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The Dream




The Dream

» No syntax, no symbols, no words.
» An alien could understand this proof.

> Is something like this possible for every proof?



The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_pick_rev t t') = ColorO.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.
move=> Het /=; set cprr := ctree_pick rev_rec.
case Detl: (cprr _ _ _ tl) => [|el etl].
case Det2: (cprr _ _ _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.
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by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

Problems:
» How do we determine whether two proofs are ‘the same'?

» Can we free proofs from the idiosyncrasies of language?

Solving these is necessary for the universal mathematics database.
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Strategy:

We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
» by time expensive algorithms,

> that nonetheless allow us to control and analyse them.
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fav@d> Dk ((av@d>L)>1)>L
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Gentzen's major breakthrough (1930s):
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» by time expensive algorithms,
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But Gentzen
» only knew classical logic, which is poor for algorithms;
» only wanted finiteness, while we want more: efficiency;

» had no idea of proof complexity.
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Strategy:
. while we keep proof complexity under control, ...
Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.
Theorem [Cook and Reckhow, 1974]:
there exists a proof system yielding ‘short’ proofs for every tautology

YN
coNP = NP

where

‘short’ = verifiable in polynomial time on the size of the tautology

So:
» we want to keep proof size low (and possibly making it lower),
» but not too low (otherwise we probably don’t have proof
systems).
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Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.
(Gentzen's material is too rigid!)

We want proof systems whose inference steps are verifiable in

constant time.
a b

. . i —V
Example (‘atomic cocontraction’): ara bab A —

"viintve)

We call this property locality.
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Proof Systems for Proof Complexity

» Proof system = algorithm checking proofs in polytime.
» Example, a Frege system:

AD(BDA),
» Axioms: (AD(BDC))D>((ADB)D(ADC)),
(-B>-A) D> ((-B>A)DB),
and rules, often just modus ponens, or cut: A ’;DB
o 02 ((b>e)22)  (a2((onn) )u\))g((;;m_&;;::)
¥ wd(ada) CISTVEIE™S)
— asa

» Robustness Theorem [Cook and Reckhow, 1974]:
All Frege systems are polynomially equivalent.

» Due to implicational completeness: if A D B then A proves B.

We envy the syntax-independence of proof complexity!
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Compressing Proofs

How can we make proofs smaller?

Known mechanisms:

1. Higher orders (e.g, second order propositional for propositional
formulae).

2. Tseitin extension: p <> A (where p is a fresh atom). Optimal?
A .

3. Substitution: subA—. Equivalent to (2).
o

4. Use the same sub-proof many times: dag-ness, or
cocontraction.

5. Use the same sub-proof many times: cut rule.
Most studied, proof theory.



|dea of Cut Elimination
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» Cuts are lifted and then eliminated against identity axioms.

> (Hyper-)exponential growth (in Gentzen).
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Summary: Where Is Syntax?

Not in the notion of proof system:
> it's any algorithm with certain properties;
> Frege is robust.

Not in the compression mechanisms (higher orders,
extension /substitution, cocontraction) . ..

. except for the cut and cut elimination (i.e., Gentzen's proof
theory).

So:
1. Can we capture cut and analyticity independently of syntax?

2. Robustness?

This talk answers YES to Question (1).



(Proof) System SKS
[Briinnler and Tiu, 2001]

» Atomic rules:
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[Brinnler and Tiu, 2001] | i iz
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ail aw] — acl
f aha
cut coweakening cocontraction
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(Proof) System SKS

[Brinnler and Tiu, 2001] | i iz
ava a a
identity weakening contraction
> Atomic rules:
ana a a
ail aw] — acl
f t aha
cut coweakening cocontraction
An[BVC] (ArB)v(CAD)
> Linear rules: ‘ArB)VC  [AVC]A[BVD]
switch medial
» Plus an ‘=" linear rule (associativity, commutativity, units).
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.
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Open Deduction

ava
m
[ave] A [tva]
> =
[avt]ra
S
aha Vot
VvVt

Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in Gentzen).

(In [Guglielmi et al., 2010a].)
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Locality

Deep inference allows locality,
ie.,

inference steps can be checked in constant time
(so, they are small).

a b

\%
E.g., atomic cocontraction: ana bAb A

"TavIIA[av D]

a

a N

In Gentzen:

» no locality for (co)contraction (counterexample in
[Briinnler, 2004]),

» no local reduction of cut into atomic form.
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(Atomic) Flows

_ t
t anh|lav—-
— Vv

ava s
S Y av A a a
rn[avt]/\[tvd] an— v
ST a vT ana Ab A
a a aha m—
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Below proofs, their (atomic) flows are shown:
» only structural information is retained in flows;
> logical information is lost;

> flow size is polynomially related to derivation size.
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A ooty Y - 44

Each flow reduction corresponds to a correct proof reduction.
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Flow Reductions: (Co)Weakening (2)

Eg., U — T specifies that
w| o

) efot]

‘ . becomes olat Jt} H
{5 4
d
d ;
a

We can operate on flow reductions instead than on derivations:
» much easier,

» we get natural, syntax-independent induction measures.
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Flow Reductions: (Co)Contraction

vl L4 AT-TR
X-0F

» These reductions conserve the number and length of paths.
» They can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (dag-ness?).

» Open problem: does cocontraction yield exponential
compression? Conjecture: yes.
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Cut Elimination by ‘Experiments’

Experiment:
AA X
1\
tAf
Alc
«  PosUBLE
ASSIGNNENTS
We do:

(Y74
< DISTUNCTION

WiTH
w
coTS CVT-FREE

Simple, exponential cut elimination; proof generates 2"
experiments.
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Generalising the Cut-Free Form

Normalised proof: T \T//l\

v

v

Normalised derivation: I

v

The symmetric form is called streamlined.

v

Cut elimination is a corollary of streamlining.

v

We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



How Do We Break Paths?
With the path breaker [Guglielmi et al., 2010b]:

Even if there is a path between identity and cut on the left, there
is none on the right.
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We Can Do This on Derivations, of Course

A
ltetais=1
((J[avalnA)ynA)yn A
(\IJAA)AA“
(Bv(ara)]rd)nd
A ®ondl
avard (B ([avalr A)] A 4
| — [Bvulaal
Bv(ara) Bv(Bv(ana)rd)
B Bvas||

BvVv[Bv([ava]rA)
BvBVY|
BV[BV[BV(anra)]]
[l ctait.=}
B

» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Finding something like this is unthinkable without flows.
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Quasipolynomial
Cut Elimination

by

Threshold Functions

» Only n+ 1 copies of the proof are stitched together.
» Note local cocontraction (= better sharing, not available in
Gentzen).



Normalisation

Overview
SUnHETRIC GENERAL[SATI oW
v ELININATION STREAMLIN|NG
e SInPLT < oPTIMISABLE’
ExPoNENTIAL EPERINENTS, on'cmu&c( ©

+ ‘Pam BREAKER” @)

QuRSIt’oL‘wonl%\L * BY THRESHOLD ~ THRESHOLD

O(1ogu FUNCTI . FUNCTIONS +

(e. w '3 ) v oS @ PATH BREARER
(FORTHCTING )

» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.

(1, 2) [Guglielmi et al., 2010b]; (3) [Bruscoli et al., 2010].
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» We think that % might make for a proof system.
> If true, excellent bureaucracy-free formalism.

> Note: if such a thing existed for proof nets, then coNP = NP
(because proof nets are [too?] small).



Conclusion

» Normalisation does not depend on logical rules.
> It only depends on structural information, i.e., geometry.

» This is crucial progress for capturing the essence of proofs.

This talk is available at http://cs.bath.ac.uk/ag/t/RDLS.pdf


http://cs.bath.ac.uk/ag/t/RDLS.pdf
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