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When are two given proofs the same?
Remove bureaucracy; compare shapes. Proofs→ proof nets:Proof Nets and the Identity of Proofs 11
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Figure 2: From sequent calculus to proof nets via coherence graphs

2.3.4 Exercise Reduce in (6) the leftmost instance of id to atomic version. And draw the proof net according
to the method in Figure 1. What does change compared to the net in (9)?

For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing through the
cut, i.e., by keeping the information that there is a cut. What is meant by this is shown in Figure 4.

2.3.5 Exercise Compare the net obtained in Figure 4 with your result of Exercise 2.3.4.

Now, we indeed get the same result with both methods, and it might seem foolish to emphasize the different
nature of the two methods if they yield the same notion of proof net. The point to make here is that this is
the case only for MLL−, which is a very fortunate coincidence. For any other logic, which is more sophisticated,
like classical logic or larger fragments of linear logic, the two methods yield different notions of proof nets. We
will come back to this in later sections when we discuss these logics.

2.4 From deep inference to proof nets

The flow graph method has the advantage of being independent from the formalism that is used for describing
the deductive system for the logic. We will now repeat exactly the same exercise we did for the sequent calculus

RR n 6013

Figure taken from [20]

Remove too much→ no more a proof system: proof nets are not a
proof system.
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Proof Systems

I Proof system = algorithm checking proofs in polytime.

I Theorem (Cook and Reckhow):

∃ super proof system
iff

NP = co-NP

where

super = with polysize proofs over each proved tautology

Proof semantics – When are two given proofs the same? 4 / 46



Compressing proofs

How can we make proofs smaller? Known proof theoretic mechanisms:

1. Re-use the same sub-proof: cut rule. Proof theory.

2. Re-use the same sub-proof: dagness, or cocontraction:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 7
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FIGURE 3. Systems SKS and KS.

We can now define some deep-inference proof systems. System SKS is the most impor-
tant for the proof theory of classical logic, because of its atomic structural rules. System
SKSg relates SKS to proof systems in other formalisms, like Frege.

Definition 2.13. CoS proof systems KSg = {i↓,w↓,c↓, s}, SKSg = KSg ∪ {i↑,w↑,
c↑}, KS = {ai↓,aw↓,ac↓, s,m} and SKS = KS ∪ {ai↑,aw↑,ac↑} are defined in Figures 2
and 3, for a language containing f, t, disjunction, and conjunction. Proof systems where
none of the rules i↑, ai↑, w↑, and aw↑ appear are said to be analytic.

Example 2.14. This is a valid derivation in all CoS proof systems defined previously
(and it plays a role in the proof of Lemma 3.11):

γ ∨ [(([ᾱ ∨α] ∧ c ) ∧ (α ∧ d )) ∨δ]
=
γ ∨ [(((α ∧ d ) ∧ c) ∧ [α ∨ ᾱ]) ∨δ]

s
γ ∨ [[(((α ∧ d ) ∧ c ) ∧α) ∨ ᾱ] ∨δ]

=
[ᾱ ∨ γ] ∨ [((α ∧ c ) ∧ (α ∧ d )) ∨δ]

.

Note that SKSg, KSg, SKS, and KS are closed under renaming and substitution (see
Remark 2.11). This is so because of the distinction between atoms and formula variables.
Obtaining the closure of these and other systems under renaming and substitution is one
of the main technical reasons for distinguishing between atoms and variables.

The following theorem is proved in [Brü04], and follows immediately from Sec-
tion 3.1, where we prove that CoS systems p-simulate Gentzen systems.

.

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l ) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh ) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof ) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

In Frege, equivalent to (4).

4. Tseitin extension: p↔ A (where p is a fresh atom). Optimal?

5. Higher orders (including 2nd order propositional).

1– 4 (and a bit also 5) have a lot to do with proof composition – our
main tool.

Our main objective is providing for small spaces of canonical proofs
(= eliminating bureaucracy = getting good proof semantics).
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Compressing proof (search) spaces
How can we make proof (search) spaces smaller? This also has a lot to
do with proof composition:

By allowing for more composed proofs we get:

I More proofs in the proof (search) space. This might be bad.

I Small (search) subspaces of canonical proofs. This is good.

Proof semantics – When are two given proofs the same? 6 / 46



Towards proof systems closest to semantics

Syntax Semantics

Truth
tables

late 1800s

Frege
systems

∼1900

Gentzen
formalisms

1935

Calculus of
structures

2001

Open
deduction

2010

Formalism B

Atomic
flows

2008

Girard
proof nets

1987

Proof systems (proof complexity)

Normalisation and analyticity
(proof theory)

Deep inference

Figure 1: Converging towards proof systems with normalisation and analyticity and that are as close as possible to natural
semantic structures; the horizontal line carries formalisms of increasing abstraction.

the notion of proof system give us a natural target
for designing formalisms. Our goal is the answer to:

Question Which formalism describes the proof sys-
tems with the most abstract proofs?

The question is vague but it is useful to understand
this project and our previous work on deep infer-
ence. Our goal is to design a formalism of efficient
and natural proof systems, and the idea is to pro-
gressively refine the syntax, while being guided by
semantics (naturality) and while making sure that
the complexity of proofs decreases (efficiency).

Proof semantics itself is not set in stone, it is an ac-
tive field of research, very close to the semantics
of programming languages and especially game se-
mantics. Proof theory and semantics have had for
decades a very fruitful interaction that continues to-
day. This is also true of this project, where Guglielmi
and McCusker represent the two disciplines.

Following Girard’s intuition, we are interested in se-
mantics that capture the special geometric nature
of proofs that has surfaced in our previous work in
deep inference. In fact, deep inference [15, 18] is
based on a free proof composition mechanism that
generalises and preserves analyticity, while bounding
the complexity of each inference step, in a property
that we call locality. It turns out that we can exploit
locality to obtain geometric models of normalisation
of finer granularity than that of proof nets.

We have already made three steps closing in on our
target, by designing three mutually compatible gen-
eralisations of Gentzen formalisms. They are com-
patible because they represent different levels of ab-
straction for proofs of the same nature, enjoying the
same normalisation dynamics. The formalisms are:

Calculus of structures (2001) It generalises Gentzen
and has later been developed into a complete
proof theory encompassing a wider range of

logics than Gentzen’s [15, 2].
Atomic flows (2008) They prove that normalisa-

tion is an independent phenomenon from syn-
tax and suggests further abstractions for for-
malisms. Atomic flows, contrary to proof nets,
are purely geometric objects [16, 19].

Open deduction (2010) Inspired by atomic flows, it
removes a specific and pervasive kind of bu-
reaucracy while generalising and preserving
all the properties of the more syntactic for-
malisms [18].16

In deep inference we can express important logics
for the verification of process algebras that cannot
be expressed in Gentzen theory [3, 17, 33]. So, our
formalisms are more powerful than the traditional
ones also in terms of expressivity.
Atomic flows and open deduction come from
project P217. At the end of that project we formu-
lated a few proposals for a new formalism and made
a preliminary study of some associated properties.
This project, if approved, will conclude that line of
research by defining Formalism B18, which is our
main goal, represented as a red cross in Fig. 1.

2.2 National Importance

Formal verification of computer systems has proved
to be a much more difficult enterprise than ex-
pected at its beginnings, and some prominent re-
searchers even speculated that formal methods
were doomed to fail, as argued in the famous 1979
article [9]. However, progress has been steady and
formal verification is now an important tool in the
design of computer systems. For example, MIT’s
Technology Review lists crash-proof code as one of
the ten 2011 emerging technologies likely to change

16Open deduction was formerly known as Formalism A.
17Project Démosthène, see Sect. 1.4 - Previous Funding.
18The name is provisional.
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I Open deduction: established deep inference – full normalisation
theory.

I ‘Formalism B’: getting the power of Frege + substitution (possibly
optimal proof system) by incorporating substitution, guided by the
geometry of atomic flows:

the world.19 The development of formal verification
is now internationally perceived as strategic, for rea-
sons that are summarised in [1], where high profile
researchers counter the criticism of [9].
In the UK, our research is categorised by EPSRC as
Theory of Computation (maintain action) and Verifica-
tion and Correctness (grow action). As the reasons for
the maintain/grow actions recite, the UK is a recog-
nised world leader in logic-based approaches, the-
ory of computation has strong links with verification
and correctness, and this in turn has relevance to
the cross-ICT prioritiesMany-Core Architectures and
Concurrency in Embedded and Distributed Systems and
Towards an Intelligent Information Infrastructure.
Our project will help establishing in the UK a strong
group on deep inference, which has been described
many times by prominent scientists as one of the
few main innovations in proof theory.

2.3 Research Hypothesis and Objectives

We want to design Formalism B such that it ex-
presses proof systems with the following charac-
teristics:

• They have minimal complexity relative to all
known proof systems (efficiency).

• The proofs they represent are closer to se-
mantics than those of existing proof systems
(naturality).

At the core of Formalism B there is a substitution
notion for atomic flows that ensures low complexity
and the removal of a certain kind of proof bureau-
cracy. The set of atomic flows must then be closed
under substitution and subjected to certain equa-
tions. For example, this is what should happen when
the atomic flow on the right inside the parentheses
is substituted into the atomic flow on the left:

� � �
→ = .

The picture describes part of a proof in a dag-like
proof system ( represents dag sharing) where a
contraction ( ) occurs. The idea is that the geo-
metric properties of the substitution’s result are suf-
ficient to describe the dynamics of normalisation,
and the size of the atomic flows is polynomially re-
lated to the size of the proofs that they represent.

19http://www.technologyreview.com/article/372�6/.

At the end of P2 Guglielmi felt that appealing to
strong semantic principles was necessary in order
to choose the further properties of Formalism B. To
this purpose, in project P320, McCusker observed
that the crucial notion of atomic flow composition
can be associated with the category-theoretic prop-
erty of extra-naturality. The calculus of functors and
extra-natural transformations has an elegant repre-
sentation via string diagrams [10], and that will be
the starting point of this project.
After defining it, we want to equip Formalism B with
a basic study of its normalisation, complexity and
expressiveness properties. We then leave room for
two high profile but risky investigations: polynomial
normalisation in deep inference and a computational
interpretation of deep inference via atomic flows.

2.4 Programme and Methodology

The four core researchers and their expertise are:

AG A Guglielmi, deep inference, proof theory;
GM G McCusker, categorical and game semantics;
PB P Bruscoli, deep inference, proof complexity;
RA research assistant (to be hired), semantics.

The main goal of the entire project is the design of
Formalism B as a generalisation of open deduction.
We need to assess the consequences of the design
in the broadest possible perspective, in order to
avoid idiosyncrasies that could undermine its adop-
tion. The Mathematical Foundations group in Bath
provides a perspective that goes beyond proof the-
ory and normalisation. In particular, McCusker’s ex-
perience in semantics of logic and of programming
languages [6, 24, 25, 26] will be central, via category
theory as an organisational tool [24], and via geome-
try as a foundational tool [25, 27].
There are two themes, Efficiency and Naturality.21

Eff Efficiency

This theme will be mainly about understanding the
absolute and relative complexity of propositional
classical logic proofs in deep inference and their
atomic flows, when the following parameters vary:
a) depth of inference; b) presence or absence of the
cut rule (analyticity); c) presence or absence of ex-
tension and of substitution. All these mechanisms
can compress proofs, and because Formalism B aims
at compactness, they have an impact on its design,

20Project REDO, see Sect. 1.4 - Previous Funding.
21See a Gantt chart in Sect. 4 -Work Plan.
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What is deep inference?

It’s the free composition of proofs via the same connectives as formulae.

If

Φ =
A

B
and Ψ =

C

D

are two proofs with, respectively, premisses A and C and conclusions B
and D, then

(Φ ∧Ψ) =
(A ∧ C)

(B ∧ D)
and [Φ ∨Ψ] =

[A ∨ C]

[B ∨ D]

are valid proofs with, respectively, premisses (A ∧ C) and [A ∨ C], and
conclusions (B ∧ D) and [B ∨ D].

Deep inference – Free composition of proofs 8 / 46



Why deep inference?

I To recover a De Morgan premiss-conclusion symmetry that is lost
in Gentzen [2].

I To obtain new notions of normalisation in addition to cut
elimination [11, 10].

I To shorten analytic proofs by exponential factors compared to
Gentzen [6, 8].

I To obtain quasipolynomial-time normalisation for propositional
logic [7].

I To express logics that cannot be expressed in Gentzen [22, 3].

I To make the proof theory of a vast range of logics regular and
modular [3].

I To get proof systems whose inference rules are local, which is
usually impossible in Gentzen [19].

Deep inference – Free composition of proofs 9 / 46



Why deep inference? (cont.)
I To inspire a new generation of proof nets and semantics of proofs

[21].

I To investigate the nature of cut elimination [10, 12].

I To type optimal versions of the λ-calculus that are not typeable in
Gentzen [13, 14].

I To model process algebras [5, 16, 17, 18].

I To model quantum causal evolution [1] …

I … and much more.

Deep inference – Free composition of proofs 10 / 46



Why deep inference? (cont.)
Several formalisms can be designed in deep inference: Calculus of
Structures (CoS), Nested Sequents, Open Deduction, Formalism B, …

CoS and open deduction are equivalent under any reasonable point of
view, so we adopt open deduction. (CoS is convenient for certain
technical aspects.)

Nested sequents is not full deep inference.

Formalism B is still in development.

Deep inference – Free composition of proofs 11 / 46



Deep inference system SKS for classical logic

I Atomic/structural rules:

(which are foundational models of concurrent computation) to linear logic, I
realised that Gentzen’s formalisms were inherently inadequate to express the
most primitive notion of composition in computer science: sequential composi-
tion. This is indeed linear, but of a di↵erent kind of linearity from that naturally
supported by linear logic.

I realised then that the linear logic ideas were to be carried all the way
through and that the formalisms themselves had to be ‘linearised’. Technically,
this turned out to be possible by dropping one of the assumptions that Gentzen
implicitly used, namely that the (geometric) shape of proofs is directly related
to the shape of formulae that they prove. In deep inference, we do not make this
assumption, and we get proofs whose shape is much more liberally determined
than in Gentzen’s formalisms. As an immediate consequence, we were able to
capture process-algebras sequential composition [6], but we soon realised that
the new formalism was o↵ering unprecedented opportunities for both a more
satisfying general theory of proofs and for more applications in computer science.

2 Proof System(s)

The di↵erence between Gentzen formalisms and deep inference ones is that in
deep inference we compose proofs by the same connectives of formulae: if

� =
A����

B
and  =

C����

D

are two proofs with, respectively, premisses A and C and conclusions B and D,
then

� ^  =
A ^ C����

B ^ D
and � _  =

A _ C����

B _ D

are valid proofs with, respectively, premisses A ^ C and A _ C, and conclusions
B ^ D and B _ D. Significantly, while � ^  can be represented in Gentzen, � _  
cannot. That is basically the definition of deep inference and it holds for every
language, not just propositional classical logic.

As an example, I will show the standard deep inference system for proposi-
tional logic. System SKS is a proof system defined by the following structural
inference rules (where a and ā are dual atoms)

t
i# �����

a _ ā

f
w# ��

a

a _ a
c# �����

a

identity weakening contraction

a ^ ā
i" �����

f

a
w" ��

t

a
c" �����

a ^ a

cut coweakening cocontraction

,

I Linear/logical rules:

and by the following two logical inference rules:

A ^ [B _ C]
s �������������
(A ^ B) _ C

(A ^ B) _ (C ^ D)
m ���������������������

[A _ C] ^ [B _ D]

switch medial

.

A cut-free derivation is a derivation where i" is not used, i.e., a derivation in
SKS \ {i"}. In addition to these rules, there is a rule

C
= ��

D
,

such that C and D are opposite sides in one of the following equations:

A _ B = B _ A A _ f = A

A ^ B = B ^ A A ^ t = A

[A _ B] _ C = A _ [B _ C] t _ t = t

(A ^ B) ^ C = A ^ (B ^ C) f ^ f = f

.

We do not always show the instances of rule =, and when we do show them, we
gather several contiguous instances into one.

For example, this is a valid derivation:

[a _ b] ^ a����

([a _ b] ^ a) ^ ([a _ b] ^ a)
=

a
c" �����

a ^ a
_

b
c" �����

b ^ b
m ����������������������

[a _ b] ^ [a _ b]

^
a

c" �����
a ^ a

.

This derivation illustrates a general principle in deep inference: structural rules
on generic formulae (in this case a cocontraction) can be replaced by correspond-
ing structural rules on atoms (in this case c").

3 Proof-Theoretical Properties

Locality and linearity are foundational concepts for deep inference, in the same
spirit as they are for linear logic. Going for locality and linearity basically means
going for complexity bounded by a constant. This last idea introduces geometry
into the picture, because bounded complexity leads us to equivalence modulo
continuous deformation. In a few words, the simple and natural definition of
deep inference that we have seen above captures these ideas about linearity,
locality and geometry, and can consequently be exploited in many ways, and
notably:

– to recover a De Morgan premiss-conclusion symmetry that is lost in Gentzen
[3];

I Plus an ‘=’ linear rule (associativity, commutativity, units).
I Negation on atoms only.

The cut is atomic.

SKS is complete for propositional logic. See [4].
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Example

and by the following two logical inference rules:

A ^ [B _ C]
s �������������
(A ^ B) _ C

(A ^ B) _ (C ^ D)
m ���������������������

[A _ C] ^ [B _ D]

switch medial

.

A cut-free derivation is a derivation where i" is not used, i.e., a derivation in
SKS \ {i"}. In addition to these rules, there is a rule

C
= ��

D
,

such that C and D are opposite sides in one of the following equations:

A _ B = B _ A A _ f = A

A ^ B = B ^ A A ^ t = A

[A _ B] _ C = A _ [B _ C] t _ t = t

(A ^ B) ^ C = A ^ (B ^ C) f ^ f = f

.

We do not always show the instances of rule =, and when we do show them, we
gather several contiguous instances into one.

For example, this is a valid derivation:

[a _ b] ^ a����

([a _ b] ^ a) ^ ([a _ b] ^ a)
=

a
c" �����

a ^ a
_

b
c" �����

b ^ b
m ����������������������

[a _ b] ^ [a _ b]

^
a

c" �����
a ^ a

.

This derivation illustrates a general principle in deep inference: structural rules
on generic formulae (in this case a cocontraction) can be replaced by correspond-
ing structural rules on atoms (in this case c").

3 Proof-Theoretical Properties

Locality and linearity are foundational concepts for deep inference, in the same
spirit as they are for linear logic. Going for locality and linearity basically means
going for complexity bounded by a constant. This last idea introduces geometry
into the picture, because bounded complexity leads us to equivalence modulo
continuous deformation. In a few words, the simple and natural definition of
deep inference that we have seen above captures these ideas about linearity,
locality and geometry, and can consequently be exploited in many ways, and
notably:

– to recover a De Morgan premiss-conclusion symmetry that is lost in Gentzen
[3];

Structural rules on generic formulae can be replaced by structural rules
on atoms.
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Example with quantifiers

TEST

ALESSIO GUGLIELMI

t
i# �����������������������������������������������������������������������������������

9x8y

2

4 f
w# ������

p(x)
_ p

�
y
�
3

5 _ 9x8y

2

4p (x) _
f

w# �������
p
�
y
�

3

5

c# �����������������������������������������������������������������������������������
9x8y

h
p (x) _ p

�
y
�i

Date: July 20, 2014.
1

This is more natural than in Gentzen because there is no waste in the
proof.
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Locality

Deep inference allows for locality,

i.e.,

inference steps can be checked in constant time (so, they are small).

E.g., atomic cocontraction:

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Thanks to locality Gundersen, Heijltjes and Parigot obtained a typed
λ-calculus that achieves fully lazy sharing [13].

In Gentzen:

I no locality for (co)contraction (counterexample in [2]),

I no local reduction of cut into atomic form.
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Reduction of cut to atomic form

Apply repeatedly—and locally:

[A ∨ B] ∧ (Ā ∧ B̄)
i↑

f
=

[A ∨ B] ∧ B̄
s
A ∨ (B ∧ B̄)

∧ Ā

s

A ∧ Ā
i↑

f
∨

B ∧ B̄
i↑

f

Proof complexity does not increase!
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Analyticity costs much less (1)

Statman tautologies:

4 Pragmatic Properties

I will concentrate here on a crucial aspect of proofs, namely their size. This is
interesting in proof complexity, because proof size is intimately connected to
the problem of NP vs coNP. It is also interesting for the automated deduction
community, because the size of proofs a↵ects the size of the proof search space,
and so it has a direct e↵ect on the time it takes to find proofs.

Quantification in deep inference is not di↵erent from quantification in the
Gentzen theory, or, at least, nothing significantly di↵erent has been discovered so
far. Therefore we can limit the discussion to the propositional case. The situation
can be described in a few words: in [7] we proved that deep inference has an
exponential speed-up over Gentzen on analytic proof systems. In particular, one
can consider Statman tautologies [23], which only have exponential-size proofs
in the cut-free sequent calculus, and show that they have polynomial proofs in
cut-free deep inference.

Obviously, at first sight it might seem that the subformula property does not
hold in deep inference, and so that the notion of cut free-ness is weaker than in
Gentzen. However, the issue is subtle and it turns out that the di↵erences with
Gentzen are surprisingly small. As Anupam Das proved in [9], only a very limited
amount of deep inference is su�cient to completely capture the exponential
speed-up. More precisely, any cut-free deep-inference system that can access at
most depth 2 in formulae can polynomially simulate proof systems of unbounded
depth, such as the system presented in this tutorial. In other words, the same
depth visibility of hypersequents is su�cient to obtain small proofs. This means
that for the same impact that hypersequents have on the branching factor in
the proof search space, we can obtain much smaller proofs than in Gentzen
systems, thanks to the better proof representation in deep inference. I will show
an example here, by reasoning on the first three Statman tautologies (see [7, 23]
for formal definitions):

S1 = (a ^ b) _ ā _ b̄ ,

S2 = (c ^ d) _
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�
_ ā _ b̄ ,

S3 = (e ^ f) _
�⇥

ē _ f̄
⇤
^ c ^

⇥
ē _ f̄

⇤
^ d

�
_�⇥

ē _ f̄
⇤
^
⇥
c̄ _ d̄

⇤
^ a ^

⇥
ē _ f̄

⇤
^
⇥
c̄ _ d̄

⇤
^ b

�
_ ā _ b̄ .

It is well known, and the reader will have no di�culty in seeing it, that the
size of cut-free sequent proofs of Sn grows exponentially with n. The structural
reason is that the external connectives in formulae force repeated duplication
of the context. Let us see what happens if we could just access connectives
immediately below the external ones.

and so on…

In the cut-free sequent calculus proofs grow exponentially.
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Analyticity costs much less (2)

Open deduction proof of S1:For S1 we have a trivial cut-free proof in SKS:

t�������i#,s

(a ^ b) _ ā _ b̄

=

t
i# �����

a _ ā
^

t
i# �����

b _ b̄
s ���������������������

[a _ ā] ^ b
s �����������
(a ^ b) _ ā

_ b̄

.

For S2 we can obtain:

t�������i#,s

t����i#,s

(c ^ d) _ c̄ _ d̄
^ a ^

t����i#,s

(c ^ d) _ c̄ _ d̄
^ b

�������s

(c ^ d) _ (c ^ d)����c#,m

c ^ d

_
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄

Here we see how the external atoms c and d are ‘brought inside’ the tautology
and two proofs similar to those for S1 are performed inside a conjunction inside
the external disjunction.

Finally, in Figure 1 we can see a proof of S3, where the above principle
is repeated and clearly gives rise to a sequence of proofs for Sn that grows
polynomially over n instead of exponentially.

5 Trends and Open Problems

The future of deep inference tends towards proof complexity, combinatorics and
the study of proofs via algebraic topology. One of the most important open
problems that deep inference intends to solve is that of the identity of proofs
(sometimes called Hilbert’s 24th problem [26]); this is related to the equally
open problem of the identity of algorithms [1].

References

1. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms
the same? Technical Report MSR-TR-2008-20, Microsoft Research, 2008.
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Analyticity costs much less (3)
Open deduction proof of S2:

For S1 we have a trivial cut-free proof in SKS:

t�������i#,s

(a ^ b) _ ā _ b̄

=

t
i# �����

a _ ā
^

t
i# �����

b _ b̄
s ���������������������

[a _ ā] ^ b
s �����������
(a ^ b) _ ā

_ b̄

.

For S2 we can obtain:

t�������i#,s

t����i#,s

(c ^ d) _ c̄ _ d̄
^ a ^

t����i#,s

(c ^ d) _ c̄ _ d̄
^ b

�������s

(c ^ d) _ (c ^ d)����c#,m

c ^ d

_
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄

Here we see how the external atoms c and d are ‘brought inside’ the tautology
and two proofs similar to those for S1 are performed inside a conjunction inside
the external disjunction.

Finally, in Figure 1 we can see a proof of S3, where the above principle
is repeated and clearly gives rise to a sequence of proofs for Sn that grows
polynomially over n instead of exponentially.

5 Trends and Open Problems

The future of deep inference tends towards proof complexity, combinatorics and
the study of proofs via algebraic topology. One of the most important open
problems that deep inference intends to solve is that of the identity of proofs
(sometimes called Hilbert’s 24th problem [26]); this is related to the equally
open problem of the identity of algorithms [1].

References

1. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms
the same? Technical Report MSR-TR-2008-20, Microsoft Research, 2008.
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Analyticity costs much less (4)
Open deduction proof of S3:

t����������i#,s

t�����i#,s

(c ^ d) _ c̄ _ d̄

^ a ^
t�����i#,s

(c ^ d) _ c̄ _ d̄

^ b

����������s

(c ^ d) _ (c ^ d)�����c#,m

t�����i#,s

(e ^ f) _ ē _ f̄

^ c ^
t�����i#,s

(e ^ f) _ ē _ f̄

^ d

_

0
B@

t�����i#,s

(e ^ f) _ ē _ f̄

^
⇥
c̄ _ d̄

⇤
^ a ^

t�����i#,s

(e ^ f) _ ē _ f̄

^
⇥
c̄ _ d̄

⇤
^ b

1
CA

����������s

(e ^ f) _ (e ^ f) _ (e ^ f) _ (e ^ f)�����c#,m

e ^ f

_
�⇥

ē _ f̄
⇤
^ c ^

⇥
ē _ f̄

⇤
^ d

�
_
�⇥

ē _ f̄
⇤
^
⇥
c̄ _ d̄

⇤
^ a ^

⇥
ē _ f̄

⇤
^
⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄
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In open deduction analytic Statman proofs grow polynomially.
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Deep inference and proof complexity (size)

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:
• deep-inference proof systems are as powerful as Frege ones, even when both are

extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.
These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

op. ded. +
extension

op. ded. +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

op. ded.

Gentzen

open

2

Cook-
Reckhow ’74

cut-free
op. ded.

cut-free
Gentzen

Brünnler
’041×

Statman ’78×

open

The notation " # indicates that formalism " polynomially simulates formalism
# ; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: March 15, 2010.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.

1

−→ = ‘polynomially simulates’.

Open deduction:
I in the cut-free case, thanks to deep inference, has an exponential

speed-up over the cut-free sequent calculus (e.g., over Statman
tautologies)—1, see [6];

I has as small proofs as the best formalisms—2, 3, 4, 5, see [6];
I thanks to dagness, has quasipolynomial cut elimination (instead of

exponential) [7, 15].
I Cut free deep inference outperforms the sequent calculus.

Deep inference for classical logic 21 / 46



Deep inference and proof search complexity

Unconstrained bottom-up formula-driven proof search has horrendous
complexity due to deep inference, because every connective can make
the search tree branch.

However:

1. Das proved that in the presence of distributivity, a depth 2 proof
system polynomially simulates any unbounded depth proof system
[8]. This means that a very moderate increase of nondeterminism
buys exponentially smaller proofs.

2. Focusing techniques should be facilitated by the more liberal proof
composition.

3. In particular it should be possible to confine the search inside small
sub-spaces of canonical proofs.

4. The sequent calculus was designed to make proof search finite, not
necessarily to make it efficient.
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Cut elimination
by ‘experiments’
(for logics with
contraction)

Experiment
over a proof:

TEST

ALESSIO GUGLIELMI

ā

a

a

 
!

 f !
a ^ ā
"

t ^ f

ā _ a
#

f _ a

Date: September 24, 2013.
1

We do:

TEST

ALESSIO GUGLIELMI

ā

a

a

 
!

 f !
a ^ ā
"

t ^ f

ā _ a
#

f _ a

↵

B

proof with n cuts

�!
A1

↵1

B

· · ·
A2n

↵2n

B

B

cut-free proof

 many identities

 all assignments

 W
‘experiments’

 many contractions

Date: September 24, 2013.
1

I Simple, exponential cut elimination;
I 2n experiments, where n is the number of atoms;
I fairly syntax independent method.

The secret of success is in the proof composition mechanism.

Why is this impossible in the sequent calculus?
Cut elimination 23 / 46



Normalisation in the linear fragment: Splitting

Theorem (Splitting) For every proof
t

K{A ∧ B}
there are proofs

KA ∨ KB ∨ { }

K{ }

t

KA ∨ A

t

KB ∨ B

Similar theorems hold for every logics we tried so far (including logics
that for Gentzen theory are hopeless).
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Splitting for an atomic cut

Therefore for every cut-free proof
t

K{a ∧ ā}
there are cut-free proofs

K′{ā} ∨ K′′{a} ∨ { }

K{ }

t

K′{ā} ∨ a

t

K′′{a} ∨ ā

therefore we can build

t
i↓

a

K′{ā}
∨

ā

K′′{a}

K{f}

therefore a cut at the is admissible.
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Ingredients for a Kleene algebra

Two things are necessary:

1. A sequentiality operator: a.b;

2. The Kleene star: a? = {ε, a, a.a, a.a.a, . . . }.
This stuff is the basis of many process algebras, e.g., CCS.

Surprise(?): sequentiality cannot be captured in an analytic Gentzen
system. It requires deep inference [9, 22].

The moral reason is that sequentiality and the Kleene’s star are self-dual
and noncommutative:

a.b | a.b = a.b | ā.b̄→ ◦ .

Technically, Tiu’s counterexample applies (see next slides and [22, 23]).
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System BV
BV = MLL + self-dual noncommutative operator [9, 22]:

I Equations:
A � B = Ā O B̄ A O B = Ā � B̄ A / B = Ā / B̄

A � (B � C) = (A � B) � C
A / 〈B / C〉 = 〈A / B〉 / C
A O [B O C] = [A O B] O C

A � B = B � A A O B = B O A

A � ◦ = A / ◦ = ◦ / A = A O ◦ = A

I Rules:

a � ā
i↑
◦

〈A / B〉� 〈C / D〉
q↑

(A � C) / (B � D)

◦
i↓

a O ā

A � [B O C]
s

(A � B) O C

[A O C] / [B O D]
q↓
〈A / B〉O 〈C / D〉
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Tiu’s counterexample:
BV is not expressible in Gentzen

Graphical representation of a proof in BV:

Properties of a Logical System in the Calculus of Structures 5

presented graphically as follows:

·
·

a b

·
c

·
·

·
ā

·
b̄ c̄

·
·

.

All the dual atoms in this structure can be made into communication by identifying two time points
between two structures connected by a par. We can “prove” the structure in the following way:

·
·

a b

·
c

·
·

·
ā

·
b̄ c̄

·
·

=⇒

·
·
a

b

c

·
·

·
ā

·
b̄ c̄

·
·

=⇒

·
·
a

b

c

·
·

·
ā

b̄

c̄

·
·

=⇒

·
a ā

··
·
b

c

·

·
b̄

c̄

·
·

=⇒

·
a ā

··
b

·

b̄

··
c

·
c̄

·

=⇒

·
b

·

b̄

··
c

·
c̄

·

=⇒
·

c

·
c̄

·
=⇒ ◦

The proof above has a certain interesting property. The substructures [a, b] and [b̄, c̄] in S0 above
must decide their temporal relations first, before the proof can proceed. Let us see what happens if we
identify the time points outside those two substructures:

·
a

·
b ā

··
c

·

b̄ c̄

·

.

The structure now is no longer provable because now b comes before b̄ and can no more communicate.
There are several other possibilities not shown here, but none of them leads to a proof. Thus the structure
[⟨[a, b]; c⟩, ⟨ā; [b̄, c̄]⟩] is provable if we change either [a, b] to ⟨a; b⟩ or [b̄, c̄] to ⟨b̄; c̄⟩ first. Now, the crucial
part of establishing the counterexample is that we can delay this changing of temporal relation between
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Tiu’s counterexample:
BV is not expressible in Gentzen (cont.)

We can build a growing fractal of growing depth; the next step is:
6 Alwen F. Tiu

·

·

·

a1 a b1

·

c1

·

·

·

ā1

·

b̄1 b c̄1

·

··

c̄

·

·

·

ā

·

·

a2 b̄ b2

·

c2

·

·

·

ā2

·

b̄2 c̄ c̄2

·

··

·

Fig. 2 Graphical representation of the structure S1

a and b (or b̄ and c̄) by nesting them inside other S0 structures:

·
·

a1 a b1

·
c1

·
·

·
ā1

·
b̄1 b c̄1

·
·

and

·
·

a2 b̄ b2

·
c2

·
·

·
ā2

·
b̄2 c̄ c̄2

·
·

The one step nesting of S0 produces the structure S1 shown in Figure 2. We are now forced to change
the relation [a1, b1, a] to ⟨a1; b1; a⟩ before we can change the temporal relation between a and b. This
process of nesting of substructures of a certain S0 structure inside other S0 structures can be repeated
to generate larger and larger provable structures with the same property: their proofs must start by
changing the innermost redexes. Given a particular shallow system with a certain depth, we are then
able to produce a structure such that its innermost redexes are beyond the depth of the shallow rules
in the system, and thus establish the proof that no shallow system can be equivalent to BV . Of course,
this is a rather simplified explanation. The formal proof in Section 5 will use a different representation,
but the principle is still the same.

This paper is organised as follows. Section 2 covers some basic definitions concerning structures.
In Section 3, a representation of structures, called trace, is introduced. It was originally developed to
give semantics to System BV . In fact, System BV was discovered through this semantics [4]. Section
4 introduces System BV along with a partial characterisation of its provable structures. The formal
proof of the deep-nesting property, based on traces, is given in Section 5. This paper ends with some
conclusions and suggestions for further developments.

…and each of its cut-free proofs has to start deeper inside.
Therefore BV cannot be captured by shallow inference!
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Splitting for BV

Theorem (Splitting) For every proof
◦

K{A � B}
there are proofs

KA O KB O { }

K{ }

◦

KA O A

◦

KB O B

and for every proof
◦

K{A / B}
there are proofs

〈KA / KB〉O { }

K{ }

◦

KA O A

◦

KB O B

Splitting recovers Gentzen’s notion of analyticity without imposing it on
the meta-level of the formalism.
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Atomic flows – Locality yields topology

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below the proofs, their (atomic) flows [10] are shown:
I only structural information is retained in flows;
I logical information is lost;
I flow size is polynomially related to derivation size;
I composition of proofs naturally correspond to composition of

flows.
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Flow reductions: (co)weakening (1)
NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

Each flow reduction corresponds to a correct proof reduction.
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Flow reductions: (co)weakening (2)
E.g.,

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

specifies that

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 25

Proof. By Theorem 25, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences inΠ′ associated with each edge ofφ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive
list of cases, for some Π′′, Φ, Ψ, ξ { } and ζ { }:

(1)
−

Π′′ ‖‖

ξ

!
t

aε ∨ ā

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
t ∨

f

ā

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(2)
−

Π′′ ‖‖

ξ

!
f

aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

!
f ∧ [t ∨ t]

s
(f ∧ t) ∨ t

"

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(3)
−

Π′′ ‖‖

ξ

!
a ∨ a
aε

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖

ξ

#
a
t
∨

a
t

$

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

;

(4)
−

Π′′ ‖‖

ξ

!
a

aε ∧ a

"

Φ ‖‖

ζ

!
aε

t

"

Ψ ‖‖
α

becomes

−
Π′′ ‖‖
ξ {a}

Φ{aε/t} ‖‖
ζ {t}
Ψ ‖‖
α

.

We can operate on flow reductions instead than on derivations:

I much easier,

I we get natural, syntax-independent induction measures.

Atomic flows – Locality yields topology 33 / 46



Flow reductions: (co)contraction

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS 15

→ →

→ →

→

→ →

→ →

→

Figure 2: Atomic-flow reduction rules.

We would like to use the reductions in Figure 2 as rules for rewriting inside generic
atomic flows. To do so, in general, we should have matching upper and lower edges in
the flows that participate in the reduction, and the reductions in the figure clearly do so.
However, we also have to pay attention to polarities, not to disrupt atomic flows. In fact,
consider the following example.

Example 4.2. The ‘reduction’ on the left, when used inside a larger atomic flow, might
create a situation as on the right:

→
+

+ +

+

→ + ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules and reductions for atomic flows as follows.

Definition 4.3. An (atomic-flow) reduction rule r from flow A to flow B is a quadruple
(A,B, f, g) such that:

(1) f is a one-to-one map from the upper edges of A to the upper edges of B,

I These reductions conserve the number and length of paths.

I Open problem: does cocontraction yield superpolynomial
compression?

Atomic flows – Locality yields topology 34 / 46



Generalising the cut-free form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts, and
(co)weakenings do the rest.
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How do we break paths?
With the path breaker [11]:

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6
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ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:
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and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
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there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6

Even if there is a path between identity and cut on the left, there is none
on the right.
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We can do the same on derivations, of course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.
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I We can compose this as many times as there are paths between
identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.
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Example for 2 cuts

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

→
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Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1
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φ2 φ2 φ2

φ2 φ2 φ2

φ2 φ2 φ2
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φ′0

φ

θ1...
θk

φ′
k

ψkφ

θk+1

φ

φ′n

θn

...

· · · · · ·

α

FIGURE 5. Atomic flow of a proof in cut-free form.

where ψ is the union of flows φ1, . . . , φn , and where we denote by α the edges corre-
sponding to the atom occurrences appearing in the conclusion α ofΠ. We then have that,
for 0< k < n, the flow of Φk is φ�k , as in Figure 5, where ψk is the flow of the derivation
Ψk . The flows of Φ0 and Φn are, respectively, φ�0 and φ�n .

7. NORMALISATION STEP 3: ANALYTIC FORM

In this section, we show that we can get proofs in analytic SKS, i.e., system aSKS, in
quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 12.

Theorem 27. Given any proof Π of α in SKS, we can construct a proof of α in aSKS in
time quasipolynomial in the size of Π.

I Only n + 1 copies of the proof are stitched together.
I Note local cocontraction (= better sharing, not available in

Gentzen).
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Conclusions

I Composition in Gentzen is too rigid (it was designed for
consistency proofs, not much else).

I Deep inference composition is free and yields local proof systems.

I Locality = linearity + atomicity, so we are doing an extreme form
of linear logic.

I Because of locality we obtain a sort of geometric control over
proofs.

I So we obtain an efficient and natural formalism for proofs, where
more proof theory can be done with lower complexity.

I We are obtaining interesting notions of proof semantics.
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