Some Ideas on How to Find
Better Proof Representations

Alessio Guglielmi
University of Bath

26 November 2010

This talk is available at http://cs.bath.ac.uk/ag/t/Hilb24.pdf.
It requires Acrobat 9 or later.

http://cs.bath.ac.uk/ag/t/Hilb24.pdf

The Dream

The Dream

» No syntax, no symbols, no words.
» An alien could understand this proof.

> Is something like this possible for every proof?

The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_ pick rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.
move=> Het /=; set cprr := ctree_pick rev_rec.
case Detl: (cprr _ _ _ tl) => [|el etl].

case Det2: (cprr _ _ _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_ pick rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.
move=> Het /=; set cprr := ctree_pick rev_rec.
case Detl: (cprr _ _ _ tl) => [|el etl].

case Det2: (cprr _ _ _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

Questions:
» How do we determine whether two proofs are ‘the same'?

» Can we free proofs from the idiosyncrasies of language?

Strategy:

We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
> by horribly expensive algorithms,

> that nonetheless allow us to control and analyse them.

Strategy:

We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
> by horribly expensive algorithms,

> that nonetheless allow us to control and analyse them.

aka LlyabL

" ad>l,ak L

Dg——//™™

ata adlbFadl
“aFav(@>dl) elFl Tadltav(edl) adl,lFL

\;a,(a\/(uDL))DLFL " aedL,(@v(@dLl)>Llk L
- S aV(adl),(aV(@d>L)>LFL
fav@d> Dk ((av@d>L)>1)>L

RI

Strategy:
We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
> by horribly expensive algorithms,

> that nonetheless allow us to control and analyse them.

aka LlyabL

" ad>l,ak L

Dg——//™™

ata adlbFadl
“aFav(@>dl) elFl Tadltav(edl) adl,lFL
\;a,(a\/(uDL))DLFL " aedL,(@v(@dLl)>Llk L

- S aV(adl),(aV(@d>L)>LFL

fav@d> Dk ((av@d>L)>1)>L

RI

But Gentzen
» only knew classical logic, which is poor for algorithms;
» only wanted finiteness, while we want more: efficiency;

» had no idea of proof complexity.

Strategy:
. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).

Strategy:
. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Strategy:
. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
>
coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

Strategy:
. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
>
coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:
> we want to keep proof size low (and possibly making it lower),

» but not too low (otherwise we don’t have proof systems).

Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!

Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’): aha bAb A —
mo TR
v DT av D]

We call this property locality.

Problem: Are Two Given Proofs the Same?

» First formulated by Hilbert in 1900 [Thiele(2003)].
» Solutions depend on given criteria of ‘sameness’.

» Solution:
criterion — decision procedure

» Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

» So, the problem is embarrassingly open (but not for long,
thanks to locality).

Problem: Are Two Given Proofs the Same?

» First formulated by Hilbert in 1900 [Thiele(2003)].
» Solutions depend on given criteria of ‘sameness’.

» Solution:
criterion — decision procedure

» Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

» So, the problem is embarrassingly open (but not for long,
thanks to locality).

BTW: Are two given algorithms the same?

Attem pt Zm T

Fat,a®a,at

. G ¥ Fals@eae “Tala
In entzen oxch Falg(a®a),al @at,a

id
®

A
Fal,a Fa,at

id—— id——
Fa,at Fala Fat,a®a,at
=L exch
tha ®at,a a - Fat,at,a®a

exch ———— id— —_—

Faaat @at Fa,al Fal,al Ba®a)

a—
T e PTaas@ied) Faal@al.al saga)

Fatpa®a),a,at @at

s ag(at @at),al w(a®@a)
exch ———— 2" 20
Falg(@®a),as(at ®at)

Fal,a®a,a®(at @at)

e Bla®a),a®(at @at)

Theory f

e B(a®a),a(at @at)

(@®a).d
k= rli B(E®4), r[’?(&* &i)

1
QN 2
AR ~
SN\ &

e
r—/i)g(/x/),a/*s(xixli)

@ a4 ol a
N/ N/
® ®
7 ~
® ®

A)

QL A/

pAw(X@X)Yx’?(Xi@X#) F A B(a®), a5 1)
4 +

Picture taken from [StraBburger(2006)]

» From ‘different’ proofs we get proof nets [Girard(1987)],
» but they are too small (they probably are not a proof system).

Deep Inference and Atomic Flows (A Better Attempt)

t
t a/\|:dv :|
v
ava s———————————— ,
m— av Aa a b
VE|A [tV an — a
_lavelafeva] v prvAL v
vt] A A —_— A
s[a] a ; ana m[av TGV] a
aha Vot = =
—Vt ana
f an

= &‘%J A

Top row: deep inference proofs.

v

v

Bottom row: (atomic) flows, extracted from the proofs above.

v

Proofs composed by logical connectives: this yields locality.

v

Atomic flows: logical info is lost and structural is kept.

v

Flow size is polynomially related to derivation size.

See [Guglielmi & Gundersen(2008)].

Conjecture peeee

)

PRooF
NET %

Conjecture: (*) is a proof system.

Conjecture peeee

)

PRooF
NET %

Conjecture: (*) is a proof system.

» This means that there should exist a polynomial algorithm to
check the correctness of (*).

> If this is true, we have an excellent bureaucracy-free
formalism.

» Note: if this were true of proof nets, then coNP = NP.

Overview of Deep Inference Proof Systems

Started in 1999. All info in [Guglielmi(2010)].

There are now deep-inference proof systems for all logics:
» classical and intuitionistic;
» modal;
> linear;

» commutative, noncommutative and mixed.

Locality can be achieved for all of these, and only in deep inference.

Elimination of Bureaucracy

DEEP INPERENCLE
[}

L i T4 E—
f Flows |
REGE Seuenr
HicseeT CALLuwS G ? (';,‘g‘g
SﬂNTAX TS — —e \4" —¢ SEMANTICS
L ! r
PROOF THEORY
NORMALISATION!
(
PRoOF S4STEmS |, w~OT PROOF SYSTEMS

Eliminate bureaucracy = find ‘something’ at the crossing.

Are We Doing OK with Proof

_ open_

Complexity?

a0

analytic Cos

CS

/ Iz
—
Briinnler F — open
1% o rege -
Cook-
Statman '78 Reckhow 74
. X
analytic —
Gentzen
Gentzen _

CoS +

< substitution
4

CoS +

extension

Kraji¢ek-Pudlik 89
Frege+ — — Frege+

extension — substitution

Cook-Reckhow 79

Short answer: yes.

—— means ‘polynomially simulates’

Are We Doing OK with Proof Complexity?

_ open_

analytic =~
Cos O CoS + CoS +
extension — substitution
n— — >
Briinnler — Open R
1% 04 Frege 3 5 *
~ |
Cook- Krajitek-Pudlik *89
> e
Statman ‘78 Reckhow 74 Frege + Frege +
analytic — Gents extension — substitution
Gentzen entzen Cool-Reckhow '79
-~

ShOI’t answer: yeS_ —— means ‘polynomially simulates’

Deep inference has as small proofs as the best proof systems do
and

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones

See
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Example of ” i ”
Proof Manipulation A : : A
on Atomic Flows . .. 4 ¥
31 4
[]2 | DES
¢ ¢ _ ¢ ¢
I v
| Tz
[¢
| |
Y Y
| 3 |

Even if there is a path between 1 and 3 on the left, there is none
on the right (and the same for 2 and 4).

and the Corresponding Proofs

[avalrna <|:£W{|Aa>
o= | — Break® = | |£ v o] |1
o]
f
PG
) Bv(ana)
ﬁvgvﬂv(u/\d)

Only geometrical /topological structure matters.

Finding something like this is unthinkable without locality and
atomic flows.

One More Example (Two Pieces)

(11 T
:
[I T L[
|

; |
W_FJ\ 11 711
JniRinneR:
]
A A 1
sl
| LI | LI [LI

Summary

Finding better ways of representing proofs
The dream: proofs without unnecessary detail and even syntax
The reality: lots of unnecessary detail and syntax
Strategy: remove bureaucracy by keeping the good properties

The problem of proof identity
Exploiting locality
Deep inference and atomic flows
Eliminating bureaucracy in geometric proof systems

Using geometry to manipulate proofs

Impact?

Impact

Wouldn't it be nice if all of maths (=~ 100,000,000 pages) were
represented as a semantic database?
We could:

» trust proofs (because they are automatically verified);

» access proofs at different abstraction levels (detail, just the
idea, etc.);

» produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

All fields of science will benefit.

Impact

Wouldn't it be nice if all of maths (=~ 100,000,000 pages) were
represented as a semantic database?

We could:
» trust proofs (because they are automatically verified);

» access proofs at different abstraction levels (detail, just the
idea, etc.);

» produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

All fields of science will benefit.

This will happen and it will be a REVOLUTION.

O 1 P 1 1 I P

Bruscoli, P., Guglielmi, A., Gundersen, T., & Parigot, M. (2009).

Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae.
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf.

Cook, S., & Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).
In Proceedings of the 6th annual ACM Symposium on' Theory of Computing, (pp. 135-148). ACM Press

Girard, J.-Y. (1987).

Linear logic.

Theoretical Computer Science, 50, 1-102.

Guglielmi, A. (2010).

Deep inference.

Web site at http://alessio.guglielmi.name/res/cos
Guglielmi, A., & Gundersen, T. (2008).

Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1:9), 1-36
http://www.lncs-online.org/ojs/viewarticle.php?id=341

StraBburger, L. (2006).

Proof nets and the identity of proofs.
Tech. Rep. 6013, INRIA.
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf

Thiele, R. (2003).

Hilbert's twenty-fourth problem.
American Mathematical Monthly, 110, 1-24.

References

http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://alessio.guglielmi.name/res/cos
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf

	Finding better ways of representing proofs
	The dream: proofs without unnecessary detail and even syntax
	The reality: lots of unnecessary detail and syntax
	Strategy: remove bureaucracy by keeping the good properties

	The problem of proof identity
	Exploiting locality
	Deep inference and atomic flows
	Eliminating bureaucracy in geometric proof systems
	Using geometry to manipulate proofs

	Impact?

