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In this work we show a proof system, called SA, that generates propositional
proofs by employing a single, linear, simple and regular inference rule scheme.
The main idea is to consider atoms as self-dual, noncommutative binary logical
relations and build formulae by freely composing units by atoms, disjunction and
conjunction. If we restrict proofs to formulae where no atom occurs in the scope
of another atom, we fully and faithfully recover a deduction system for proposi-
tional logic in the usual sense, where traditional proof analysis and transformation
techniques such as cut elimination can be studied. In this extended abstract we do
not present complete technical details, but the reader can rather easily reconstruct
them from the indications provided.

One can quickly grasp the main idea by considering the occurrences of an atom
a as interpretations of more primitive expressions involving a noncommutative
binary relation, still denoted by a. We use the Polish notation for atoms, so that
two formulae A and B in the relation a, in this order, are denoted by aAB. In SA
we have an enumerable supply of atoms, denoted by lowercase Latin letters, and
formulae are built over the two units for disjunction and conjunction, respectively
0 and 1. For example, the following two expressions are SA formulae:

a01 ∨ a10 and a(b01)(c1(d10)) ∧ 0 ∧ (a00 ∨ b11) .

We call tame the formulae where atoms do not appear in the scope of other atoms,
such as the formula at the left, and wild the others, such as the formula at the right.

At this point we need an interpretation 7→, which we take as a map from tame
SA formulae to ordinary formulae such that

a01 7→ a and a10 7→ ā ,

where ā denotes the negation of a. We then stipulate that

a00 7→ 0 and a11 7→ 1 .

Note that self-duality, i.e., aAB ≡ aĀB̄, and noncommutativity, i.e., aAB 6≡ aBA
wheneverA 6≡ B, are coherent with the interpretation. We extend the interpretation
7→ to all the tame SA formulae in the natural way. We then obtain, for example,

a01 ∨ a10 7→ a ∨ ā and a (0 ∨ 0) (1 ∨ 1) 7→ a ,

where we assumed that the classical logic equivalences 0 ∨ 0 ≡ 0 and 1 ∨ 1 ≡ 1 are
incorporated into the definition of 7→.

In order to understand how the idea applies to inference rules, let us consider
now the usual contraction rule for an atom:

a ∨ a
−−−−−−−−
a

.



We can obtain this rule as the result of applying 7→ to the formulae of some proof
system where the following inference rule instances are expressed:

a01 ∨ a01
−−−−−−−−−−−−−−−−−−−−−−
a(0 ∨ 0)(1 ∨ 1)

7→
a ∨ a
−−−−−−−−
a

and
a10 ∨ a10

−−−−−−−−−−−−−−−−−−−−−−
a(1 ∨ 1)(0 ∨ 0)

7→
ā ∨ ā
−−−−−−−−
ā

.

As we can see, the rule instances of whatever SA system we are using could be
special cases of the linear rule

aAC ∨ aBD
−−−−−−−−−−−−−−−−−−−−−−−−−−−
a(A ∨ B)(C ∨D)

.

We find this interesting partly because it seems that the nonlinearity of the contrac-
tion rule has been pushed from the atoms to the units and partly because the shape
of the new rule is typical of logical rules (as opposed to structural ones).

Obviously what we have just seen would be trivial unless it worked for all rules.
Let us see then two more examples: the identity and cut rules in atomic form:

a(0 ∨ 1)(1 ∨ 0)
−−−−−−−−−−−−−−−−−−−−−−
a01 ∨ a10

7→
1

−−−−−−−−
a ∨ ā

and
a01 ∧ a10

−−−−−−−−−−−−−−−−−−−−−−
a(0 ∧ 1)(1 ∧ 0)

7→
a ∧ ā
−−−−−−−−

0
.

Here we used the equivalences 0 ∨ 1 ≡ 1 ∨ 0 ≡ 1 and 0 ∧ 1 ≡ 1 ∧ 0 ≡ 0, which
again we can incorporate into the definition of 7→.

A pattern for the shape of inference rules should now become apparent, but
before we proceed we need to address the following two objections that apply to
Gentzen proof theory:

– A proof system only containing atomic contraction instead of the generic one
is incomplete [1].

– Although proof systems with an atomic cut are complete, they entail at least
an exponential penalty in the size of proofs compared to proof systems with
unrestricted cut [8,9].

In deep inference [4,6] those two objections are easily overcome, because, given
any proof in a Gentzen system, every contraction and cut instances can be locally
transformed into their atomic variants by a local procedure of polynomial-size
complexity [2]. We shall not define deep inference here, but the reader only needs
to know that, in deep inference, proofs can be composed via the same connectives
over which formulae are composed. In other words, if

Φ =
A∥∥∥∥
B

and Ψ =
C∥∥∥∥
D



are two proofs with, respectively, premisses A and C and conclusions B and D,
then

Φ ∧ Ψ =
A ∧ C∥∥∥∥
B ∧D

and Φ ∨ Ψ =
A ∨ C∥∥∥∥
B ∨D

are valid proofs with, respectively, premisses A ∧ C and A ∨ C , and conclusions
B ∧D and B ∨D. Significantly, while Φ ∧ Ψ can be represented in Gentzen,
Φ ∨ Ψ cannot. This is basically the definition of deep inference and it holds for
every language, not just propositional classical logic.

A further advantage of deep inference is that, contrary to Gentzen theory [10],
self-dual noncommutative connectives such as the ones that we use for atoms here
can easily be accommodated into proof systems enjoying cut elimination. For all
these reasons we adopt deep inference and in the rest we assume this implicitly.

Let us now consider the following partial order C of logical relations

a1

∧

∨

a2 a3 . . . ,

where ∨ <C ai <C ∧. Intuitively,>C corresponds to implication, as in, e.g.,A ∧ B ⇒
A ∨ B and (0 ∧ 1) ⇒ a01 ⇒ (0 ∨ 1). On C we define the involution ·̄ such that
∨̄ = ∧ and āi = ai, and we also define for each of its elements α the set i(α) = {α, ᾱ}.
We then define the (infinite) set of quadruples

QC = { 〈αβγδ〉 | α ≤C δ, δ ∈ i(α), γ ≤C β, β ∈ i(γ) } \ {〈∨∧∧∨〉} .1

We define system SA as the deep inference system whose only inference rule is

β αAC δBD
−−−−−−−−−−−−−−−−−−−−− 〈αβγδ〉 ∈ QC
α βAB γCD

;

for uniformity, in the scheme ∨ and ∧ are represented in Polish notation.
Soundness for this system can easily be proved by checking that each inference

rule instance involving tame formulae corresponds to a valid implication between
premiss and conclusion. To prove completeness we need to make sure that every
valid tautology A can be proved by SA in the form of a tame formula B such that
B 7→ A. This can be done rather easily by showing that each inference rule of a

1 QC is obtained by substituting a and b with every possible atom in

{〈∨,∨,∨,∨〉, 〈∨,∨,∨,∧〉, 〈∨, a, a,∨〉, 〈∨, a, a,∧〉, 〈∨,∧,∨,∨〉, 〈∨,∧,∨,∧〉, 〈∨,∧,∧,∧〉,
〈a,∨,∨, a〉, 〈a, a, a, a〉, 〈a, b, b, a〉, 〈a,∧,∨, a〉, 〈a,∧,∧, a〉, 〈∧,∨,∨,∧〉, 〈∧, a, a,∧〉,
〈∧,∧,∨,∧〉, 〈∧,∧,∧,∧〉} .



complete system for propositional logic, such as KS [2], can be represented by one
or more rules of SA.

Since we have seen how to deal with identity and contraction above, suffice to
see how we can represent weakening (with 〈a,∧,∨, a〉), switch (with 〈∨,∧,∨,∨〉 or
〈∨,∧,∧,∧〉) and medial (with 〈∧,∨,∨,∧〉):

a01 ∧ a00
−−−−−−−−−−−−−−−−−−−−−−
a(0 ∧ 0)(1 ∨ 0)

,
a10 ∧ a00

−−−−−−−−−−−−−−−−−−−−−−
a(1 ∧ 0)(0 ∨ 0)

,
(A ∨ C ) ∧ (B ∨D)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A ∧ B) ∨ (C ∨D)

,
(A ∧ C ) ∨ (B ∧D)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A ∨ B) ∧ (C ∨D)

.

We can then state the following proposition.

Proposition 1. SA is sound and complete for propositional logic.

It is rather intriguing that a sound and complete system for propositional logic
can be obtained with a highly regular system such as SA, and we do not have
a ‘moral’ explanation for this (yet). However, there is more. Obviously, SA is a
conservative extension of propositional logic, because it proves more, namely it
proves wild formulae. We could ask ourselves what happens to proofs if we are
only interested in tame formulae. It is very easy to prove the following:

Proposition 2. If the conclusion of a proof in SA is a tame formula, then no wild formula
appears in the proof.

In other words, what we see as propositional logic proofs are just special
observations obtained from a more general and more regular collection of proofs.
In the near future we will study SA and will try to see whether its regularity could
be exploited for a better understanding of proof normalisation. Certainly, given
the close correspondence between SA and KS, the whole proof theory of KS can
be inherited by SA, and in particular the modern notions of normalisation based
on atomic flows [5,7]. Translating KS into SA might shed light on why the purely
structural information of atomic flows is sufficient to achieve normalisation in KS.

We are also interested in the possibility of extending the idea behind SA to other
logics. For example, let us consider linear logic [3]. If we had to interpret the SA
contraction rule in linear logic we would not be able to obtain contraction because
in linear logic 1 O 1 6≡ 1. Therefore the interpretation of the atomic contraction
rule instance would be something like

aO a
−−−−−−−−−−−−−−
a0(1 O 1)

,

which does not correspond to any linear logic proof and which we could consider
‘wild’. This hints at the possibility of controlling the ‘resource consciousness’ or
‘substructurality’ of a logic not only by a careful choice of inference rules, but also
by an appropriate choice of the equivalences (or lack thereof) governing the units,
and implementing them into the interpretation map.

If all this turns out to be viable, we would then have the chance to study
normalisation for a wide range of logics by working at the ‘subatomic’ level of SA
and then specialising the proof systems and their proof theory by simply tuning the
interpretation map.
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