
Introducing Substitution in
Proof Theory

Alessio Guglielmi

University of Bath

20 July 2014

This talk is available at http://cs.bath.ac.uk/ag/t/ISPT.pdf
It is an abridged version of this other talk: http://cs.bath.ac.uk/ag/t/PCMTGI.pdf

Deep inference web site: http://alessio.guglielmi.name/res/cos/

http://cs.bath.ac.uk/ag/t/ISPT.pdf
http://cs.bath.ac.uk/ag/t/PCMTGI.pdf
http://alessio.guglielmi.name/res/cos/

Outline

Problem: compressing proofs.

Solution: proof composition mechanisms beyond Gentzen.

Open deduction: composition by connectives and inference, smaller
analytic proofs than in Gentzen.

Atomic flows: geometry is enough to normalise.

Composition by substitution: more geometry, more efficiency, more
naturality.

Problem: compressing proofs

How can we make proofs smaller? Known mechanisms:

1. Re-use the same sub-proof: cut rule. Proof theory.

2. Re-use the same sub-proof: dagness, or cocontraction:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 7

Structural rules Logical rule

SKSg





A∧ Ā
i↑

f

A
w↑

t

A
c↑

A∧A
cointeraction coweakening cocontraction

or cut

t
i↓

A∨ Ā

f
w↓

A
A∨A

c↓
A

A∧ [B ∨C]
s
(A∧B) ∨C





KSg
interaction weakening contraction switch
or identity

FIGURE 2. Systems SKSg and KSg.

Atomic structural rules Logical rules

SKS





a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cointeraction coweakening cocontraction

or cut

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
A∧ [B ∨C]

s
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m
[A∨C] ∧ [B ∨D]





KS
interaction weakening contraction switch medial
or identity

FIGURE 3. Systems SKS and KS.

We can now define some deep-inference proof systems. System SKS is the most impor-
tant for the proof theory of classical logic, because of its atomic structural rules. System
SKSg relates SKS to proof systems in other formalisms, like Frege.

Definition 2.13. CoS proof systems KSg = {i↓,w↓,c↓, s}, SKSg = KSg ∪ {i↑,w↑,
c↑}, KS = {ai↓,aw↓,ac↓, s,m} and SKS = KS ∪ {ai↑,aw↑,ac↑} are defined in Figures 2
and 3, for a language containing f, t, disjunction, and conjunction. Proof systems where
none of the rules i↑, ai↑, w↑, and aw↑ appear are said to be analytic.

Example 2.14. This is a valid derivation in all CoS proof systems defined previously
(and it plays a role in the proof of Lemma 3.11):

γ ∨ [(([ᾱ ∨α] ∧ c) ∧ (α ∧ d)) ∨δ]
=
γ ∨ [(((α ∧ d) ∧ c) ∧ [α ∨ ᾱ]) ∨δ]

s
γ ∨ [[(((α ∧ d) ∧ c) ∧α) ∨ ᾱ] ∨δ]

=
[ᾱ ∨ γ] ∨ [((α ∧ c) ∧ (α ∧ d)) ∨δ]

.

Note that SKSg, KSg, SKS, and KS are closed under renaming and substitution (see
Remark 2.11). This is so because of the distinction between atoms and formula variables.
Obtaining the closure of these and other systems under renaming and substitution is one
of the main technical reasons for distinguishing between atoms and variables.

The following theorem is proved in [Brü04], and follows immediately from Sec-
tion 3.1, where we prove that CoS systems p-simulate Gentzen systems.

.

3. Substitution:

ON THE PROOF COMPLEXITY OF DEEP INFERENCE 21

SKSg can analogously be extended, but there is no need to create a special rule; we
only need to broaden the criterion by which we recognize a proof.

Definition 5.3. An extended SKSg proof of α is an SKSg derivation with conclusion α
and premiss [Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah], where A1, Ā1, . . . , Ah , Āh
are mutually distinct and A1 /∈β1,α and . . . and Ah /∈β1, . . . ,βh ,α. We denote by xSKSg

the proof system whose proofs are extended SKSg proofs.

Theorem 5.4. For every xFrege proof of length l and size n there exists an xSKSg proof of
the same formula and whose length and size are, respectively, O(l) and O(n2).

Proof. Consider an xFrege proof as in Definition 5.1. By Remark 5.2 and Theorem 4.6,
there exists the following xSKSg proof, whose length and size are yielded by 4.6:

[Ā1 ∨β1] ∧ [β̄1 ∨A1] ∧ · · · ∧ [Āh ∨βh] ∧ [β̄h ∨Ah]
‖
‖ SKSg

αk

.

!
Although not strictly necessary to establish the equivalence of the four extended for-

malisms (see diagram in the Introduction), the following theorem is very easy to prove.

Theorem 5.5. For every xSKSg proof of size n there exists an xFrege proof of the same
formula and whose length and size are, respectively, O(n4) and O(n5).

Proof. Consider an xSKSg proof as in Definition 5.3. The statement is an immediate
consequence of Theorem 4.11, after observing that there is an O(h)-length and O(hn)-
size xFrege proof

A1↔β1, . . . ,Ah ↔βh , . . . , (A1↔β1) ∧ · · · ∧ (Ah↔βh) .

!
Corollary 5.6. Systems xFrege and xSKSg are p-equivalent.

We now move to the substitution rule.

Definition 5.7. A substitution Frege (proof) system is a Frege system augmented with

the substitution rule
A

sub
Aσ

. We denote by sFrege the proof system where a proof is a

derivation with no premisses, conclusion αk , and shape

α1, . . . ,αi1−1,

αi1
≡︷ ︸︸ ︷

α j1
σ1 ,αi1+1, . . . ,αih−1,

αih
≡︷ ︸︸ ︷

α jh
σh ,αih+1, . . . ,αk ,

where all the conclusions of substitution instances αi1
, . . . , αih

are singled out, α j1
∈

{α1, . . . ,αi1−1}, . . . , α jh
∈ {α1, . . . ,αih−1}, and the rest of the proof is as in Frege.

We rely on the following result.

Theorem 5.8. (Cook-Reckhow and Krajíček-Pudlák, [CR79, KP89]) Systems xFrege

and sFrege are p-equivalent.

We can extend SKSg with the same substitution rule as for Frege. The rule is used like
other proper rules of system SKSg, so its instances are interleaved with =-rule instances.

Definition 5.9. An sSKSg proof is a proof of SKSg where, in addition to the inference
steps generated by rules of SKSg, we admit inference steps obtained as instances of the

substitution rule
A

sub
Aσ

.

In Frege, equivalent to (4).

4. Tseitin extension: p↔ A (where p is a fresh atom). Optimal?

5. Higher orders (including 2nd order propositional).

We will see that 1– 4 (and a bit also 5) have a lot to do with
proof composition: this is our main tool.

Our main objective is providing for small spaces of canonical proofs
(= eliminating bureaucracy = getting good proof semantics).

Solution: proof composition mechanisms
beyond Gentzen

Less is more. Let’s make better use of what we have already.
Given two proofs φ : A⇒ B and ψ : C ⇒ D:

1. For a logical connective ? we have:

φ ? ψ : (A ? C)⇒ (B ? D) .

Proofs are composed by the connectives of the formula language.

2. For an inference rule B/C we have:

φ/ψ : A⇒ D .

Proofs are composed by inference rules.

3. For an atom a we have:

φ{a � ψ} : A{a � C, ā � D̄} ⇒ B{a � D, ā � C̄} .

Proofs are composed by substitution.

Two (relatively) new formalisms
Open deduction: composition by (1) connectives and (2) inference rules.

I It exists [5] and it can be taken as a definition for deep inference.
I It generalises the sequent calculus by removing its restrictions.
I Sequents ≈ ‘depth-1 inference without full inference composition’.
I Hypersequents ≈ ‘depth-2 inference without full inference

composition’.
I It compresses proofs by cut, dagness and depth itself (new,

exponential speed-up).
I I’ll show the main ideas and some results.

‘Formalism B’: open deduction + (3) substitution.
I It almost exists (work with Bruscoli, Gundersen and Parigot).
I It further compresses proofs by substitution (conjectured further

superpolynomial speed-up, it is equivalent to Frege + substitution).
I I’ll show some ideas and what I think we can get.

Open-deduction system SKS

I Atomic rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of α and β, respectively, generates an (inference) step
ξ {γ}
ρ
ξ {δ}, for each context

ξ { }. A derivation, Φ, from α (premiss) toβ (conclusion) is a chain of inference steps with

α at the top and β at the bottom, and is usually indicated by
α

Φ ‖‖ "
β

, where " is the name

of the proof system or a set of inference rules (we might omit Φ and "); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n ! 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |α| of a formula α, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By α{a1/β1, . . . ,ah/βh}, we denote the operation of simultaneously substituting for-
mulae β1, . . . , βh into all the occurrences of the atoms a1, . . . , ah in the formula α,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓

a ∨ ā
f

aw↓
a

a ∨ a
ac↓

a
identity weakening contraction

a ∧ ā
ai↑

f

a
aw↑

t

a
ac↑

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

α ∧ [β ∨ γ]
s
(α ∧β) ∨ γ

(α ∧β) ∨ (γ ∧δ)
m
[α ∨ γ] ∧ [β ∨δ]

switch medial
.

In addition to these rules, there is a rule
γ

=
δ

, such that γ and δ are opposite sides in one
of the following equations:

(1)

α ∨β=β ∨α α ∨ f = α
α ∧β=β ∧α α ∧ t= α

[α ∨β] ∨ γ = α ∨ [β ∨ γ] t ∨ t= t

(α ∧β) ∧ γ = α ∧ (β ∧ γ) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the= rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that α = β implies ξ {α} = ξ {β};
to indicate literal equality of the formulae α and β we adopt the notation α≡β.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.

I Linear rules:

4 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

instances of A and B , respectively, generates an (inference) step
ξ {C }
ρ−−−−−−−−
ξ {D}, for each context

ξ { }. A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference steps with

A at the top and B at the bottom, and is usually indicated by
A
Φ
�����
B

, where � is the name

of the proof system or a set of inference rules (we might omit Φ and �); a proof, often
denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations with Ψ.
Sometimes we group n � 0 inference steps of the same rule ρ together into one step, and
we label the step with n ·ρ.

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it.

By A{a1/B1, . . . ,ah/Bh}, we denote the operation of simultaneously substituting for-
mulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A,
respectively; note that the occurrences of ā1, . . . , āh are not automatically substituted.
Often, we only substitute certain occurrences of atoms, and these are indicated with su-
perscripts that establish a relation with atomic flows. As a matter of fact, we extend the
notion of substitution to derivations in the natural way, but this requires a certain care.
The issue is clarified in Section 3 (see, in particular, Notations 3 and 5 and Proposition 4).

System SKS is a CoS proof system, defined by the following structural inference rules:

t
ai↓ −−−−−−

a ∨ ā
f

aw↓ −−−
a

a ∨ a
ac↓ −−−−−−

a
identity weakening contraction

a ∧ ā
ai↑ −−−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−−

a ∧ a
cut coweakening cocontraction

,

and by the following two logical inference rules:

A∧ [B ∨C]
s−−−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−−−−
[A∨C] ∧ [B ∨D]

switch medial
.

In addition to these rules, there is a rule
C

=−−−
D

, such that C and D are opposite sides in one
of the following equations:

(1)

A∨B = B ∨A A∨ f =A
A∧B = B ∧A A∧ t=A

[A∨B] ∨C =A∨ [B ∨C] t ∨ t= t

(A∧B) ∧C =A∧ (B ∧C) f ∧ f = f

.

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The first row in Figure 2 shows some SKS example derivations.

The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A= B implies ξ {A} = ξ {B};
to indicate literal equality of the formulae A and B we adopt the notation A≡ B .

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \
{ai↑}. Of special importance in this paper is the following proof system:

Definition 1. Analytic SKS is the system aSKS= SKS \ {ai↑,aw↑}.
The notion of analyticity in deep inference has similarities and differences with an-

alyticity in Gentzen formalisms. The similarities mainly reside in the normalisation

I Plus an ‘=’ linear rule (associativity, commutativity, units).
I Negation on atoms only.

The cut is atomic.

SKS is complete for propositional logic. See [1].

Examples of open deduction

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Proofs are composed by the same operators as formulae (horizontally)
and by inference rules (vertically).

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is illegal in Gentzen).

First order example

TEST

ALESSIO GUGLIELMI

t
i# ���

9x8y

2

4 f
w# ������

p(x)
_ p

�
y
�
3

5 _ 9x8y

2

4p (x) _
f

w# �������
p
�
y
�

3

5

c# ���
9x8y

h
p (x) _ p

�
y
�i

Date: July 20, 2014.
1

This is much more natural than in Gentzen.

Open deduction and proof complexity (size)

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:
• deep-inference proof systems are as powerful as Frege ones, even when both are

extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.
These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

op. ded. +
extension

op. ded. +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

op. ded.

Gentzen

open

2

Cook-
Reckhow ’74

cut-free
op. ded.

cut-free
Gentzen

Brünnler
’041×

Statman ’78×

open

The notation " # indicates that formalism " polynomially simulates formalism
; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: March 15, 2010.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.

1

−→ = ‘polynomially simulates’.

Open deduction:

I in the cut-free case, thanks to deep inference, has an exponential
speed-up over the cut-free sequent calculus (e.g., over Statman
tautologies)—1, see [2];

I has as small proofs as the best formalisms—2, 3, 4, 5, see [2];

I thanks to dagness, has quasipolynomial cut elimination (instead of
exponential) [3, 7].

Atomic flows: locality brings geometry

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t







a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā




=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′
and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

Below the proofs, their (atomic) flows [4] are shown:
I only structural information is retained in flows;
I logical information is lost;
I flow size is polynomially related to derivation size;
I composition of proofs naturally correspond to composition of

flows.

Generalising the cut-free form

I Normalised proof:

26 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

aw↓-ac↓ : 1

2
→ 1,2 ac↑-aw↑ :

2

1 → 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ : 1 2 → 1 2

FIGURE 6. Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size ofΠ′ because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. !

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof
so obtained. The transformations in the proof of Theorem 27, together with the one
mentioned in Step (1) in the proof of Theorem 12, all belong to the class of weakening
and coweakening reductions studied in [GG08]. In the rest of this section, we quickly
outline a possible, further transformation of the analytic form produced by those reduc-
tions, and refer the reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If Φ is a derivation with flowφ, andφ can be transformed intoψ by one of the
atomic-flow reduction rules, then there exists a derivation Ψ whose flow is ψ and such
that it has the same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 12.
The reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac↑ is admissible (via ac↓, ai↑ and s). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial normalisation
holds for KS as well. We do not know, and all indications and intuition point to an
essential role being played by cocontraction in keeping the complexity low. Analysing
Figure 5 shows how cocontraction provides for a typical ‘dag-like’ speed-up over the
corresponding ‘tree-like’ expansion consisting in generating some sort of Gentzen tree.
However, we are aware that in the past this kind of intuition has been fallacious.

I Normalised derivation:

the category AF is not traced [12], because it does not obey
yanking:

!=

Notation 2.7. A box containing some generators stands for
an atomic flow generated only from these generators, and
a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators.
For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators
and a flow that does not contain any ac↑ and ai↑ generators,
respectively.

Proposition 2.8. Every atomic flow φ can be written in the
following form:

(2)

Proof. Let φ be given and pick an arbitrary occurrence of
ai↓ inside φ. Then φ can be written as shown on the left
below.

φ′

φ′′
=

φ′

φ′′

(3)

The equality follows by induction on the number of vertical
edges to cross, For ai↑ we proceed dually.

Definition 2.9. An atomic flow is weakly streamlined
(resp., streamlined and strongly streamlined) if it can be
represented as the flow on the left (resp., in the middle and
on the right):

.

Proposition 2.10. An atomic flow φ is weakly streamlined
if and only if in Gφ there is no path from an ai↓-vertex to an
ai↑-vertex.

Proof. Immediate from (3), read from right to left.

Definition 2.11. An atomic flow φ is weakly streamlined
with respect to an atomic type a if in Gφ there is no path
from an ai↓-vertex to an ai↑-vertex, whose edges are la-
belled by a or ā.

3 Properties of Atomic Flows
In this section we show some properties of atomic flows.

Apart from Proposition 3.3 they are not needed in later sec-
tions of this paper, but they lead to an interesting normal
form for atomic flows (Theorem 3.8).

Remark 3.1. Lafont [15] has shown that the generator ae
together with the first two relations in Figure 2 defines the
category of permutations.

Definition 3.2. Let a be an atomic type. An atomic flow
φ is ai-free with respect to a if φ does not contain any ai↓
generators whose outputs are typed by a and ā, and φ does
not contain any ai↑ generators whose inputs are typed by a
and ā.

Proposition 3.3. Let a be an atomic type. Then every
atomic flow φ can be written as

a ā

φ′

a ā

, (4)

where φ′ is ai-free with respect to a.

Proof. We apply the construction of the proof of Proposi-
tion 2.8 together with Remark 3.1 and the relations in the
last line of Figure 2.

Proposition 3.4. For any two atomic flows φ and ψ, we
have

φ ψ = ψ φ

Proof. We have

φ

ψ

=

φ

ψ

=

φ

ψ

=

φ

ψ

!"#!"#

I The symmetric form is called streamlined.

I Cut elimination is a corollary of streamlining.

I We just need to break the paths between identities and cuts, and
(co)weakenings do the rest.

How do we break paths?
With the path breaker [6]:

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6

→

4 Local Flow Transformations

We denote by the rewrite relation on atomic flows
generated by the rules shown in Figure 3.

Proposition 4.1. The rewrite relation is locally conflu-
ent.

Proof. The result follows from a case analysis on the criti-
cal peaks, which are:

and

and their duals.

However, in general the reduction is not terminating.
This can easily be seen by the following example:

The reason is that there can be cycles composed of paths
connecting instances of the and generators. The pur-
pose of the notion “weakly streamlined” (Definition 2.9) is
precisely to avoid such a situation.

Theorem 4.2. Every weakly streamlined atomic flow has
a unique normal form with respect to , and this normal
form is strongly streamlined.

Proof. We do not show the proof of termination here since
it can be found in [9]. We only note that the crucial point
is Proposition 2.10. Then, by Proposition 4.1, we have
uniqueness of the normal form. Since preserves the prop-
erty of being weakly streamlined, and in the normal form
there are no more redexes for , there is no generator ,

, above a generator , , .

5 Global Flow Transformations

The purpose of this section is to present a method for
transforming an atomic flow into a weakly streamlined one.
Since, eventually, we want to lift this operation to proofs in
a deductive system, we have to find a way to break paths
in the flow without breaking any edge. This is achieved
with the following construction, that can considered to be
the heart of this paper.

Figure 3. Local rewrite rules

Definition 5.1. Let be an atomic flow of the shape

(5)

where the wires of the selected and generators carry
the same atomic types, as indicated in (5), and let be the
flow

. (6)

Then we call a path breaker of with respect to , and
write .

Lemma 5.2. Let and be given with , and let
be any atomic type. If is weakly streamlined with respect
to , then so is .

6

Even if there is a path between identity and cut on the left, there is none
on the right.

We can do the same on derivations, of course

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

→

Proof. Let with and be given. By
repeatedly applying (9) we get the derivation

,

with , from which we can obtain a derivation

,

whose flow is as shown in (8).

Lemma 7.6. The relation can be lifted to .

Proof. Let with and be given. By
applying (9) we have a derivation

,

with . We also have

and

That we call and , respectively. We can now build

,

whose atomic flow is as shown in (6).

Theorem 7.7. The relation can be lifted to .

Proof. Immediate from Lemmas 7.5 and 7.6.

Proof Theorem 7.1. For every -derivation
there exists a weakly-streamlined -derivation
by Theorem 5.7 and Theorem 7.7; for every weakly-

streamlined -derivation there exists a
strongly streamlined -derivation by Theo-
rem 4.2 and Theorem 7.3.

References

[1] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[2] K. Brünnler and A. F. Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001,
volume 2250 of LNAI, pages 347–361. Springer, 2001.

[3] P. Bruscoli and A. Guglielmi. On the proof complexity of
deep inference. ACM Transactions on Computational Logic,
10(2):1–34, 2009. Article 14.

[4] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep infer-
ence via atomic flows and threshold formulae. submitted,
2010.

[5] S. R. Buss. The undecidability of -provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[6] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[8] J.-Y. Girard. Proof Theory and Logical Complexity, Volume
I, volume 1 of Studies in Proof Theory. Bibliopolis, edizioni
di filosofia e scienze, 1987.

10

I We can compose this as many times as there are paths between
identities and cut.

I We obtain a family of normalisers that only depends on n.

I The construction is exponential.

I Finding something like this is unthinkable without flows.

Example for 2 cuts

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

→

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS II 17

φ2 φ2 φ2

φ2 φ2 φ2

φ2 φ2 φ2

‘Formalism B’: allowing substitution

Syntax Semantics

Truth
tables

late 1800s

Frege
systems

∼1900

Gentzen
formalisms

1935

Calculus of
structures

2001

Open
deduction

2010

Formalism B

Atomic
flows

2008

Girard
proof nets

1987

Proof systems (proof complexity)

Normalisation and analyticity
(proof theory)

Deep inference

Figure 1: Converging towards proof systems with normalisation and analyticity and that are as close as possible to natural
semantic structures; the horizontal line carries formalisms of increasing abstraction.

the notion of proof system give us a natural target
for designing formalisms. Our goal is the answer to:

Question Which formalism describes the proof sys-
tems with the most abstract proofs?

The question is vague but it is useful to understand
this project and our previous work on deep infer-
ence. Our goal is to design a formalism of efficient
and natural proof systems, and the idea is to pro-
gressively refine the syntax, while being guided by
semantics (naturality) and while making sure that
the complexity of proofs decreases (efficiency).

Proof semantics itself is not set in stone, it is an ac-
tive field of research, very close to the semantics
of programming languages and especially game se-
mantics. Proof theory and semantics have had for
decades a very fruitful interaction that continues to-
day. This is also true of this project, where Guglielmi
and McCusker represent the two disciplines.

Following Girard’s intuition, we are interested in se-
mantics that capture the special geometric nature
of proofs that has surfaced in our previous work in
deep inference. In fact, deep inference [15, 18] is
based on a free proof composition mechanism that
generalises and preserves analyticity, while bounding
the complexity of each inference step, in a property
that we call locality. It turns out that we can exploit
locality to obtain geometric models of normalisation
of finer granularity than that of proof nets.

We have already made three steps closing in on our
target, by designing three mutually compatible gen-
eralisations of Gentzen formalisms. They are com-
patible because they represent different levels of ab-
straction for proofs of the same nature, enjoying the
same normalisation dynamics. The formalisms are:

Calculus of structures (2001) It generalises Gentzen
and has later been developed into a complete
proof theory encompassing a wider range of

logics than Gentzen’s [15, 2].
Atomic flows (2008) They prove that normalisa-

tion is an independent phenomenon from syn-
tax and suggests further abstractions for for-
malisms. Atomic flows, contrary to proof nets,
are purely geometric objects [16, 19].

Open deduction (2010) Inspired by atomic flows, it
removes a specific and pervasive kind of bu-
reaucracy while generalising and preserving
all the properties of the more syntactic for-
malisms [18].16

In deep inference we can express important logics
for the verification of process algebras that cannot
be expressed in Gentzen theory [3, 17, 33]. So, our
formalisms are more powerful than the traditional
ones also in terms of expressivity.
Atomic flows and open deduction come from
project P217. At the end of that project we formu-
lated a few proposals for a new formalism and made
a preliminary study of some associated properties.
This project, if approved, will conclude that line of
research by defining Formalism B18, which is our
main goal, represented as a red cross in Fig. 1.

2.2 National Importance

Formal verification of computer systems has proved
to be a much more difficult enterprise than ex-
pected at its beginnings, and some prominent re-
searchers even speculated that formal methods
were doomed to fail, as argued in the famous 1979
article [9]. However, progress has been steady and
formal verification is now an important tool in the
design of computer systems. For example, MIT’s
Technology Review lists crash-proof code as one of
the ten 2011 emerging technologies likely to change

16Open deduction was formerly known as Formalism A.
17Project Démosthène, see Sect. 1.4 - Previous Funding.
18The name is provisional.

6

Achieving the power of Frege + substitution (possibly optimal proof
system) by incorporating substitution, guided by the geometry of flows:

the world.19 The development of formal verification
is now internationally perceived as strategic, for rea-
sons that are summarised in [1], where high profile
researchers counter the criticism of [9].
In the UK, our research is categorised by EPSRC as
Theory of Computation (maintain action) and Verifica-
tion and Correctness (grow action). As the reasons for
the maintain/grow actions recite, the UK is a recog-
nised world leader in logic-based approaches, the-
ory of computation has strong links with verification
and correctness, and this in turn has relevance to
the cross-ICT prioritiesMany-Core Architectures and
Concurrency in Embedded and Distributed Systems and
Towards an Intelligent Information Infrastructure.
Our project will help establishing in the UK a strong
group on deep inference, which has been described
many times by prominent scientists as one of the
few main innovations in proof theory.

2.3 Research Hypothesis and Objectives

We want to design Formalism B such that it ex-
presses proof systems with the following charac-
teristics:

• They have minimal complexity relative to all
known proof systems (efficiency).

• The proofs they represent are closer to se-
mantics than those of existing proof systems
(naturality).

At the core of Formalism B there is a substitution
notion for atomic flows that ensures low complexity
and the removal of a certain kind of proof bureau-
cracy. The set of atomic flows must then be closed
under substitution and subjected to certain equa-
tions. For example, this is what should happen when
the atomic flow on the right inside the parentheses
is substituted into the atomic flow on the left:

� � �
→ = .

The picture describes part of a proof in a dag-like
proof system (represents dag sharing) where a
contraction () occurs. The idea is that the geo-
metric properties of the substitution’s result are suf-
ficient to describe the dynamics of normalisation,
and the size of the atomic flows is polynomially re-
lated to the size of the proofs that they represent.

19http://www.technologyreview.com/article/372�6/.

At the end of P2 Guglielmi felt that appealing to
strong semantic principles was necessary in order
to choose the further properties of Formalism B. To
this purpose, in project P320, McCusker observed
that the crucial notion of atomic flow composition
can be associated with the category-theoretic prop-
erty of extra-naturality. The calculus of functors and
extra-natural transformations has an elegant repre-
sentation via string diagrams [10], and that will be
the starting point of this project.
After defining it, we want to equip Formalism B with
a basic study of its normalisation, complexity and
expressiveness properties. We then leave room for
two high profile but risky investigations: polynomial
normalisation in deep inference and a computational
interpretation of deep inference via atomic flows.

2.4 Programme and Methodology

The four core researchers and their expertise are:

AG A Guglielmi, deep inference, proof theory;
GM G McCusker, categorical and game semantics;
PB P Bruscoli, deep inference, proof complexity;
RA research assistant (to be hired), semantics.

The main goal of the entire project is the design of
Formalism B as a generalisation of open deduction.
We need to assess the consequences of the design
in the broadest possible perspective, in order to
avoid idiosyncrasies that could undermine its adop-
tion. The Mathematical Foundations group in Bath
provides a perspective that goes beyond proof the-
ory and normalisation. In particular, McCusker’s ex-
perience in semantics of logic and of programming
languages [6, 24, 25, 26] will be central, via category
theory as an organisational tool [24], and via geome-
try as a foundational tool [25, 27].
There are two themes, Efficiency and Naturality.21

Eff Efficiency

This theme will be mainly about understanding the
absolute and relative complexity of propositional
classical logic proofs in deep inference and their
atomic flows, when the following parameters vary:
a) depth of inference; b) presence or absence of the
cut rule (analyticity); c) presence or absence of ex-
tension and of substitution. All these mechanisms
can compress proofs, and because Formalism B aims
at compactness, they have an impact on its design,

20Project REDO, see Sect. 1.4 - Previous Funding.
21See a Gantt chart in Sect. 4 -Work Plan.

7

Example of flow substitution

10 ALESSIO GUGLIELMI

(

−
←

−

)
← =





+ , +




← =

−
←
(

−
←

)
=

−
←
{

,

}
=





, , , , , ,





FIGURE 3. Example of flow substitutions.

+
←

−

=



 −

,

− −

+

,

+

,

+





FIGURE 4. Example of flow substitution.

the subflows of kind , and are replaced according to the obvious

dual rules; the paths of β are respected by the introduction of (co)contraction,
identity and cut nodes, as per Conventions 7 and 9.

If Ω is a set of flows we denote by Ω←Ξ the set
⋃
α∈Ω(α←Ξ). We write α←β instead

of α← {β}.

The substitution into a cycle that we have seen before becomes:

← =
{

,
}

.

More complicated examples are in Figures 3, 4 and 5.
We can generate all the elements in a substitution α ← Ξ in a systematic way by

the following procedure:

The flows represent proofs. The bigger the set on the right, the more
bureaucracy is captured by the substitution, the smaller the set of
canonical proofs is.

Note the variety of shapes, all of which are equivalent. This is far more
flexible than permutation of rules and similar Gentzen mechanisms.

Gundersen’s substitution trick

Substituting a proof φ inside an identity or cut stands for a set of proofs
with as many elements as ways to break φ.

This iterated mechanism alone generates one canonical form for an
exponentially big class of proofs.

Lifting flow substitutions to proofs
14 ALESSIO GUGLIELMI

Consider the following two synchronal open deduction derivations:

� =

t
i# ������������������

a
c" �������
a ^ a

_ ā
_ ā

= �������������������������������

(a ^ a) _
ā _ ā

c# �������
ā

w" ���
t

and =
b _

f
���
b

�����������
b

.

We want to define a denotation for the formal substitution � | a . One element in
the set of denotations of � | a is

t
i# ���

b _ f
c" ��������������������������������2

4b _
f
���
b

3

5 ^ [b _ f]
_
�
b̄ ^ t

� _
b̄

������
b̄ ^ b̄

= ���
0
BBB@

b _ b
������
b

^
b _

f
���
b

�����������
b

1
CCCA

_

�
b̄ ^ t

�
_

0
@b̄ ^

b̄
���
t

1
A

c# ���������������������������������
b̄ ^ t

w" ������
t

.

REFERENCES

[1] A. Guglielmi and T. Gundersen. Normalisation control in deep inference via atomic flows. Logical
Methods in Computer Science, 4(1):9:1–36, 2008.
http://www.lmcs-online.org/ojs/viewarticle.php?id=341.

[2] A. Guglielmi, T. Gundersen, and M. Parigot. A proof calculus which reduces syntactic bureaucracy. In
C. Lynch, editor, 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 135–150. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2010.
http://drops.dagstuhl.de/opus/volltexte/2010/2649.

UNIVERSITY OF BATH (UK)
http://alessio.guglielmi.name

Conclusions

I Proof composition in Gentzen is too rigid.

I Deep inference composition is free and yields local proof systems.

I Locality = linearity + atomicity, so we are doing an extreme form
of linear logic.

I Because of locality we obtain a sort of geometric control over
proofs.

I So we obtain an efficient and natural formalism for proofs, where
more proof theory can be done with lower complexity.

I We obtain a natural notion of proof substitution that does not
interfere with normalisation.

I We obtain interesting notions of proof semantics.

This talk is available at http://cs.bath.ac.uk/ag/t/ISPT.pdf
Deep inference web site: http://alessio.guglielmi.name/res/cos/

http://cs.bath.ac.uk/ag/t/ISPT.pdf
http://alessio.guglielmi.name/res/cos/

References

[1] K. Brünnler and A. F. Tiu.
A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 2250 of Lecture Notes in Computer Science, pages 347–361.
Springer-Verlag, 2001.

[2] P. Bruscoli and A. Guglielmi.
On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):14:1–34, 2009.

[3] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot.
A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae.
In E. M. Clarke and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), volume 6355 of Lecture Notes in Computer Science, pages 136–153.
Springer-Verlag, 2010.

[4] A. Guglielmi and T. Gundersen.
Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1):9:1–36, 2008.

[5] A. Guglielmi, T. Gundersen, and M. Parigot.
A proof calculus which reduces syntactic bureaucracy.
In C. Lynch, editor, 21st International Conference on Rewriting Techniques and Applications (RTA), volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 135–150. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

[6] A. Guglielmi, T. Gundersen, and L. Straßburger.
Breaking paths in atomic flows for classical logic.
In J.-P. Jouannaud, editor, 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 284–293. IEEE, 2010.

[7] E. Jeřábek.
Proof complexity of the cut-free calculus of structures.
Journal of Logic and Computation, 19(2):323–339, 2009.

	Problem: compressing proofs.
	Solution: proof composition mechanisms beyond Gentzen.
	Open deduction: composition by connectives and inference, smaller analytic proofs than in Gentzen.
	Atomic flows: geometry is enough to normalise.
	Composition by substitution: more geometry, more efficiency, more naturality.

