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What is deep inference?

It’s the free composition of proofs via the same connectives as formulae.

If

Φ =
A∥∥∥
B

and Ψ =
C∥∥∥
D

are two proofs with, respectively, premisses A and C and conclusions B
and D, then

(Φ ∧Ψ) =
(A ∧ C)∥∥∥
(B ∧ D)

and [Φ ∨Ψ] =
[A ∨ C]∥∥∥
[B ∨ D]

are valid proofs with, respectively, premisses (A ∧ C) and [A ∨ C], and
conclusions (B ∧ D) and [B ∨ D].



Why deep inference?

I To recover a De Morgan premiss-conclusion symmetry that is lost
in Gentzen [2].

I To obtain new notions of normalisation in addition to cut
elimination [11, 10].

I To shorten analytic proofs by exponential factors compared to
Gentzen [6, 8].

I To obtain quasipolynomial-time normalisation for propositional
logic [7].

I To express logics that cannot be expressed in Gentzen [22, 3].

I To make the proof theory of a vast range of logics regular and
modular [3].

I To get proof systems whose inference rules are local, which is
usually impossible in Gentzen [19].

I To inspire a new generation of proof nets and semantics of proofs
[20].



Why deep inference? (cont.)
I To investigate the nature of cut elimination [10, 12].

I To type optimal versions of the λ-calculus that are not typeable in
Gentzen [13, 14].

I To model process algebras [5, 16, 17, 18].

I To model quantum causal evolution [1] …

I … and much more.

Several formalisms can be designed in deep inference: Calculus of
Structures (CoS), Nested Sequents, Open Deduction, Formalism B, …

CoS and open deduction are equivalent under any reasonable point of
view, so we adopt open deduction. (CoS is convenient for certain
technical aspects.)

Nested sequents is not full deep inference.

Formalism B is still in development.



Open deduction system SKS

I Atomic/structural rules:

(which are foundational models of concurrent computation) to linear logic, I
realised that Gentzen’s formalisms were inherently inadequate to express the
most primitive notion of composition in computer science: sequential composi-
tion. This is indeed linear, but of a di↵erent kind of linearity from that naturally
supported by linear logic.

I realised then that the linear logic ideas were to be carried all the way
through and that the formalisms themselves had to be ‘linearised’. Technically,
this turned out to be possible by dropping one of the assumptions that Gentzen
implicitly used, namely that the (geometric) shape of proofs is directly related
to the shape of formulae that they prove. In deep inference, we do not make this
assumption, and we get proofs whose shape is much more liberally determined
than in Gentzen’s formalisms. As an immediate consequence, we were able to
capture process-algebras sequential composition [6], but we soon realised that
the new formalism was o↵ering unprecedented opportunities for both a more
satisfying general theory of proofs and for more applications in computer science.

2 Proof System(s)

The di↵erence between Gentzen formalisms and deep inference ones is that in
deep inference we compose proofs by the same connectives of formulae: if

� =
A����

B
and  =

C����

D

are two proofs with, respectively, premisses A and C and conclusions B and D,
then

� ^  =
A ^ C����

B ^ D
and � _  =

A _ C����

B _ D

are valid proofs with, respectively, premisses A ^ C and A _ C, and conclusions
B ^ D and B _ D. Significantly, while � ^  can be represented in Gentzen, � _  
cannot. That is basically the definition of deep inference and it holds for every
language, not just propositional classical logic.

As an example, I will show the standard deep inference system for proposi-
tional logic. System SKS is a proof system defined by the following structural
inference rules (where a and ā are dual atoms)

t
i# �����

a _ ā

f
w# ��

a

a _ a
c# �����

a

identity weakening contraction

a ^ ā
i" �����

f

a
w" ��

t

a
c" �����

a ^ a

cut coweakening cocontraction

,

I Linear/logical rules:

and by the following two logical inference rules:

A ^ [B _ C]
s �������������
(A ^ B) _ C

(A ^ B) _ (C ^ D)
m ���������������������

[A _ C] ^ [B _ D]

switch medial

.

A cut-free derivation is a derivation where i" is not used, i.e., a derivation in
SKS \ {i"}. In addition to these rules, there is a rule

C
= ��

D
,

such that C and D are opposite sides in one of the following equations:

A _ B = B _ A A _ f = A

A ^ B = B ^ A A ^ t = A

[A _ B] _ C = A _ [B _ C] t _ t = t

(A ^ B) ^ C = A ^ (B ^ C) f ^ f = f

.

We do not always show the instances of rule =, and when we do show them, we
gather several contiguous instances into one.

For example, this is a valid derivation:

[a _ b] ^ a����

([a _ b] ^ a) ^ ([a _ b] ^ a)
=

a
c" �����

a ^ a
_

b
c" �����

b ^ b
m ����������������������

[a _ b] ^ [a _ b]

^
a

c" �����
a ^ a

.

This derivation illustrates a general principle in deep inference: structural rules
on generic formulae (in this case a cocontraction) can be replaced by correspond-
ing structural rules on atoms (in this case c").

3 Proof-Theoretical Properties

Locality and linearity are foundational concepts for deep inference, in the same
spirit as they are for linear logic. Going for locality and linearity basically means
going for complexity bounded by a constant. This last idea introduces geometry
into the picture, because bounded complexity leads us to equivalence modulo
continuous deformation. In a few words, the simple and natural definition of
deep inference that we have seen above captures these ideas about linearity,
locality and geometry, and can consequently be exploited in many ways, and
notably:

– to recover a De Morgan premiss-conclusion symmetry that is lost in Gentzen
[3];

I Plus an ‘=’ linear rule (associativity, commutativity, units).
I Negation on atoms only.

The cut is atomic.

SKS is complete for propositional logic. See [4].



Example

and by the following two logical inference rules:

A ^ [B _ C]
s �������������
(A ^ B) _ C

(A ^ B) _ (C ^ D)
m ���������������������

[A _ C] ^ [B _ D]

switch medial

.

A cut-free derivation is a derivation where i" is not used, i.e., a derivation in
SKS \ {i"}. In addition to these rules, there is a rule

C
= ��

D
,

such that C and D are opposite sides in one of the following equations:

A _ B = B _ A A _ f = A

A ^ B = B ^ A A ^ t = A

[A _ B] _ C = A _ [B _ C] t _ t = t

(A ^ B) ^ C = A ^ (B ^ C) f ^ f = f

.

We do not always show the instances of rule =, and when we do show them, we
gather several contiguous instances into one.

For example, this is a valid derivation:

[a _ b] ^ a����

([a _ b] ^ a) ^ ([a _ b] ^ a)
=

a
c" �����

a ^ a
_

b
c" �����

b ^ b
m ����������������������

[a _ b] ^ [a _ b]

^
a

c" �����
a ^ a

.

This derivation illustrates a general principle in deep inference: structural rules
on generic formulae (in this case a cocontraction) can be replaced by correspond-
ing structural rules on atoms (in this case c").

3 Proof-Theoretical Properties

Locality and linearity are foundational concepts for deep inference, in the same
spirit as they are for linear logic. Going for locality and linearity basically means
going for complexity bounded by a constant. This last idea introduces geometry
into the picture, because bounded complexity leads us to equivalence modulo
continuous deformation. In a few words, the simple and natural definition of
deep inference that we have seen above captures these ideas about linearity,
locality and geometry, and can consequently be exploited in many ways, and
notably:

– to recover a De Morgan premiss-conclusion symmetry that is lost in Gentzen
[3];

Structural rules on generic formulae can be replaced by structural rules
on atoms.



Example with quantifiers

TEST

ALESSIO GUGLIELMI

t
i# �����������������������������������������������������������������������������������

9x8y

2

4 f
w# ������

p(x)
_ p

�
y
�
3

5 _ 9x8y

2

4p (x) _
f

w# �������
p
�
y
�

3

5

c# �����������������������������������������������������������������������������������
9x8y

h
p (x) _ p

�
y
�i

Date: July 20, 2014.
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This is more natural than in Gentzen because there is no waste in the
proof.



Analyticity costs much less (1)

Statman tautologies:

4 Pragmatic Properties

I will concentrate here on a crucial aspect of proofs, namely their size. This is
interesting in proof complexity, because proof size is intimately connected to
the problem of NP vs coNP. It is also interesting for the automated deduction
community, because the size of proofs a↵ects the size of the proof search space,
and so it has a direct e↵ect on the time it takes to find proofs.

Quantification in deep inference is not di↵erent from quantification in the
Gentzen theory, or, at least, nothing significantly di↵erent has been discovered so
far. Therefore we can limit the discussion to the propositional case. The situation
can be described in a few words: in [7] we proved that deep inference has an
exponential speed-up over Gentzen on analytic proof systems. In particular, one
can consider Statman tautologies [23], which only have exponential-size proofs
in the cut-free sequent calculus, and show that they have polynomial proofs in
cut-free deep inference.

Obviously, at first sight it might seem that the subformula property does not
hold in deep inference, and so that the notion of cut free-ness is weaker than in
Gentzen. However, the issue is subtle and it turns out that the di↵erences with
Gentzen are surprisingly small. As Anupam Das proved in [9], only a very limited
amount of deep inference is su�cient to completely capture the exponential
speed-up. More precisely, any cut-free deep-inference system that can access at
most depth 2 in formulae can polynomially simulate proof systems of unbounded
depth, such as the system presented in this tutorial. In other words, the same
depth visibility of hypersequents is su�cient to obtain small proofs. This means
that for the same impact that hypersequents have on the branching factor in
the proof search space, we can obtain much smaller proofs than in Gentzen
systems, thanks to the better proof representation in deep inference. I will show
an example here, by reasoning on the first three Statman tautologies (see [7, 23]
for formal definitions):

S1 = (a ^ b) _ ā _ b̄ ,

S2 = (c ^ d) _
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�
_ ā _ b̄ ,

S3 = (e ^ f) _
�⇥

ē _ f̄
⇤
^ c ^

⇥
ē _ f̄

⇤
^ d

�
_�⇥

ē _ f̄
⇤
^
⇥
c̄ _ d̄

⇤
^ a ^

⇥
ē _ f̄

⇤
^
⇥
c̄ _ d̄

⇤
^ b

�
_ ā _ b̄ .

It is well known, and the reader will have no di�culty in seeing it, that the
size of cut-free sequent proofs of Sn grows exponentially with n. The structural
reason is that the external connectives in formulae force repeated duplication
of the context. Let us see what happens if we could just access connectives
immediately below the external ones.

and so on…

In the cut-free sequent calculus proofs grow exponentially.



Analyticity costs much less (2)

Open deduction proof of S1:For S1 we have a trivial cut-free proof in SKS:

t�������i#,s

(a ^ b) _ ā _ b̄

=

t
i# �����

a _ ā
^

t
i# �����

b _ b̄
s ���������������������

[a _ ā] ^ b
s �����������
(a ^ b) _ ā

_ b̄

.

For S2 we can obtain:

t�������i#,s

t����i#,s

(c ^ d) _ c̄ _ d̄
^ a ^

t����i#,s

(c ^ d) _ c̄ _ d̄
^ b

�������s

(c ^ d) _ (c ^ d)����c#,m

c ^ d

_
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄

Here we see how the external atoms c and d are ‘brought inside’ the tautology
and two proofs similar to those for S1 are performed inside a conjunction inside
the external disjunction.

Finally, in Figure 1 we can see a proof of S3, where the above principle
is repeated and clearly gives rise to a sequence of proofs for Sn that grows
polynomially over n instead of exponentially.

5 Trends and Open Problems

The future of deep inference tends towards proof complexity, combinatorics and
the study of proofs via algebraic topology. One of the most important open
problems that deep inference intends to solve is that of the identity of proofs
(sometimes called Hilbert’s 24th problem [26]); this is related to the equally
open problem of the identity of algorithms [1].

References

1. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms
the same? Technical Report MSR-TR-2008-20, Microsoft Research, 2008.



Analyticity costs much less (3)
Open deduction proof of S2:

For S1 we have a trivial cut-free proof in SKS:

t�������i#,s

(a ^ b) _ ā _ b̄

=

t
i# �����

a _ ā
^

t
i# �����

b _ b̄
s ���������������������

[a _ ā] ^ b
s �����������
(a ^ b) _ ā

_ b̄

.

For S2 we can obtain:

t�������i#,s

t����i#,s

(c ^ d) _ c̄ _ d̄
^ a ^

t����i#,s

(c ^ d) _ c̄ _ d̄
^ b

�������s

(c ^ d) _ (c ^ d)����c#,m

c ^ d

_
�⇥

c̄ _ d̄
⇤
^ a ^

⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄

Here we see how the external atoms c and d are ‘brought inside’ the tautology
and two proofs similar to those for S1 are performed inside a conjunction inside
the external disjunction.

Finally, in Figure 1 we can see a proof of S3, where the above principle
is repeated and clearly gives rise to a sequence of proofs for Sn that grows
polynomially over n instead of exponentially.

5 Trends and Open Problems

The future of deep inference tends towards proof complexity, combinatorics and
the study of proofs via algebraic topology. One of the most important open
problems that deep inference intends to solve is that of the identity of proofs
(sometimes called Hilbert’s 24th problem [26]); this is related to the equally
open problem of the identity of algorithms [1].

References

1. Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms
the same? Technical Report MSR-TR-2008-20, Microsoft Research, 2008.



Analyticity costs much less (4)
Open deduction proof of S3:

t����������i#,s

t�����i#,s

(c ^ d) _ c̄ _ d̄

^ a ^
t�����i#,s

(c ^ d) _ c̄ _ d̄

^ b

����������s

(c ^ d) _ (c ^ d)�����c#,m

t�����i#,s

(e ^ f) _ ē _ f̄

^ c ^
t�����i#,s

(e ^ f) _ ē _ f̄

^ d

_

0
B@

t�����i#,s

(e ^ f) _ ē _ f̄

^
⇥
c̄ _ d̄

⇤
^ a ^

t�����i#,s

(e ^ f) _ ē _ f̄

^
⇥
c̄ _ d̄

⇤
^ b

1
CA

����������s

(e ^ f) _ (e ^ f) _ (e ^ f) _ (e ^ f)�����c#,m

e ^ f

_
�⇥

ē _ f̄
⇤
^ c ^

⇥
ē _ f̄

⇤
^ d

�
_
�⇥

ē _ f̄
⇤
^
⇥
c̄ _ d̄

⇤
^ a ^

⇥
ē _ f̄

⇤
^
⇥
c̄ _ d̄

⇤
^ b

�

_ ā _ b̄
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In open deduction analytic Statman proofs grow polynomially.



Open deduction and proof complexity (size)

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:
• deep-inference proof systems are as powerful as Frege ones, even when both are

extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.
These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

op. ded. +
extension

op. ded. +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

op. ded.

Gentzen

open

2

Cook-
Reckhow ’74

cut-free
op. ded.

cut-free
Gentzen

Brünnler
’041×

Statman ’78×

open

The notation " # indicates that formalism " polynomially simulates formalism
# ; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: March 15, 2010.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.
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−→ = ‘polynomially simulates’.

Open deduction:
I in the cut-free case, thanks to deep inference, has an exponential

speed-up over the cut-free sequent calculus (e.g., over Statman
tautologies)—1, see [6];

I has as small proofs as the best formalisms—2, 3, 4, 5, see [6];
I thanks to dagness, has quasipolynomial cut elimination (instead of

exponential) [7, 15].
I CUT FREE DEEP INFERENCE OUTPERFORMS THE CUT FREE

SEQUENT CALCULUS.



Open deduction and proof search complexity

Unconstrained bottom-up formula-driven proof search has horrendous
complexity due to deep inference, because every connective can make
the search tree branch.

However:

1. Das proved that in the presence of distributivity, a depth 2 proof
system polynomially simulates any unbounded depth proof system
[8]. This means that a very moderate increase of nondeterminism
buys exponentially smaller proofs.

2. Focusing techniques should be facilitated by the more liberal proof
composition.

3. In particular it should be possible to confine the search inside small
sub-spaces of canonical proofs.

4. THE SEQUENT CALCULUS WAS DESIGNED TO MAKE PROOF
SEARCH FINITE, NOT NECESSARILY TO MAKE IT EFFICIENT.



Normalisation Phase 1: Reduction of cut to
atomic form

Apply repeatedly—and locally:

[A ∨ B] ∧ Ā ∧ B̄
i↑ −−−−−−−−−−−−−−−

f
=

[A ∨ B] ∧ B̄
s −−−−−−−−−−−
A ∨ (B ∧ B̄)

∧ Ā

s −−−−−−−−−−−−−−−−−−−−−
A ∧ Ā

i↑ −−−−−
f

∨
B ∧ B̄

i↑ −−−−−
f

Proof complexity does not increase!



Normalisation Phase 2: Splitting

Theorem (Splitting) For every proof
t∥∥∥

K{A ∧ B}
there are proofs

KA ∨ KB ∨ { }∥∥∥
K{ }

t∥∥∥
KA ∨ A

t∥∥∥
KB ∨ B

An alike theorem holds for every logic expressed in deep inference so
far (including logics that for Gentzen theory are hopeless).



Splitting for an atomic cut

Therefore for every cut-free proof
t∥∥∥

K{a ∧ ā}
there are cut-free proofs

K′{ā} ∨ K′′{a} ∨ { }∥∥∥
K{ }

t∥∥∥
K′{ā} ∨ a

t∥∥∥
K′′{a} ∨ ā

and so we can build

t
i↓ −−−−−−−−−−−−−−−−−−−−

a∥∥∥
K′{ā}

∨
ā∥∥∥

K′′{a}∥∥∥
K{f}

and a cut at the bottom would be admissible.



Cut elimination
by ‘experiments’
(for logics with
contraction)

Experiment
over a proof:

TEST

ALESSIO GUGLIELMI

ā

a

a

 
!

 f !
a ^ ā
"

t ^ f

ā _ a
#

f _ a

Date: September 24, 2013.
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We do:

TEST

ALESSIO GUGLIELMI

ā

a

a

 
!

 f !
a ^ ā
"

t ^ f

ā _ a
#

f _ a

↵

B

proof with n cuts

�!
A1

↵1

B

· · ·
A2n

↵2n

B

B

cut-free proof

 many identities

 all assignments

 W
‘experiments’

 many contractions

Date: September 24, 2013.
1

I Simple, exponential cut elimination;
I 2n experiments, where n is the number of atoms;
I fairly syntax independent method.

The secret of success is in the proof composition mechanism.

WHY IS THIS IMPOSSIBLE IN THE SEQUENT CALCULUS?



System BV

BV = MLL + self-dual noncommutative operator [9, 22]:

I Equations:

A � B = Ā O B̄ A O B = Ā � B̄ A / B = Ā / B̄

A � (B � C) = (A � B) � C
A / 〈B / C〉 = 〈A / B〉 / C
A O [B O C] = [A O B] O C

A � B = B � A A O B = B O A

A � ◦ = A / ◦ = ◦ / A = A O ◦ = A

I Rules:

a � ā
i↑ −−−−−
◦

〈A / B〉 � 〈C / D〉
q↑ −−−−−−−−−−−−−−−−−−

(A � C) / (B � D)

◦
i↓ −−−−−

a O ā

A � [B O C]
s −−−−−−−−−−−−

(A � B) O C

[A O C] / [B O D]
q↓ −−−−−−−−−−−−−−−−−
〈A / B〉 O 〈C / D〉



Tiu’s counterexample:
BV is not expressible in Gentzen

Graphical representation of a proof in BV:

Properties of a Logical System in the Calculus of Structures 5

presented graphically as follows:

·
·

a b

·
c

·
·

·
ā

·
b̄ c̄

·
·

.

All the dual atoms in this structure can be made into communication by identifying two time points
between two structures connected by a par. We can “prove” the structure in the following way:

·
·

a b

·
c

·
·

·
ā

·
b̄ c̄

·
·

=⇒

·
·
a

b

c

·
·

·
ā

·
b̄ c̄

·
·

=⇒

·
·
a

b

c

·
·

·
ā

b̄

c̄

·
·

=⇒

·
a ā

··
·
b

c

·

·
b̄

c̄

·
·

=⇒

·
a ā

··
b

·

b̄

··
c

·
c̄

·

=⇒

·
b

·

b̄

··
c

·
c̄

·

=⇒
·

c

·
c̄

·
=⇒ ◦

The proof above has a certain interesting property. The substructures [a, b] and [b̄, c̄] in S0 above
must decide their temporal relations first, before the proof can proceed. Let us see what happens if we
identify the time points outside those two substructures:

·
a

·
b ā

··
c

·

b̄ c̄

·

.

The structure now is no longer provable because now b comes before b̄ and can no more communicate.
There are several other possibilities not shown here, but none of them leads to a proof. Thus the structure
[⟨[a, b]; c⟩, ⟨ā; [b̄, c̄]⟩] is provable if we change either [a, b] to ⟨a; b⟩ or [b̄, c̄] to ⟨b̄; c̄⟩ first. Now, the crucial
part of establishing the counterexample is that we can delay this changing of temporal relation between
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We can build a growing fractal of growing depth; the next step is:
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·

·

·

a1 a b1

·

c1

·

·

·

ā1

·

b̄1 b c̄1

·

··

c̄

·

·

·

ā

·

·

a2 b̄ b2

·

c2

·

·

·

ā2

·

b̄2 c̄ c̄2

·

··

·

Fig. 2 Graphical representation of the structure S1

a and b (or b̄ and c̄) by nesting them inside other S0 structures:

·
·

a1 a b1

·
c1

·
·

·
ā1

·
b̄1 b c̄1

·
·

and

·
·

a2 b̄ b2

·
c2

·
·

·
ā2

·
b̄2 c̄ c̄2

·
·

The one step nesting of S0 produces the structure S1 shown in Figure 2. We are now forced to change
the relation [a1, b1, a] to ⟨a1; b1; a⟩ before we can change the temporal relation between a and b. This
process of nesting of substructures of a certain S0 structure inside other S0 structures can be repeated
to generate larger and larger provable structures with the same property: their proofs must start by
changing the innermost redexes. Given a particular shallow system with a certain depth, we are then
able to produce a structure such that its innermost redexes are beyond the depth of the shallow rules
in the system, and thus establish the proof that no shallow system can be equivalent to BV . Of course,
this is a rather simplified explanation. The formal proof in Section 5 will use a different representation,
but the principle is still the same.

This paper is organised as follows. Section 2 covers some basic definitions concerning structures.
In Section 3, a representation of structures, called trace, is introduced. It was originally developed to
give semantics to System BV . In fact, System BV was discovered through this semantics [4]. Section
4 introduces System BV along with a partial characterisation of its provable structures. The formal
proof of the deep-nesting property, based on traces, is given in Section 5. This paper ends with some
conclusions and suggestions for further developments.

…and each of its cut-free proofs has to start deeper inside.
THEREFORE BV CANNOT BE CAPTURED BY SHALLOW INFERENCE!



Splitting for BV

Theorem (Splitting) For every proof
◦∥∥∥

K{A � B}
there are proofs

KA O KB O { }∥∥∥
K{ }

◦∥∥∥
KA O A

◦∥∥∥
KB O B

and for every proof
◦∥∥∥

K{A / B}
there are proofs

〈KA / KB〉 O { }∥∥∥
K{ }

◦∥∥∥
KA O A

◦∥∥∥
KB O B

Splitting recovers Gentzen’s notion of analyticity without imposing it on
the meta-level of the formalism.



(Personal) perspectives

I Formalism B: proof theory and proof complexity together in a
formalism which is by design as powerful as Frege + substitution.

I Reasonable solution to the proof identity problem [21].

I Logical interpretation of expressive process algebras.

I Typing and compiling optimal functional computations [13].
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Towards planning as concurrency.
In M. Hamza, editor, Artificial Intelligence and Applications (AIA), pages 197–202. ACTA Press, 2005.

[17] L. Roversi.
Linear lambda calculus and deep inference.
In L. Ong, editor, Typed Lambda Calculi and Applications, volume 6690 of Lecture Notes in Computer Science, pages 184–197.
Springer-Verlag, 2011.

[18] L. Roversi.
A deep inference system with a self-dual binder which is complete for linear lambda calculus.
Journal of Logic and Computation, 2014.
To appear.

[19] L. Straßburger.
Linear Logic and Noncommutativity in the Calculus of Structures.
PhD thesis, Technische Universität Dresden, 2003.

[20] L. Straßburger.
From deep inference to proof nets via cut elimination.
Journal of Logic and Computation, 21(4):589–624, 2011.

[21] R. Thiele.
Hilbert’s twenty-fourth problem.
American Mathematical Monthly, 110:1–24, 2003.

[22] A. Tiu.
A system of interaction and structure II: The need for deep inference.
Logical Methods in Computer Science, 2(2):4:1–24, 2006.


	Deep inference: Free composition of proofs
	Normalisation Phase 1: Reduction of cut to atomic form
	Normalisation Phase 2: Splitting
	Substructural example: The noncommutative linear logic BV
	Perspectives

