Some Ideas on How to Find Better Proof Representations

Alessio Guglielmi

University of Bath

26 November 2010

This talk is available at http://cs.bath.ac.uk/ag/t/Hilb24.pdf. It requires Acrobat 9 or later.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Dream

The Dream

- No syntax, no symbols, no words.
- An alien could understand this proof.
- Is something like this possible for every proof?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Reality

```
Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
move=> Het /=; set cprr := ctree_pick_rev_rec.
case Det1: (cprr _ _ t1) => [|e1 et1].
case Det2: (cprr _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.
```


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 100s of similar pieces in the four colour theorem proof in Coq.
- Syntactic object with a lot of arbitrary choice: bureaucracy.

The Reality

```
Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
move=> Het /=; set cprr := ctree_pick_rev_rec.
case Det1: (cprr _ _ t1) => [[e1 et1].
case Det2: (cprr _ t2) => [[e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.
```


- ▶ 100s of similar pieces in the four colour theorem proof in Coq.
- Syntactic object with a lot of arbitrary choice: bureaucracy.

Questions:

- How do we determine whether two proofs are 'the same'?
- Can we free proofs from the idiosyncrasies of language?

We conserve the existing proof theory properties

Gentzen's major breakthrough (1930s):

- proofs can be analytic, i.e., built in finitary ways,
- by horribly expensive algorithms,
- that nonetheless allow us to control and analyse them.

We conserve the existing proof theory properties

Gentzen's major breakthrough (1930s):

- proofs can be analytic, *i.e.*, built in finitary ways,
- by horribly expensive algorithms,
- that nonetheless allow us to control and analyse them.

$$\begin{array}{c} \bigvee_{\mathsf{RL}} \frac{a \vdash a}{\sum_{\mathsf{L}} \frac{a \vdash a \land (a \supset \bot)}{a, (a \lor (a \supset \bot)) \supset \bot \vdash \bot}} \\ \bigvee_{\mathsf{RR}} \frac{a \vdash a \lor (a \supset \bot)}{a, (a \lor (a \supset \bot)) \supset \bot \vdash \bot} \\ \bigvee_{\mathsf{RR}} \frac{a \lor (a \supset \bot), (a \lor (a \supset \bot)) \supset \bot \vdash \bot}{a \supset \bot, (a \lor (a \supset \bot)) \supset \bot \vdash \bot} \\ \sum_{\mathsf{R}} \frac{a \lor (a \supset \bot), (a \lor (a \supset \bot)) \supset \bot \vdash \bot}{a \lor (a \supset \bot) \supset \bot \vdash \bot} \end{array}$$

We conserve the existing proof theory properties

Gentzen's major breakthrough (1930s):

- proofs can be analytic, i.e., built in finitary ways,
- by horribly expensive algorithms,
- that nonetheless allow us to control and analyse them.

$$\begin{array}{c} \bigvee_{\mathsf{RL}} \frac{a \vdash a}{a \vdash a \lor (a \supset \bot)} & a, \bot \vdash \bot \\ \supset_{\mathsf{L}} \frac{a}{a \land (a \lor (a \supset \bot)) \supset \bot \vdash \bot} \\ \bigvee_{\mathsf{R}} \frac{a \lor (a \supset \bot)) \supset \bot \vdash \bot}{a \supset \bot \land (a \lor (a \supset \bot)) \supset \bot \vdash \bot} \\ \sum_{\mathsf{R}} \frac{a \lor (a \supset \bot), (a \lor (a \supset \bot)) \supset \bot \vdash \bot}{a \supset \bot, (a \lor (a \supset \bot)) \supset \bot \vdash \bot} \\ \end{array}$$

But Gentzen

- only knew classical logic, which is poor for algorithms;
- only wanted finiteness, while we want more: efficiency;
- had no idea of proof complexity.

... while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).

... while we keep proof complexity under control, ... Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

... while we keep proof complexity under control, ... Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all 'simple' $\underset{\mathsf{coNP}}{\leftrightarrow} \mathsf{NP}$

where 'simple' = verifiable in polynomial time over the size of the proved formula.

... while we keep proof complexity under control, ... Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all 'simple' $\underset{\textrm{coNP}}{\leftrightarrow}$ NP

where 'simple' = verifiable in polynomial time over the size of the proved formula.

So:

we want to keep proof size low (and possibly making it lower),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

but not too low (otherwise we don't have proof systems).

... and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!

... and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!

We want proof systems whose inference steps are verifiable in constant time.

Example ('atomic cocontraction'):

$$m \frac{\frac{a}{a \wedge a} \vee \frac{b}{b \wedge b}}{[a \vee b] \wedge [a \vee b]} \wedge \frac{a}{a \wedge a}$$

We call this property locality.

Problem: Are Two Given Proofs the Same?

- First formulated by Hilbert in 1900 [Thiele(2003)].
- Solutions depend on given criteria of 'sameness'.
- Solution:

criterion \rightarrow decision procedure .

- Gentzen proof theory is not adequate precisely because its proofs are too coarse.
- So, the problem is embarrassingly open (but not for long, thanks to locality).

Problem: Are Two Given Proofs the Same?

- First formulated by Hilbert in 1900 [Thiele(2003)].
- Solutions depend on given criteria of 'sameness'.
- Solution:

criterion \rightarrow decision procedure .

- Gentzen proof theory is not adequate precisely because its proofs are too coarse.
- So, the problem is embarrassingly open (but not for long, thanks to locality).

BTW: Are two given algorithms the same?

Attempt in Gentzen Theory

$ \begin{array}{c} \operatorname{id} & \operatorname{id} & \operatorname{id} + a, a^{\perp} \\ \otimes & \operatorname{id} & \operatorname{id} + a, a^{\perp} \\ & \overline{\gamma} & \operatorname{id} + a^{\perp} \otimes (a \otimes a), a^{\perp} \\ & \operatorname{exch} & \operatorname{id} + \overline{\gamma} (a \otimes a), a^{\perp} \\ & \operatorname{exch} & \operatorname{id} + \overline{\gamma} (a \otimes a), a, a^{\perp} \otimes a^{\perp}, a \\ & \overline{\gamma} & \operatorname{id} + \overline{\gamma} (a \otimes a), a, a^{\perp} \otimes a^{\perp} \end{array} $	$ \begin{array}{c} \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{i} a^{\perp}, a \\ \otimes & \operatorname{exch} & \operatorname{id} & \operatorname{id} a^{\perp}, a \\ & \operatorname{exch} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} & \operatorname{id} \\ & \operatorname{id} \\ & & \operatorname{id} & \operatorname$	$ \begin{array}{c} \operatorname{id} & \operatorname{id} \\ & \stackrel{-a^{\perp},a}{\leftarrow} & \operatorname{id} \\ & \stackrel{-a^{\perp},a \otimes a,a^{\perp}}{\leftarrow} \\ & \operatorname{exh} & \stackrel{-a^{\perp},a \otimes a,a^{\perp}}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp},a \otimes a,a^{\perp}}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp}}{\leftarrow} & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a \otimes a}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp} \otimes a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp} \otimes a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \operatorname{exh} & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},a^{\perp},g(a \otimes a)}{\leftarrow} \\ & \stackrel{-a^{\perp},a^{\perp}$
$^{\circ} \vdash a^{\perp} \otimes (a \otimes a), a \otimes (a^{\perp} \otimes a^{\perp})$	$^{\circ} \vdash a^{\perp} \otimes (a \otimes a), a \otimes (a^{\perp} \otimes a^{\perp})$	$\vdash a^{\perp} \otimes (a \otimes a), a \otimes (a^{\perp} \otimes a^{\perp})$
Ļ	Ļ	1

Picture taken from [Straßburger(2006)]

- ▶ From 'different' proofs we get proof nets [Girard(1987)],
- but they are too small (they probably are not a proof system).

Deep Inference and Atomic Flows (A Better Attempt)

- Top row: deep inference proofs.
- Bottom row: (atomic) flows, extracted from the proofs above.
- Proofs composed by logical connectives: this yields locality.
- Atomic flows: logical info is lost and structural is kept.
- Flow size is polynomially related to derivation size.

See [Guglielmi & Gundersen(2008)].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conjecture: (*) is a proof system.

Conjecture: (*) is a proof system.

- This means that there should exist a polynomial algorithm to check the correctness of (*).
- If this is true, we have an excellent bureaucracy-free formalism.
- ▶ Note: if this were true of proof nets, then coNP = NP.

Overview of Deep Inference Proof Systems

Started in 1999. All info in [Guglielmi(2010)].

There are now deep-inference proof systems for all logics:

- classical and intuitionistic;
- ▶ modal;
- linear;
- commutative, noncommutative and mixed.

Locality can be achieved for all of these, and only in deep inference.

Elimination of Bureaucracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eliminate bureaucracy = find 'something' at the crossing.

Are We Doing OK with Proof Complexity?

Short answer: yes.

→ means 'polynomially simulates'

(日)、

э

Are We Doing OK with Proof Complexity?

Short answer: yes.

 \longrightarrow means 'polynomially simulates'

Deep inference has as small proofs as the best proof systems do $\ensuremath{\mathsf{and}}$

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones

See

[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Example of Proof Manipulation on Atomic Flows ...

φ

3

4

Even if there is a path between 1 and 3 on the left, there is none on the right (and the same for 2 and 4).

... and the Corresponding Proofs

Only geometrical/topological structure matters.

Finding something like this is unthinkable without locality and atomic flows.

イロト イポト イヨト イヨト æ

Summary

Finding better ways of representing proofs

The dream: proofs without unnecessary detail and even syntax The reality: lots of unnecessary detail and syntax Strategy: remove bureaucracy by keeping the good properties

The problem of proof identity

Exploiting locality

Deep inference and atomic flows Eliminating bureaucracy in geometric proof systems Using geometry to manipulate proofs

Impact?

Impact

Wouldn't it be nice if all of maths (\approx 100,000,000 pages) were represented as a semantic database?

We could:

- trust proofs (because they are automatically verified);
- access proofs at different abstraction levels (detail, just the idea, etc.);
- produce proofs by delegating routine tasks to the computer (with artificial intelligence?);

▶ ...

All fields of science will benefit.

Impact

Wouldn't it be nice if all of maths (\approx 100,000,000 pages) were represented as a semantic database?

We could:

- trust proofs (because they are automatically verified);
- access proofs at different abstraction levels (detail, just the idea, etc.);
- produce proofs by delegating routine tasks to the computer (with artificial intelligence?);

▶ ...

All fields of science will benefit.

This will happen and it will be a **REVOLUTION**.

References

Bruscoli, P., Guglielmi, A., Gundersen, T., & Parigot, M. (2009).

 $\label{eq:Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae. \\ \\ http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf.$

Cook, S., & Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version). In Proceedings of the 6th annual ACM Symposium on Theory of Computing, (pp. 135–148). ACM Press.

Girard, J.-Y. (1987).

Linear logic. Theoretical Computer Science, 50, 1–102.

Guglielmi, A. (2010).

Deep inference. Web site at http://alessio.guglielmi.name/res/cos.

Guglielmi, A., & Gundersen, T. (2008).

Normalisation control in deep inference via atomic flows. Logical Methods in Computer Science, 4(1:9), 1-36. http://www.lmcs-online.org/ojs/viewarticle.php?id=341.

Straßburger, L. (2006).

Proof nets and the identity of proofs. Tech. Rep. 6013, INRIA. http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf.

Thiele, R. (2003).

Hilbert's twenty-fourth problem. American Mathematical Monthly, 110, 1–24.