
Some Ideas on How to Find
Better Proof Representations

Alessio Guglielmi

University of Bath

26 November 2010

This talk is available at http://cs.bath.ac.uk/ag/t/Hilb24.pdf.
It requires Acrobat 9 or later.

http://cs.bath.ac.uk/ag/t/Hilb24.pdf

The Dream

The Dream

I No syntax, no symbols, no words.

I An alien could understand this proof.

I Is something like this possible for every proof?

The Reality
Page 1 of 1untitled text

Printed: 03/05/2009 3 May 14:45:20 Printed For: Alessio Guglielmi

Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
 move=> Het /=; set cprr := ctree_pick_rev_rec.
 case Det1: (cprr _ _ _ t1) => [|e1 et1].
 case Det2: (cprr _ _ _ t2) => [|e2 et2].
 by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
 by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
 by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg

Page 1 of 1

I 100s of similar pieces in the four colour theorem proof in Coq.

I Syntactic object with a lot of arbitrary choice: bureaucracy.

Questions:

I How do we determine whether two proofs are ‘the same’?

I Can we free proofs from the idiosyncrasies of language?

The Reality
Page 1 of 1untitled text

Printed: 03/05/2009 3 May 14:45:20 Printed For: Alessio Guglielmi

Lemma sumt_ctree_pick_rev : forall t t', sumt (ctree_pick_rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t cs0 {1 3}Color0 => [t1 Ht1 t2 Ht2 t3 Ht3|lf _|] et e //.
 move=> Het /=; set cprr := ctree_pick_rev_rec.
 case Det1: (cprr _ _ _ t1) => [|e1 et1].
 case Det2: (cprr _ _ _ t2) => [|e2 et2].
 by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
 by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
 by rewrite -Det1; apply: Ht1; rewrite [Color1]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree_mem t' (etrace (belast e et))).
Qed.

03/05/2009 11:56http://upload.wikimedia.org/wikipedia/commons/8/8a/Four_Colour_Map_Example.svg

Page 1 of 1

I 100s of similar pieces in the four colour theorem proof in Coq.

I Syntactic object with a lot of arbitrary choice: bureaucracy.

Questions:

I How do we determine whether two proofs are ‘the same’?

I Can we free proofs from the idiosyncrasies of language?

Strategy:
We conserve the existing proof theory properties . . .

Gentzen’s major breakthrough (1930s):

I proofs can be analytic, i.e., built in finitary ways,

I by horribly expensive algorithms,

I that nonetheless allow us to control and analyse them.

But Gentzen

I only knew classical logic, which is poor for algorithms;

I only wanted finiteness, while we want more: efficiency;

I had no idea of proof complexity.

Strategy:
We conserve the existing proof theory properties . . .

Gentzen’s major breakthrough (1930s):

I proofs can be analytic, i.e., built in finitary ways,

I by horribly expensive algorithms,

I that nonetheless allow us to control and analyse them.

But Gentzen

I only knew classical logic, which is poor for algorithms;

I only wanted finiteness, while we want more: efficiency;

I had no idea of proof complexity.

Strategy:
We conserve the existing proof theory properties . . .

Gentzen’s major breakthrough (1930s):

I proofs can be analytic, i.e., built in finitary ways,

I by horribly expensive algorithms,

I that nonetheless allow us to control and analyse them.

But Gentzen

I only knew classical logic, which is poor for algorithms;

I only wanted finiteness, while we want more: efficiency;

I had no idea of proof complexity.

Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
↔

coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we don’t have proof systems).

Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
↔

coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we don’t have proof systems).

Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
↔

coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we don’t have proof systems).

Strategy:
. . . while we keep proof complexity under control, . . .

Proof complexity = proof size (for propositional logic).

Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
↔

coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:

I we want to keep proof size low (and possibly making it lower),

I but not too low (otherwise we don’t have proof systems).

Strategy:
. . . and we remove bureaucracy.

Idea: Let’s use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen’s material is too rigid!

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’):

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā

=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We call this property locality.

Strategy:
. . . and we remove bureaucracy.

Idea: Let’s use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen’s material is too rigid!

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’):

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā

=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We call this property locality.

Problem: Are Two Given Proofs the Same?

I First formulated by Hilbert in 1900 [Thiele(2003)].

I Solutions depend on given criteria of ‘sameness’.

I Solution:

criterion → decision procedure .

I Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

I So, the problem is embarrassingly open (but not for long,
thanks to locality).

BTW: Are two given algorithms the same?

Problem: Are Two Given Proofs the Same?

I First formulated by Hilbert in 1900 [Thiele(2003)].

I Solutions depend on given criteria of ‘sameness’.

I Solution:

criterion → decision procedure .

I Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

I So, the problem is embarrassingly open (but not for long,
thanks to locality).

BTW: Are two given algorithms the same?

Attempt
in Gentzen
Theory

Proof Nets and the Identity of Proofs 11

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

"
! a⊥ "(a ! a), a⊥ id

! a⊥, a
!

! a⊥ "(a ! a), a⊥ ! a⊥, a
exch

! a⊥ "(a ! a), a, a⊥ ! a⊥
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! a⊥, a

id
! a, a⊥ id

! a⊥, a
!

! a, a⊥ ! a⊥, a
exch

! a, a, a⊥ ! a⊥
"

! a, a "(a⊥ ! a⊥)
!

! a⊥, a ! a, a "(a⊥ ! a⊥)
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! a, a⊥

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

exch
! a⊥, a⊥, a ! a

"
! a⊥, a⊥ "(a ! a)

!
! a, a⊥ ! a⊥, a⊥ "(a ! a)

"
! a "(a⊥ ! a⊥), a⊥ "(a ! a)

exch
! a⊥ "(a ! a), a "(a⊥ ! a⊥)

↓ ↓ ↓

id
! ⊥,

id
! , ⊥

!
! ⊥, ! , ⊥

"
! ⊥ "(!), ⊥ id

! ⊥,
!

! ⊥ "(!), ⊥ ! ⊥,
exch

! ⊥ "(!), , ⊥ ! ⊥
"

! ⊥ "(!), "(⊥ ! ⊥)

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

"
! a⊥ "(a ! a), a⊥ id

! a⊥, a
!

! a⊥ "(a ! a), a⊥ ! a⊥, a
exch

! a⊥ "(a ! a), a, a⊥ ! a⊥
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! ⊥,

id
! , ⊥ id

! ⊥,
!

! , ⊥ ! ⊥,
exch

! , , ⊥ ! ⊥
"

! , "(⊥ ! ⊥)
!

! ⊥, ! , "(⊥ ! ⊥)
"

! ⊥ "(!), "(⊥ ! ⊥)

id
! a⊥, a

id
! a, a⊥ id

! a⊥, a
!

! a, a⊥ ! a⊥, a
exch

! a, a, a⊥ ! a⊥
"

! a, a "(a⊥ ! a⊥)
!

! a⊥, a ! a, a "(a⊥ ! a⊥)
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! , ⊥

id
! ⊥,

id
! , ⊥

!
! ⊥, ! , ⊥

exch
! ⊥, ⊥, !

"
! ⊥, ⊥ "(!)

!
! , ⊥ ! ⊥, ⊥ "(!)

"
! "(⊥ ! ⊥), ⊥ "(!)

exch
! ⊥ "(!), "(⊥ ! ⊥)

id
! a, a⊥

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

exch
! a⊥, a⊥, a ! a

"
! a⊥, a⊥ "(a ! a)

!
! a, a⊥ ! a⊥, a⊥ "(a ! a)

"
! a "(a⊥ ! a⊥), a⊥ "(a ! a)

exch
! a⊥ "(a ! a), a "(a⊥ ! a⊥)

↓ ↓ ↓

id
! ⊥,

id
! , ⊥

!
! ⊥, ! , ⊥

"
! ⊥ "(!), ⊥ id

! ⊥,
!

! ⊥ "(!), ⊥ ! ⊥,
exch

! ⊥ "(!), , ⊥ ! ⊥
"

! ⊥ "(!), "(⊥ ! ⊥)

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

"
! a⊥ "(a ! a), a⊥ id

! a⊥, a
!

! a⊥ "(a ! a), a⊥ ! a⊥, a
exch

! a⊥ "(a ! a), a, a⊥ ! a⊥
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! ⊥,

id
! , ⊥ id

! ⊥,
!

! , ⊥ ! ⊥,
exch

! , , ⊥ ! ⊥
"

! , "(⊥ ! ⊥)
!

! ⊥, ! , "(⊥ ! ⊥)
"

! ⊥ "(!), "(⊥ ! ⊥)

id
! a⊥, a

id
! a, a⊥ id

! a⊥, a
!

! a, a⊥ ! a⊥, a
exch

! a, a, a⊥ ! a⊥
"

! a, a "(a⊥ ! a⊥)
!

! a⊥, a ! a, a "(a⊥ ! a⊥)
"

! a⊥ "(a ! a), a "(a⊥ ! a⊥)

id
! , ⊥

id
! ⊥,

id
! , ⊥

!
! ⊥, ! , ⊥

exch
! ⊥, ⊥, !

"
! ⊥, ⊥ "(!)

!
! , ⊥ ! ⊥, ⊥ "(!)

"
! "(⊥ ! ⊥), ⊥ "(!)

exch
! ⊥ "(!), "(⊥ ! ⊥)

id
! a, a⊥

id
! a⊥, a

id
! a, a⊥

!
! a⊥, a ! a, a⊥

exch
! a⊥, a⊥, a ! a

"
! a⊥, a⊥ "(a ! a)

!
! a, a⊥ ! a⊥, a⊥ "(a ! a)

"
! a "(a⊥ ! a⊥), a⊥ "(a ! a)

exch
! a⊥ "(a ! a), a "(a⊥ ! a⊥)

↓ ↓ ↓

a⊥ a a a a⊥ a⊥

! !

" "

a⊥ a a a a⊥ a⊥

! !

" "

a⊥ a a a a⊥ a⊥

! !

" "

Figure 2: From sequent calculus to proof nets via coherence graphs

2.3.4 Exercise Reduce in (6) the leftmost instance of id to atomic version. And draw the proof net according
to the method in Figure 1. What does change compared to the net in (9)?

For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing through the
cut, i.e., by keeping the information that there is a cut. What is meant by this is shown in Figure 4.

2.3.5 Exercise Compare the net obtained in Figure 4 with your result of Exercise 2.3.4.

Now, we indeed get the same result with both methods, and it might seem foolish to emphasize the different
nature of the two methods if they yield the same notion of proof net. The point to make here is that this is
the case only for MLL−, which is a very fortunate coincidence. For any other logic, which is more sophisticated,
like classical logic or larger fragments of linear logic, the two methods yield different notions of proof nets. We
will come back to this in later sections when we discuss these logics.

2.4 From deep inference to proof nets

The flow graph method has the advantage of being independent from the formalism that is used for describing
the deductive system for the logic. We will now repeat exactly the same exercise we did for the sequent calculus

RR n 6013

Picture taken from [Straßburger(2006)]

I From ‘different’ proofs we get proof nets [Girard(1987)],

I but they are too small (they probably are not a proof system).

Deep Inference and Atomic Flows (A Better Attempt)

QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 9

t
ai↓

a ∨ ā
=
(a ∧ t) ∨ (t ∧ ā)

m
[a ∨ t] ∧ [t ∨ ā]

=
[a ∨ t] ∧ [ā ∨ t]

s
([a ∨ t] ∧ ā) ∨ t

=
(ā ∧ [a ∨ t]) ∨ t

s
[(ā ∧ a) ∨ t] ∨ t

=
(a ∧ ā) ∨ t

ai↑
f ∨ t

=
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓
[(a ∧ ā) ∨ a] ∧ ā

ai↑
[f ∨ a] ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

[a ∨ b] ∧ a
ac↑
[(a ∧ a) ∨ b] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ a

ac↑
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

m
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t

a ∨ ā
m
[a ∨ t] ∧ [t ∨ ā]

s

[a ∨ t] ∧ ā

s
a ∧ ā

f
∨ t

∨ t

a ∧
*

ā ∨
t

ā ∨ a

+

s

a ∧
ā ∨ ā

ā
f

∨
a

a ∧ a

∧ ā

=

a ∧
a ∧ ā

f

a
a ∧ a

∨
b

b ∧ b
m
[a ∨ b] ∧ [a ∨ b]

∧
a

a ∧ a

FIGURE 2. Examples of derivations in CoS and Formalism A notation,
and associated atomic flows.

the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow φ above could represent flow (2), and, if the centre flow stands for (2),
then flows ψ and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

I Top row: deep inference proofs.

I Bottom row: (atomic) flows, extracted from the proofs above.

I Proofs composed by logical connectives: this yields locality.

I Atomic flows: logical info is lost and structural is kept.

I Flow size is polynomially related to derivation size.

See [Guglielmi & Gundersen(2008)].

Conjecture

Conjecture: (*) is a proof system.

I This means that there should exist a polynomial algorithm to
check the correctness of (*).

I If this is true, we have an excellent bureaucracy-free
formalism.

I Note: if this were true of proof nets, then coNP = NP.

Conjecture

Conjecture: (*) is a proof system.

I This means that there should exist a polynomial algorithm to
check the correctness of (*).

I If this is true, we have an excellent bureaucracy-free
formalism.

I Note: if this were true of proof nets, then coNP = NP.

Overview of Deep Inference Proof Systems

Started in 1999. All info in [Guglielmi(2010)].

There are now deep-inference proof systems for all logics:

I classical and intuitionistic;

I modal;

I linear;

I commutative, noncommutative and mixed.

Locality can be achieved for all of these, and only in deep inference.

Elimination of Bureaucracy

Eliminate bureaucracy = find ‘something’ at the crossing.

Are We Doing OK with Proof Complexity?

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:

• deep-inference proof systems are as powerful as Frege ones, even when both are
extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.

These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

CoS +
extension

CoS +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

CoS

Gentzen

open

2

Cook-
Reckhow ’74

analytic
CoS

analytic
Gentzen

Brünnler
’041×

Statman ’78
×

open

The notation " # indicates that formalism " polynomially simulates formalism
; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: April 19, 2009.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.

1

−→ means ‘polynomially simulates’Short answer: yes.

Deep inference has as small proofs as the best proof systems do
and
it has a normalisation theory
and
its analytic proof systems are more powerful than Gentzen ones

See
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Are We Doing OK with Proof Complexity?

ON THE PROOF COMPLEXITY OF DEEP INFERENCE

PAOLA BRUSCOLI AND ALESSIO GUGLIELMI

ABSTRACT. We obtain two results about the proof complexity of deep inference: 1)
deep-inference proof systems are as powerful as Frege ones, even when both are extended
with the Tseitin extension rule or with the substitution rule; 2) there are analytic deep-
inference proof systems that exhibit an exponential speedup over analytic Gentzen proof
systems that they polynomially simulate.

1. INTRODUCTION

Deep inference is a relatively new methodology in proof theory, consisting in dealing
with proof systems whose inference rules are applicable at any depth inside formulae
[Gug07b]. We obtain two results about the proof complexity of deep inference:

• deep-inference proof systems are as powerful as Frege ones, even when both are
extended with the Tseitin extension rule or with the substitution rule;
• there are analytic deep-inference proof systems that exhibit an exponential speed-

up over analytic Gentzen proof systems that they polynomially simulate.

These results are established for the calculus of structures, or CoS, the simplest formal-
ism in deep inference [Gug07b], and in particular for its proof system SKS, introduced
by Brünnler in [Brü04] and then extensively studied [Brü03a, Brü03b, Brü06a, Brü06d,
BG04, BT01].

Our contributions fit in the following picture.

CoS +
extension

CoS +
substitution

Frege +
extension

Frege +
substitution

!

4

3

Krajíček-Pudlák ’89

!5

Cook-Reckhow ’79

Frege

CoS

Gentzen

open

2

Cook-
Reckhow ’74

analytic
CoS

analytic
Gentzen

Brünnler
’041×

Statman ’78
×

open

The notation " # indicates that formalism " polynomially simulates formalism
; the notation" #× indicates that it is known that this does not happen.

The left side of the picture represents, in part, the following. Analytic Gentzen sys-
tems, i.e., Gentzen proof systems without the cut rule, can only prove certain formulae,
which we call ‘Statman tautologies’, with proofs that grow exponentially in the size of
the formulae. On the contrary, Gentzen systems with the cut rule can prove Statman
tautologies by polynomially growing proofs. So, Gentzen systems p-simulate analytic

Date: April 19, 2009.
This research was partially supported by EPSRC grant EP/E042805/1 Complexity and Non-determinism in

Deep Inference.
c© ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on Computa-
tional Logic 10 (2:14) 2009, pp. 1–34, http://doi.acm.org/10.1145/1462179.1462186.

1

−→ means ‘polynomially simulates’Short answer: yes.

Deep inference has as small proofs as the best proof systems do
and
it has a normalisation theory
and
its analytic proof systems are more powerful than Gentzen ones

See
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].

Example of
Proof Manipulation
on Atomic Flows . . .

14 ALESSIO GUGLIELMI AND TOM GUNDERSEN

where Φ′ exists by Lemma 4.9 and Ψ1 and Ψ2 exist by Lemma 4.11. By studying the
proofs of Lemma 4.9 and Lemma 4.11, we can observe that the derivation has atomic
flow Core(φ). !

Definition 4.15. Given a derivation Φ, the core of Φ obtained as described in the proof
of Theorem 4.14 is called the core of Φ, denoted Core(Φ).

4.2. The Normaliser. We present here the main result of our work, a family of oper-
ators called the ‘normalisers’. Each normaliser is a scheme with variables that we can
instantiate with a derivation. The effect of plugging a derivation into a normaliser is the
same as adding identity and cut instances to the premiss and conclusion of the deriva-
tion, respectively. However, it is done in such a way as to not create any path between
the identity and cut instances we add. It should now be clear how our normalisation
works: the core is obtained by removing identity and cut instances and the normaliser
adds them back, in a way that preserves weak streamlining.

Definition 4.16. The path breaker, Break, is an operator whose arguments are the atom
a and any derivation Φ of the form

[a ∨ ā] ∧α
‖
‖

β ∨ (a ∧ ā)

,

and whose output is

[a ∨ ā] ∧
α

α ∧α ∧α
=

[a ∨ ā] ∧α
Φ
‖
‖
$

β ∨
%

a

t
∧ ā

&' ∧ α ∧ α

s

β ∨

%$

f

a
∨ ā

'

∧α

&

Φ
‖
‖
$

β ∨
%

a ∧
ā

t

&'

∧α

s

β ∨ β ∨

%$

a ∨
f

ā

'

∧α

&

Φ
‖
‖

β ∨ (a ∧ ā)

=
β ∨β ∨β

β
∨ (a ∧ ā)

.

Proposition 4.17. Let the atomic flow of

1

a1 ∨ ā2
2

∧α
Φ
‖
‖

β ∨
3

a3 ∧ ā4
4

be

1 2

φ φ′

3 4

, →

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS II 15

then the atomic flow of

!

a1 ∨ ā2
"

∧α
Break(a,Φ)

‖
‖

β ∨
#

a3 ∧ ā4
$

is

1 2

3′

φ φ′

4′

2′′1′′

4′′

φ φ′

3′′

1′

3 4

2′

φ φ′

,

where all the edges that might be in paths starting with 1 or 2 are colored in red and all the
edges that might be in paths ending with 3 or 4 are colored in green. Note that the red and the
green paths never meet, so there is no path from 1 to 3 or from 2 to 4.

Definition 4.18. For every n ! 0 the normaliser of degree n, Normn , is an operator whose

arguments are the atoms a1, . . . , an and a derivation

α
Φ
‖
‖

β
, such that a1, ā, . . . , an , ān are all

the non-weakly-streamlined atoms inΦ. LetΨ= Break(a1,Break(. . . (Break(an ,Core(Φ))) . . .)),
then Normn(a1, . . . ,an ,Φ) is defined to be

%

t

a1 ∨ ā1

∧ · · · ∧
t

an ∨ ān

∧ α

&

Ψ
‖
‖

'

β ∨
a1 ∧ ā1

f
∨ · · · ∨

an ∧ ān

f

(

.

Theorem 4.19. Given a derivation Φ and all the non-weakly-streamlined atoms a1, ā1,
. . . , an , ān in Φ, the derivation Normn(a1, . . . ,an ,Φ) is weakly streamlined and has the same
premiss and conclusion as Φ.

Proof. !

Even if there is a path between 1 and 3 on the left, there is none
on the right (and the same for 2 and 4).

. . . and the Corresponding Proofs

Φ =

14 ALESSIO GUGLIELMI AND TOM GUNDERSEN

where Φ′ exists by Lemma 4.9 and Ψ1 and Ψ2 exist by Lemma 4.11. By studying the
proofs of Lemma 4.9 and Lemma 4.11, we can observe that the derivation has atomic
flow Core(φ). !

Definition 4.15. Given a derivation Φ, the core of Φ obtained as described in the proof
of Theorem 4.14 is called the core of Φ, denoted Core(Φ).

4.2. The Normaliser. We present here the main result of our work, a family of oper-
ators called the ‘normalisers’. Each normaliser is a scheme with variables that we can
instantiate with a derivation. The effect of plugging a derivation into a normaliser is the
same as adding identity and cut instances to the premiss and conclusion of the deriva-
tion, respectively. However, it is done in such a way as to not create any path between
the identity and cut instances we add. It should now be clear how our normalisation
works: the core is obtained by removing identity and cut instances and the normaliser
adds them back, in a way that preserves weak streamlining.

Definition 4.16. The path breaker, Break, is an operator whose arguments are the atom
a and any derivation Φ of the form

[a ∨ ā] ∧α
‖
‖

β ∨ (a ∧ ā)

,

and whose output is

[a ∨ ā] ∧
α

α ∧α ∧α
=

[a ∨ ā] ∧α
Φ
‖
‖
$

β ∨
%

a

t
∧ ā

&' ∧ α ∧ α

s

β ∨

%$

f

a
∨ ā

'

∧α

&

Φ
‖
‖
$

β ∨
%

a ∧
ā

t

&'

∧α

s

β ∨ β ∨

%$

a ∨
f

ā

'

∧α

&

Φ
‖
‖

β ∨ (a ∧ ā)

=
β ∨β ∨β

β
∨ (a ∧ ā)

.

Proposition 4.17. Let the atomic flow of

1

a1 ∨ ā2
2

∧α
Φ
‖
‖

β ∨
3

a3 ∧ ā4
4

be

1 2

φ φ′

3 4

,

→ Break Φ =

14 ALESSIO GUGLIELMI AND TOM GUNDERSEN

where Φ′ exists by Lemma 4.9 and Ψ1 and Ψ2 exist by Lemma 4.11. By studying the
proofs of Lemma 4.9 and Lemma 4.11, we can observe that the derivation has atomic
flow Core(φ). !

Definition 4.15. Given a derivation Φ, the core of Φ obtained as described in the proof
of Theorem 4.14 is called the core of Φ, denoted Core(Φ).

4.2. The Normaliser. We present here the main result of our work, a family of oper-
ators called the ‘normalisers’. Each normaliser is a scheme with variables that we can
instantiate with a derivation. The effect of plugging a derivation into a normaliser is the
same as adding identity and cut instances to the premiss and conclusion of the deriva-
tion, respectively. However, it is done in such a way as to not create any path between
the identity and cut instances we add. It should now be clear how our normalisation
works: the core is obtained by removing identity and cut instances and the normaliser
adds them back, in a way that preserves weak streamlining.

Definition 4.16. The path breaker, Break, is an operator whose arguments are the atom
a and any derivation Φ of the form

[a ∨ ā] ∧α
‖
‖

β ∨ (a ∧ ā)

,

and whose output is

[a ∨ ā] ∧
α

α ∧α ∧α
=

[a ∨ ā] ∧α
Φ
‖
‖
$

β ∨
%

a

t
∧ ā

&' ∧ α ∧ α

s

β ∨

%$

f

a
∨ ā

'

∧α

&

Φ
‖
‖
$

β ∨
%

a ∧
ā

t

&'

∧α

s

β ∨ β ∨

%$

a ∨
f

ā

'

∧α

&

Φ
‖
‖

β ∨ (a ∧ ā)

=
β ∨β ∨β

β
∨ (a ∧ ā)

.

Proposition 4.17. Let the atomic flow of

1

a1 ∨ ā2
2

∧α
Φ
‖
‖

β ∨
3

a3 ∧ ā4
4

be

1 2

φ φ′

3 4

,

Only geometrical/topological structure matters.

Finding something like this is unthinkable without locality and
atomic flows.

One More Example (Two Pieces)

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

→

16 ALESSIO GUGLIELMI AND TOM GUNDERSEN

Example 4.20. Given a derivationΦwhere the atoms a and b occur, such that the atomic
flow associated with Φ is

φ1 φ2 ψ
,

whereφ1 is the atomic flow associated with a,φ2 is the atomic flow associated with b and
a and b are the only non-weakly-streamlined atoms inΦ, then the atomic flow associated
with Norm2(a, b ,Core(Φ)) is

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

φ1

NORMALISATION CONTROL IN DEEP INFERENCE VIA ATOMIC FLOWS II 17

φ2 φ2 φ2

φ2 φ2 φ2

φ2 φ2 φ2

Summary

Finding better ways of representing proofs
The dream: proofs without unnecessary detail and even syntax
The reality: lots of unnecessary detail and syntax
Strategy: remove bureaucracy by keeping the good properties

The problem of proof identity

Exploiting locality
Deep inference and atomic flows
Eliminating bureaucracy in geometric proof systems
Using geometry to manipulate proofs

Impact?

Impact

Wouldn’t it be nice if all of maths (≈ 100,000,000 pages) were
represented as a semantic database?

We could:

I trust proofs (because they are automatically verified);

I access proofs at different abstraction levels (detail, just the
idea, etc.);

I produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

I . . .

All fields of science will benefit.

This will happen and it will be a REVOLUTION.

Impact

Wouldn’t it be nice if all of maths (≈ 100,000,000 pages) were
represented as a semantic database?

We could:

I trust proofs (because they are automatically verified);

I access proofs at different abstraction levels (detail, just the
idea, etc.);

I produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

I . . .

All fields of science will benefit.

This will happen and it will be a REVOLUTION.

References
Bruscoli, P., Guglielmi, A., Gundersen, T., & Parigot, M. (2009).

Quasipolynomial normalisation in deep inference via atomic flows and threshold formulae.
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf.

Cook, S., & Reckhow, R. (1974).

On the lengths of proofs in the propositional calculus (preliminary version).
In Proceedings of the 6th annual ACM Symposium on Theory of Computing , (pp. 135–148). ACM Press.

Girard, J.-Y. (1987).

Linear logic.
Theoretical Computer Science, 50 , 1–102.

Guglielmi, A. (2010).

Deep inference.
Web site at http://alessio.guglielmi.name/res/cos.

Guglielmi, A., & Gundersen, T. (2008).

Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1:9), 1–36.
http://www.lmcs-online.org/ojs/viewarticle.php?id=341.

Straßburger, L. (2006).

Proof nets and the identity of proofs.
Tech. Rep. 6013, INRIA.
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf.

Thiele, R. (2003).

Hilbert’s twenty-fourth problem.
American Mathematical Monthly , 110 , 1–24.

http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://alessio.guglielmi.name/res/cos
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://hal.inria.fr/docs/00/11/43/20/PDF/RR-6013.pdf

	Finding better ways of representing proofs
	The dream: proofs without unnecessary detail and even syntax
	The reality: lots of unnecessary detail and syntax
	Strategy: remove bureaucracy by keeping the good properties

	The problem of proof identity
	Exploiting locality
	Deep inference and atomic flows
	Eliminating bureaucracy in geometric proof systems
	Using geometry to manipulate proofs

	Impact?

