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The Dream




The Dream

» No syntax, no symbols, no words.
» An alien could understand this proof.

> Is something like this possible for every proof?



The Reality

Lemma sumt_ctree_pick rev : forall t t', sumt (ctree_ pick rev t t') = Color0.
Proof.
move=> t' t; rewrite /ctree_pick_rev; set cs0 : colseq := seq0.
have: Color0 +c sumt cs0 = Color0 by done.
elim: t csO {1 3}Color0 => [tl Htl t2 Ht2 t3 Ht3|1lf _|] et e //.
move=> Het /=; set cprr := ctree_pick rev_rec.
case Detl: (cprr _ _ _ tl) => [|el etl].

case Det2: (cprr _ _ _ t2) => [|e2 et2].
by apply: Ht3; rewrite [Color3]lock /= -addcA addc_inv.
by rewrite -Det2; apply: Ht2; rewrite [Color2]lock /= -addcA addc_inv.
by rewrite -Detl; apply: Htl; rewrite [Colorl]lock /= -addcA addc_inv.
by move=> Het /=; case (ctree mem t' (etrace (belast e et))).
Qed.

» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.
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» 100s of similar pieces in the four colour theorem proof in Coq.

» Syntactic object with a lot of arbitrary choice: bureaucracy.

Questions:
» How do we determine whether two proofs are ‘the same'?

» Can we free proofs from the idiosyncrasies of language?



Strategy:

We conserve the existing proof theory properties . ..

Gentzen's major breakthrough (1930s):

» proofs can be analytic, i.e., built in finitary ways,
> by horribly expensive algorithms,

> that nonetheless allow us to control and analyse them.
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But Gentzen
» only knew classical logic, which is poor for algorithms;
» only wanted finiteness, while we want more: efficiency;

» had no idea of proof complexity.
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. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).
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Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
>
coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.



Strategy:
. while we keep proof complexity under control, ...

Proof complexity = proof size (for propositional logic).
Proof system = algorithm that checks proofs in polynomial time.

Theorem [Cook & Reckhow(1974)]:

there exists a proof system whose proofs are all ‘simple’
>
coNP = NP

where ‘simple’ = verifiable in polynomial time over the size of the
proved formula.

So:
> we want to keep proof size low (and possibly making it lower),

» but not too low (otherwise we don’t have proof systems).



Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!



Strategy:
and we remove bureaucracy.

Idea: Let's use the smallest conceivable bricks to build proofs.

(Inspired by Michelangelo, the idea is to remove the stone to find
the statue, but we need a fine stone in the first place!)

Gentzen's material is too rigid!

We want proof systems whose inference steps are verifiable in
constant time.

Example (‘atomic cocontraction’): aha bAb A —
mo TR
v DT av D]

We call this property locality.



Problem: Are Two Given Proofs the Same?

» First formulated by Hilbert in 1900 [Thiele(2003)].
» Solutions depend on given criteria of ‘sameness’.

» Solution:
criterion  —  decision procedure

» Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

» So, the problem is embarrassingly open (but not for long,
thanks to locality).



Problem: Are Two Given Proofs the Same?

» First formulated by Hilbert in 1900 [Thiele(2003)].
» Solutions depend on given criteria of ‘sameness’.

» Solution:
criterion  —  decision procedure

» Gentzen proof theory is not adequate precisely because its
proofs are too coarse.

» So, the problem is embarrassingly open (but not for long,
thanks to locality).

BTW: Are two given algorithms the same?



Attem pt Zm T

Fat,a®a,at

. G ¥ Fals@eae  “Tala
In entzen oxch Falg(a®a),al @at,a

id
®

A
Fal,a Fa,at

id——  id——
Fa,at Fala Fat,a®a,at
=L exch
tha ®at,a a - Fat,at,a®a

exch ———— id— —_—

Faaat @at Fa,al Fal,al Ba®a)

a—
T e  PTaas@ied) Faal@al.al saga)

Fatpa®a),a,at @at

s ag(at @at),al w(a®@a)
exch ———— 2" 20
Falg(@®a),as(at ®at)

Fal,a®a,a®(at @at)

e Bla®a),a®(at @at)

Theory f

e B(a®a),a(at @at)

(@®a).d
k= rli B(E®4), r[’?(&* &i)

1
QN 2
AR ~
SN\ &

e
r—/i)g(/x/),a/*s(xixli)

@ a4 ol a
N/ N/
® ®
7 ~
® ®

A )

QL A/

pAw(X@X)Yx’?(Xi@X#) F A B(a® ), a5 1)
4 +

Picture taken from [StraBburger(2006)]

» From ‘different’ proofs we get proof nets [Girard(1987)],
» but they are too small (they probably are not a proof system).



Deep Inference and Atomic Flows (A Better Attempt)
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Top row: deep inference proofs.

v

v

Bottom row: (atomic) flows, extracted from the proofs above.

v

Proofs composed by logical connectives: this yields locality.

v

Atomic flows: logical info is lost and structural is kept.

v

Flow size is polynomially related to derivation size.

See [Guglielmi & Gundersen(2008)].
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Conjecture peeee
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Conjecture: (*) is a proof system.

» This means that there should exist a polynomial algorithm to
check the correctness of (*).

> If this is true, we have an excellent bureaucracy-free
formalism.

» Note: if this were true of proof nets, then coNP = NP.



Overview of Deep Inference Proof Systems

Started in 1999. All info in [Guglielmi(2010)].

There are now deep-inference proof systems for all logics:
» classical and intuitionistic;
» modal;
> linear;

» commutative, noncommutative and mixed.

Locality can be achieved for all of these, and only in deep inference.



Elimination of Bureaucracy
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Eliminate bureaucracy = find ‘something’ at the crossing.



Are We Doing OK with Proof
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Short answer: yes.

—— means ‘polynomially simulates’



Are We Doing OK with Proof Complexity?
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ShOI’t answer: yeS_ —— means ‘polynomially simulates’

Deep inference has as small proofs as the best proof systems do
and

it has a normalisation theory

and

its analytic proof systems are more powerful than Gentzen ones

See
[Bruscoli et al.(2009)Bruscoli, Guglielmi, Gundersen, & Parigot].
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Even if there is a path between 1 and 3 on the left, there is none
on the right (and the same for 2 and 4).



and the Corresponding Proofs
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Only geometrical /topological structure matters.

Finding something like this is unthinkable without locality and
atomic flows.



One More Example (Two Pieces)
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Summary

Finding better ways of representing proofs
The dream: proofs without unnecessary detail and even syntax
The reality: lots of unnecessary detail and syntax
Strategy: remove bureaucracy by keeping the good properties

The problem of proof identity
Exploiting locality
Deep inference and atomic flows
Eliminating bureaucracy in geometric proof systems

Using geometry to manipulate proofs

Impact?



Impact

Wouldn't it be nice if all of maths (=~ 100,000,000 pages) were
represented as a semantic database?
We could:

» trust proofs (because they are automatically verified);

» access proofs at different abstraction levels (detail, just the
idea, etc.);

» produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

All fields of science will benefit.



Impact

Wouldn't it be nice if all of maths (=~ 100,000,000 pages) were
represented as a semantic database?

We could:
» trust proofs (because they are automatically verified);

» access proofs at different abstraction levels (detail, just the
idea, etc.);

» produce proofs by delegating routine tasks to the computer
(with artificial intelligence?);

All fields of science will benefit.

This will happen and it will be a REVOLUTION.
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