conceivable bricks to build proofs.
(Gentzen’s material is too rigid!)

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’):

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We call this property locality.



Strategy:
. . . and we remove bureaucracy.

Idea: Let’s use the smallest conceivable bricks to build proofs.
(Gentzen’s material is too rigid!)

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’):

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We call this property locality.



Proof Systems for Proof Complexity

I Proof system = algorithm checking proofs in polytime.

I Example, a Frege system:

I Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

and rules, often just modus ponens, or cut:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

I

a t(;;) ) ") (  a:  ( {^> 
")  

>q )  ( (^>(o>a))>(nJ^)

;;a;il iar(o, tq ))  > (a. : r )
a)q

I Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

I Due to implicational completeness: if A ⊃ B then A proves B.

We envy the syntax-independence of proof complexity!



Proof Systems for Proof Complexity

I Proof system = algorithm checking proofs in polytime.
I Example, a Frege system:

I Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

and rules, often just modus ponens, or cut:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

I

a t(;;) ) ") (  a:  ( {^> 
")  

>q )  ( (^>(o>a))>(nJ^)

;;a;il iar(o, tq ))  > (a. : r )
a)q

I Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

I Due to implicational completeness: if A ⊃ B then A proves B.

We envy the syntax-independence of proof complexity!



Proof Systems for Proof Complexity

I Proof system = algorithm checking proofs in polytime.
I Example, a Frege system:

I Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

and rules, often just modus ponens, or cut:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

I

a t(;;) ) ") (  a:  ( {^> 
")  

>q )  ( (^>(o>a))>(nJ^)

;;a;il iar(o, tq ))  > (a. : r )
a)q

I Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

I Due to implicational completeness: if A ⊃ B then A proves B.

We envy the syntax-independence of proof complexity!



Proof Systems for Proof Complexity

I Proof system = algorithm checking proofs in polytime.
I Example, a Frege system:

I Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

and rules, often just modus ponens, or cut:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

I

a t(;;) ) ") (  a:  ( {^> 
")  

>q )  ( (^>(o>a))>(nJ^)

;;a;il iar(o, tq ))  > (a. : r )
a)q

I Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

I Due to implicational completeness: if A ⊃ B then A proves B.

We envy the syntax-independence of proof complexity!



Proof Systems for Proof Complexity

I Proof system = algorithm checking proofs in polytime.
I Example, a Frege system:

I Axioms:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

and rules, often just modus ponens, or cut:

Introduction to Sequent Calculus and Abstract Logic Programming 3

3 Syntax in the Hilbert-Tarski Tradition

Logic in the tradition of Hilbert and Tarski was primarily semantics ori-
ented. The central interest was in model theory, problems were mainly in-
spired by set theory. In general the emphasis was on infinite mathematical
structures, like models in general are.

The syntactical counterpart, i.e. a formal system in which valid sen-
tences can be derived, was presented in a rather obscure way, from our point
of view. Computer science is particularly interested in finite structures, and
the formal theory of languages is more concerned about the connectives of
a logical system, and their relations, than in traditional models.

In this section we will show syntax in the Hilbert-Tarski tradition; in
the following ones we will see that we can replace it by more suitable formal
systems. First of all, some notation.

3.1 First order formulae are denoted by A, B, C.

A formal system following Hilbert and Tarski consists in axioms and
inference rules. There are several equivalent ways of presenting such a
system, the following is one of the simplest, giving syntax to propositional
classical logic.

3.2 Let HT be the formal system whose axiom schemes are:

A ⊃ (B ⊃ A),(HT1)

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),(HT2)

(¬B ⊃ ¬A) ⊃ ((¬B ⊃ A) ⊃ B),(HT3)

and whose inference rule is modus ponens :

A A ⊃ B
mp .

B

3.3 HT can be extended to first order classical logic by adding the axioms

∀x.A ⊃ A[t/x],(HT4)

∀x.(A ⊃ B) ⊃ (A ⊃ ∀x.B),(HT5)

where t is any term and A[t/x] stands for the formula obtained from A by
substituting x with t. The following inference rule (generalization) is also
added:

A
gen .

∀x.A

All the relations between connectives are derivable from the axiom
schemes provided. In a sense, they are hard-coded inside the axioms, and

I

a t(;;) ) ") (  a:  ( {^> 
")  

>q )  ( (^>(o>a))>(nJ^)

;;a;il iar(o, tq ))  > (a. : r )
a)q

I Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

I Due to implicational completeness: if A ⊃ B then A proves B.

We envy the syntax-independence of proof complexity!



Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p ↔ A (where p is a fresh atom).

Optimal?

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡
︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡
︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

Equivalent to (2).

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Most studied, proof theory.



Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p ↔ A (where p is a fresh atom).

Optimal?

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡
︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡
︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

Equivalent to (2).

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Most studied, proof theory.



Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p ↔ A (where p is a fresh atom).

Optimal?

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡
︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡
︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

Equivalent to (2).

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Most studied, proof theory.



Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p ↔ A (where p is a fresh atom). Optimal?

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡
︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡
︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

Equivalent to (2).

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.

Most studied, proof theory.



Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p ↔ A (where p is a fresh atom). Optimal?

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡
︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡
︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

Equivalent to (2).

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.
Most studied, proof theory.



Idea of Cut Elimination

I Cuts are lifted and then eliminated against identity axioms.

I (Hyper-)exponential growth (in Gentzen).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



Summary: Where Is Syntax?

Not in the notion of proof system:

I it’s any algorithm with certain properties;

I Frege is robust.

Not in the compression mechanisms (higher orders,
extension/substitution, cocontraction) . . .

. . . except for the cut and cut elimination (i.e., Gentzen’s proof
theory).

So:

1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



(Proof) System SKS
[Brünnler and Tiu, 2001]

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α
Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and " ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and � ); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C ] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).

I Negation on atoms only.

I Cut is atomic.

I SKS is complete and implicationally complete for
propositional logic.



Open Deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)



Open Deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)



Open Deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)



Open Deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)



Open Deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)



Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction:

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

In Gentzen:

I no locality for (co)contraction (counterexample in
[Brünnler, 2004]),

I no local reduction of cut into atomic form.



Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction:

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

In Gentzen:

I no locality for (co)contraction (counterexample in
[Brünnler, 2004]),

I no local reduction of cut into atomic form.



Locality

Deep inference allows locality,

i.e.,

inference steps can be checked in constant time
(so, they are small).

E.g., atomic cocontraction:

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

In Gentzen:

I no locality for (co)contraction (counterexample in
[Brünnler, 2004]),

I no local reduction of cut into atomic form.



(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below proofs, their (atomic) flows are shown:

I only structural information is retained in flows;

I logical information is lost;

I flow size is polynomially related to derivation size.



(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below proofs, their (atomic) flows are shown:

I only structural information is retained in flows;

I logical information is lost;

I flow size is polynomially related to derivation size.



(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below proofs, their (atomic) flows are shown:

I only structural information is retained in flows;

I logical information is lost;

I flow size is polynomially related to derivation size.



(Atomic) Flows

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below proofs, their (atomic) flows are shown:

I only structural information is retained in flows;

I logical information is lost;

I flow size is polynomially related to derivation size.



Flow Reductions: (Co)Weakening (1)
NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

Each flow reduction corresponds to a correct proof reduction.



Flow Reductions: (Co)Weakening (1)
NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

Each flow reduction corresponds to a correct proof reduction.



Flow Reductions: (Co)Weakening (2)

E.g.,

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

specifies that

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 25

Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations:

I much easier,

I we get natural, syntax-independent induction measures.



Flow Reductions: (Co)Weakening (2)

E.g.,

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

specifies that

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 25

Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations:

I much easier,

I we get natural, syntax-independent induction measures.



Flow Reductions: (Co)Weakening (2)

E.g.,

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

specifies that

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 25

Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations:

I much easier,

I we get natural, syntax-independent induction measures.



Flow Reductions: (Co)Contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I They can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (dag-ness?).

I Open problem: does cocontraction yield exponential
compression? Conjecture: yes.



Flow Reductions: (Co)Contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I They can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (dag-ness?).

I Open problem: does cocontraction yield exponential
compression? Conjecture: yes.



Flow Reductions: (Co)Contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I They can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (dag-ness?).

I Open problem: does cocontraction yield exponential
compression? Conjecture: yes.



Flow Reductions: (Co)Contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I They can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (dag-ness?).

I Open problem: does cocontraction yield exponential
compression? Conjecture: yes.



Flow Reductions: (Co)Contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I They can blow up a derivation exponentially.

I It’s a good thing: cocontraction is a new compression
mechanism (dag-ness?).

I Open problem: does cocontraction yield exponential
compression? Conjecture: yes.



Cut Elimination by ‘Experiments’

Experiment:

We do:

Simple, exponential cut elimination; proof generates 2n

experiments.



Cut Elimination by ‘Experiments’

Experiment:

We do:

Simple, exponential cut elimination; proof generates 2n

experiments.



Cut Elimination by ‘Experiments’

Experiment:

We do:

Simple, exponential cut elimination; proof generates 2n

experiments.



Generalising the Cut-Free Form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1

→ 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2

→

1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



Generalising the Cut-Free Form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1

→ 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2

→

1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



Generalising the Cut-Free Form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1

→ 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2

→

1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



Generalising the Cut-Free Form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1

→ 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2

→

1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



How Do We Break Paths?

With the path breaker [Guglielmi et al., 2010b]:

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6

→

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6

Even if there is a path between identity and cut on the left, there
is none on the right.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.



We Can Do This on Derivations, of Course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths
between identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.



Example for n = 2

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

→

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS II 17

φ2 φ2 φ2

φ2 φ2 φ2

φ2 φ2 φ2



Quasipolynomial
Cut Elimination
by
Threshold Functions

TTYJVi.,YT

24 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

φ′
0

φ

θ
1

.

.

.

θk

φ′
k

ψkφ

θk+1

φ

φ′
n

θn

.

.

.

· · · · · ·

α

FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

I Only n + 1 copies of the proof are stitched together.

I Note local cocontraction (= better sharing, not available in
Gentzen).



Quasipolynomial
Cut Elimination
by
Threshold Functions

TTYJVi.,YT

24 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

φ′
0

φ

θ
1

.

.

.

θk

φ′
k

ψkφ

θk+1

φ

φ′
n

θn

.

.

.

· · · · · ·

α

FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

I Only n + 1 copies of the proof are stitched together.
I Note local cocontraction (= better sharing, not available in

Gentzen).



Normalisation
Overview

I None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

I Quasipolynomial procedures are surprising.

(1, 2) [Guglielmi et al., 2010b]; (3) [Bruscoli et al., 2010].



Conjecture

I We think that ∗ might make for a proof system.

I If true, excellent bureaucracy-free formalism.

I Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).



Conjecture

I We think that ∗ might make for a proof system.

I If true, excellent bureaucracy-free formalism.

I Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).



Conjecture

I We think that ∗ might make for a proof system.

I If true, excellent bureaucracy-free formalism.

I Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).



Conclusion

I Normalisation does not depend on logical rules.

I It only depends on structural information, i.e., geometry.

I This is crucial progress for capturing the essence of proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/RDLS.pdf

http://cs.bath.ac.uk/ag/t/RDLS.pdf


References

Brünnler, K. (2004).

Deep Inference and Symmetry in Classical Proofs.
Logos Verlag, Berlin.
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

Brünnler, K. and Tiu, A. F. (2001).

A local system for classical logic.
In Nieuwenhuis, R. and Voronkov, A., editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Science, pages 347–361.
Springer-Verlag.
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

Bruscoli, P., Guglielmi, A., Gundersen, T., and Parigot, M. (2010).

A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae.
In Clarke, E. M. and Voronkov, A., editors, LPAR-16, volume 6355 of Lecture Notes in Computer Science, pages 136–153.
Springer-Verlag.
http://cs.bath.ac.uk/ag/p/QPNDI.pdf.

Cook, S. and Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).
In Proceedings of the 6th annual ACM Symposium on Theory of Computing, pages 135–148. ACM Press.

Guglielmi, A., Gundersen, T., and Parigot, M. (2010a).

A proof calculus which reduces syntactic bureaucracy.
In Lynch, C., editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 135–150. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
http://drops.dagstuhl.de/opus/volltexte/2010/2649.

Guglielmi, A., Gundersen, T., and Straßburger, L. (2010b).

Breaking paths in atomic flows for classical logic.
In Jouannaud, J.-P., editor, 25th Annual IEEE Symposium on Logic in Computer Science, pages 284–293. IEEE.
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf.

http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/QPNDI.pdf
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf

	Strategy
	Proof Complexity and the Oddness of the Cut
	Open Deduction (Deep Inference)
	Propositional Logic and System SKS
	Examples

	Atomic Flows
	Examples
	Flow Reductions

	Normalisation
	Cut Elimination: Experiments
	Streamlining: Generalised Cut Elimination
	The Path Breaker
	Quasipolynomial Cut Elimination
	Overview

	Conjecture
	Conclusion

