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(Proof) System SKS
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> Linear rules: S(A/\B)VC m[AvC]A[BVD]
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» Plus an ‘=" linear rule (associativity, commutativity, units).
» Rules are applied anywhere inside formulae.
» Negation on atoms only.
» Cut is atomic.
» SKS is complete and implicationally complete for

propositional logic.



Examples in Open Deduction
[Guglielmi et al.(2010)Guglielmi, Gundersen, & Parigot]
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Proofs are composed by the same operators as formulae.

Top-down symmetry: so inference steps can be made atomic
(the medial rule, m, is impossible in the sequent calculus).



Locality

> Deep inference allows locality,

» i.e., inference steps can be checked in constant time (so,
inference steps are small).
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Note: the sequent calculus

» does not allow locality in contraction (counterexample in
[Briinnler(2004)]), and

» does not allow local reduction of cut into atomic form.




Goal of This Talk

Slogans:
» Deep inference = locality (+ symmetry).
> Locality = linearity + atomicity.

» Geometry = syntax independence (elimination of
bureaucracy).

» Locality — geometry — semantics of proofs (Lamarche dixit).

To show that:
> We can normalise in a largely syntax-independent way.
> Normalisation is a very robust phenomenon.

» We can start thinking about characterising cut-free formalisms
in a robust way (in the sense of Cook and Reckhow).



Big Picture on Proof Complexity
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Open deduction has as small proofs as the best formalisms

and

it has a normalisation theory

and

its cut-free proof systems are more powerful than Gentzen ones
and

cut elimination is quasipolynomial (instead of exponential).

(See [Jetabek(2009), Bruscoli & Guglielmi(2009),

Bruscoli et al.(2010)Bruscoli, Guglielmi, Gundersen, & Parigot]).



(Atomic) Flows
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Below derivations, their (atomic) flows are shown.
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Only structural information is retained in flows.

v

Logical information is lost.

v

Flow size is polynomially related to derivation size.




Flow Reductions: (Co)Weakening (1)

Consider these flow reductions:
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Each of them corresponds to a correct derivation reduction.
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Flow Reductions: (Co)Weakening (2)

For example, ail-aw(: (R, specifies that
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We can operate on flow reductions instead than on derivations: it
is much easier and we get natural, syntax-independent induction
measures.



Relation With Interaction Combinators?

Lots of coincidences, but also differences: no apparent logical
meaning for two ‘contractions’:
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Flow Reductions: (Co)Contraction

Consider these flow reductions:
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» They conserve the number and length of paths.
» Note that they can blow up a derivation exponentially.

» It's a good thing: cocontraction is a new compression
mechanism (sharing?).

» Open problem: does cocontraction provide exponential
compression? Conjecture: yes.



Cut Elimination by ‘Experiments’
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Simple, exponential cut elimination; proof generates 2"
experiments.



Normalisation
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» None of these methods existed before atomic flows, none of
them requires permutations or other syntactic devices.

» Quasipolynomial procedures are surprising.

(1) [Guglielmi & Gundersen(2008)]; (2) LICS 2010 submission; (3)
[Bruscoli et al.(2010)Bruscoli, Guglielmi, Gundersen, & Parigot].



Generalising the Cut-Free Form
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Normalised proof: T \T//l\
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Normalised derivation: I I I I I
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The symmetric form is called streamlined.
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Cut elimination is a corollary of streamlining.

> We just need to break the paths between identities and cuts,
and (co)weakenings do the rest.



How Do We Break Paths?
With the path breaker:

Even if there is a path between identity and cut on the left, there
is none on the right.



We Can Do This on Derivations, of Course
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» We can compose this as many times as there are paths
between identities and cut.

v

We obtain a family of normalisers that only depends on n.

v

The construction is exponential.

v

Note: finding something like this is unthinkable without flows.



Example for n =2
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Conjecture
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» We think that (*) might make for a proof system (see also
recent work by StraBburger).

» This means that there should exist a polynomial algorithm to
check the correctness of (*).

> If this is true, we have an excellent bureaucracy-free
formalism.

» Note: if such a thing existed for proof nets, then coNP = NP.



Conclusion

» Cut elimination does not depend on logical rules.

» It only depends on structural information, i.e., geometry.
» Normalisation is extremely robust.

» Deep inference’s locality is key.

» Complexity-wise, deep inference is as powerful as the best
formalisms,

» and more powerful if analyticity is requested.

This talk is available at http://cs.bath.ac.uk/ag/t/GNAF.pdf
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