Subatomic Proof Systems

Andrea Aler Tubella
IRIF, CNRS and Univ. Paris Diderot

The proof theoretic methodology of deep inference [5] yields
the widest range of analytic proof systems. In particular, several
logics for which there are no analytic proof systems in Gentzen,
or for which there only are cumbersome ones, admit elegant
and regular analytic proof systems in deep inference. The
regularity of inference rule schemes in deep inference stems
from their ability to access the atoms which compose formulae.

The main idea behind this talk is based on a surprising
observation: if we allow inference rules to see even deeper,
inside atoms, then we are able to reduce disparate rules such as
contraction, cut, identity and any logical rule like conjunction-
introduction, into a unique rule scheme.

The intuition behind this new approach is to consider atoms
as logical relations, and to build formulae by freely composing
constants by connectives and atoms. For example, A = (fat)Vt
is a subatomic formula for classical logic. The main idea is
to interpret (f at) as a positive occurrence of the atom a, and
(taf) as a negative occurrence of the same atom, denoted by a.
Intuitively, we can view subatomic formulae as a superposition
of truth values. For example, (f at) is the superposition of
the two possible assignments for the atom a, and (taf) is the
superposition of the possible assignments for a: if we read the
value on the left of the atom we assign f to @ and t to a, and
viceversa if we read the one on the right. By developping this
methodology, that we call subatomic, we are able to achieve
complete regularity on the shape of inference rules for a wide
range of logical systems.

Indeed, we are able to represent a great width of proof
systems in such a way that every rule, including rules such as
atomic introduction or contraction, is an instance of the rule
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where «, v, 3,y are relations, and A, B, C, D are formulae. The
fact that so many rules can be presented in this form remains
quite intriguing, although it has proven certainly useful.

This unprecedented regularity can be exploited to reason
generally about proof systems. In particular, we can apply it to
study the interactions between rules and their role in normalisa-
tion procedures. We are able to generalise two complementary
normalisation procedures: splitting and decomposition.

Splitting is a generalisation of a common technique employed
for cut-elimination in deep inference systems [3], [6], [7], [9].
The idea behind it is rooted in deep inference methods. In the
sequent calculus, formulae have a root connective that allows
us to determine which rules are applied immediately above the
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cut. In deep inference, rules can be applied anywhere deep in
a formula and as such anything can happen above a cut. As a
consequence, the splitting method focuses on understanding
the behaviour of the context around the cut. We show that cut-
elimination via splitting can be achieved for a generalisation
of linear systems [2].

The reach of the splitting technique goes beyond linear
systems when combined with decomposition. In many systems,
derivations can be arranged into consecutive subderivations
made up of only certain rules [4], [8], [9]. By having a
single inference rule shape to consider, we are able to provide
generalised reduction rules to manipulate proofs through local
transformations to obtain their decomposition into a linear
phase followed by a phase made up only of contractions.

In this way, splitting deals with the interactions between
cuts and linear rules, whereas decomposition deals with
the interactions between cuts and contractions. These two
phenomena, tangled in traditional Gentzen-style cut-elimination
procedures through the use of a mix rule conflating cuts and
contractions, turn out to be quite different complexity-wise.
Splitting is a procedure of polynomial-time complexity where
we need to look at a whole proof in order to eliminate the
cuts, whereas decomposition has an exponential cost and can
be achieved through local rewritings. By untangling these
interactions and separating cut-elimination into these two
procedures we can therefore gain a better control on the
complexity, as well as a better understanding of the reasons
behind the prevalence of cut-elimination in such a width of
proof systems.
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