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The dream
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The dream (cont.)

I No syntax, no symbols, no words.
I Nothing is arbitrary here.
I An alien could understand this proof (of Pythagoras theorem of

course).
I Is something like this possible for every proof? Does a natural

language exist?
I Let us turn to the science of formal languages: logic.
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The reality: The four colour theorem
Theorem: Given any separation of a plane into contiguous regions, no
more than four colours are required to colour the regions so that no two
adjacent regions have the same colour. [6]

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg
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Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
  move=> Het /=; set cprr := ctree_pick_rev_rec.
  case Det1: (cprr _ _ _ t1) => [|e1 et1].
    case Det2: (cprr _ _ _ t2) => [|e2 et2].
      by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
    by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
  by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

I Proof: 100s of pieces of code such as the above! [1]

I An extraordinary achievement, but an alien would not understand:
bureaucracy.

Can we free proofs and programs from the idiosyncrasies of language?
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Consequences of poor languages

BUGS!

Explosion of the first Ariane 5 (1996) – Source: ESA

We are building software like in the Middle Ages they were building
cathedrals. Computer ‘science’ is still not a science.
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Formal languages allow us to compute
For example:

y = x2 − 4

is a finite representation of an infinite object:

x y
...

−1000 → 999996
...

−10.5 → 106.25
...

π → π2 − 4
...

20 → 396
...

We only can compute with finite representations.
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Formal languages allow us to prove

There is someone in the pub such that, if he or she is drinking, then
everyone in the pub is drinking.

Proof:
t

∃x∀y

(
f

p(x)
∨ p(y)

)
∨

(
p(x) ∨

f

p(y)

)
∃x∀y

(
p(x) ∨ p(y)

)

I This is easy, and actually not paradoxical,

I but as the Russell paradox teaches us, we need to be careful.

We need formal languages that guarantee correctness.
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Computer science is logic plus complexity
theory

I Turing was a logician, as tens of the founders were (and still are).

I (In the beginning at least) logicians were pure mathematicians.

I Mathematicians are more interested in the ‘what’ than in the ‘how’:

What can we compute?

What functions? What problems can we solve?

I The ‘how’ is important too:

How long does it take to solve a problem?

Can we easily solve the problems whose solutions we can easily check?

The latter is the famous ‘P vs. NP’ problem, one of the hardest
open problems in maths. If P = NP the world economy collapses!
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My research: Open problems

I These problems are embarrassingly open:

Are two given proofs the same?

Are two given algorithms the same?

I First formulated by Hilbert in 1900 [5].

I How many mathematical structures do you know for which
‘sameness’ is not defined? This is about the ‘how’.

I Answering those questions means finding better languages.

I In order to answer, building (engineering) is not enough:

We need to understand and discover (science).
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We improve logic by introducing geometry
We remove bureaucracy from proofs and programs so that we can
compare shapes:Proof Nets and the Identity of Proofs 11
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Figure 2: From sequent calculus to proof nets via coherence graphs

2.3.4 Exercise Reduce in (6) the leftmost instance of id to atomic version. And draw the proof net according
to the method in Figure 1. What does change compared to the net in (9)?

For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing through the
cut, i.e., by keeping the information that there is a cut. What is meant by this is shown in Figure 4.

2.3.5 Exercise Compare the net obtained in Figure 4 with your result of Exercise 2.3.4.

Now, we indeed get the same result with both methods, and it might seem foolish to emphasize the different
nature of the two methods if they yield the same notion of proof net. The point to make here is that this is
the case only for MLL−, which is a very fortunate coincidence. For any other logic, which is more sophisticated,
like classical logic or larger fragments of linear logic, the two methods yield different notions of proof nets. We
will come back to this in later sections when we discuss these logics.

2.4 From deep inference to proof nets

The flow graph method has the advantage of being independent from the formalism that is used for describing
the deductive system for the logic. We will now repeat exactly the same exercise we did for the sequent calculus

RR n 6013

Picture taken from [4]
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We improve logic by reducing complexity

We control complexity by better composition mechanisms via deep
inference [2]

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

What in the syntax is artificially related becomes geometrically
independent.
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We transform proofs and programs by
manipulating shapes

Syntactic properties become geometric properties [3]:

14 ALESSIO GUGLIELMI AND TOM GUNDERSEN

where Φ′ exists by Lemma 4.9 and Ψ1 and Ψ2 exist by Lemma 4.11. By studying the
proofs of Lemma 4.9 and Lemma 4.11, we can observe that the derivation has atomic
flow Core(φ). !

Definition 4.15. Given a derivation Φ, the core of Φ obtained as described in the proof
of Theorem 4.14 is called the core of Φ, denoted Core(Φ).

4.2. The Normaliser. We present here the main result of our work, a family of oper-
ators called the ‘normalisers’. Each normaliser is a scheme with variables that we can
instantiate with a derivation. The effect of plugging a derivation into a normaliser is the
same as adding identity and cut instances to the premiss and conclusion of the deriva-
tion, respectively. However, it is done in such a way as to not create any path between
the identity and cut instances we add. It should now be clear how our normalisation
works: the core is obtained by removing identity and cut instances and the normaliser
adds them back, in a way that preserves weak streamlining.

Definition 4.16. The path breaker, Break, is an operator whose arguments are the atom
a and any derivation Φ of the form

[a ∨ ā] ∧α
‖
‖

β ∨ (a ∧ ā)
,

and whose output is

[a ∨ ā] ∧
α

α ∧α ∧α
=


[a ∨ ā] ∧α
Φ ‖‖$

β ∨
%

a
t
∧ ā
&' ∧ α ∧ α




s




β ∨

%$
f

a
∨ ā
'
∧α
&

Φ ‖‖$
β ∨
%

a ∧
ā
t

&'



∧α




s 

β ∨ β ∨

%$
a ∨

f

ā

'
∧α
&

Φ ‖‖
β ∨ (a ∧ ā)




=
β ∨β ∨β
β

∨ (a ∧ ā)

.

Proposition 4.17. Let the atomic flow of

1
a1 ∨ ā22 ∧α
Φ ‖‖

β ∨
3
a3 ∧ ā44

be

1 2

φ φ′

3 4

, →
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then the atomic flow of

!
a1 ∨ ā2" ∧α

Break(a,Φ) ‖‖
β ∨
#
a3 ∧ ā4$

is

1 2

3′

φ φ′

4′

2′′1′′

4′′

φ φ′

3′′

1′

3 4

2′

φ φ′

,

where all the edges that might be in paths starting with 1 or 2 are colored in red and all the
edges that might be in paths ending with 3 or 4 are colored in green. Note that the red and the
green paths never meet, so there is no path from 1 to 3 or from 2 to 4.

Definition 4.18. For every n ! 0 the normaliser of degree n, Normn , is an operator whose

arguments are the atoms a1, . . . , an and a derivation
α

Φ ‖‖
β

, such that a1, ā, . . . , an , ān are all

the non-weakly-streamlined atoms inΦ. LetΨ= Break(a1,Break(. . . (Break(an ,Core(Φ))) . . . )),
then Normn(a1, . . . ,an ,Φ) is defined to be

%
t

a1 ∨ ā1

∧ · · · ∧ t

an ∨ ān

∧ α
&

Ψ ‖‖'
β ∨

a1 ∧ ā1

f
∨ · · · ∨ an ∧ ān

f

( .

Theorem 4.19. Given a derivation Φ and all the non-weakly-streamlined atoms a1, ā1,
. . . , an , ān in Φ, the derivation Normn(a1, . . . ,an ,Φ) is weakly streamlined and has the same
premiss and conclusion as Φ.

Proof. !
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What should we expect in twenty years?

We will build software as reliably as we build bridges (and cathedrals)
now, but there will be other benefits. Just an example:

All of maths (≈ 100,000,000 pages) represented as a semantic database.

We could:

I trust proofs (because they are automatically verified);

I access proofs at different abstraction levels (detail, just the idea,
etc.);

I produce proofs by delegating routine tasks to the computer (with
artificial intelligence?);

I …

All fields of science will benefit.
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Conclusion

“Computer science is no more about computers than astronomy is
about telescopes.” (Edsger Dijkstra?)

“Be curious and ambitious, and do not limit yourself to building stuff –
try also to understand and discover. And do not do it for the money but
do it for the fun.” (me)

“Electric lamps were not invented by improving candles” (Carlo Rubbia?)

What should we expect in twenty years? 15 / 16
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