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ABSTRACT. Jetdbek showed that cuts in classical propositional logic proofs in deep in-
ference can be eliminated in quasipolynomial time. The proof is indirect and it relies on
aresult of Atserias, Galesi and Pudlak about monotone sequent calculus and a correspon-
dence between that system and cut-free deep-inference proofs. In this paper we give a
direct proof of Jetdbek’s result: we give a quasipolynomial-time cut-elimination proce-
dure for classical propositional logic in deep inference. The main new ingredient is the
use of a computational trace of deep-inference proofs called atomic flows, which are both
very simple (they only trace structural rules and forget logical rules) and strong enough
to faithfully represent the cut-elimination procedure.

1. INTRODUCTION

Deep inference is a proof-theoretic methodology where proofs can be freely composed
by the logical operators, instead of having a rigid formula-directed tree structure, as in
Gentzen proof theory [Gug07, BT01, Brii04, GGP10]. As a result, inference rules apply
arbitrarily deep inside formulae, contrary to traditional proof systems such as natural
deduction and the sequent calculus, where inference rules only deal with the outermost
structure of formulae. This induces a new symmetry, which can be exploited for achiev-
ing locality of inference rules, and which is not available with Gentzen methods. Local-
ity, in turn, makes it possible to use new methods, often with a geometric flavour, in the
normalisation theory of proof systems.

The greater freedom in composing proofs of deep inference is both a source of im-
mediate technical difficulty and of new powerful proof-theoretic methods. A general
methodology allows us to design deep-inference proof systems having more symmetries
and finer structural properties than the sequent calculus does. For instance, cut and iden-
tity become really dual of each other, whereas they only are morally so in the sequent
calculus, and all the structural rules can be reduced to their atomic form, whereas this
does not hold in the sequent calculus, for example in the case of the contraction inference
rule. In deep inference, the cut rule is more general than its counterpart in the sequent
calculus, and makes it possible to obtain a broader range of dynamics in normalisation
procedures. However, despite the sequent calculus systems and their normalisation pro-
cedures being special cases of deep inference systems and procedures, cut elimination in
deep inference still guarantees consistency and the trivial turning of proof systems into
algorithms for proof search.
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Sixteen years of research have guaranteed that all usual logics have deep-inference proof
systems enjoying cut elimination (see [Gug] for a complete overview). The traditional
methods of cut elimination of the sequent calculus can be adapted to a large extent to
deep inference, despite having to cope with a higher generality, but new methods are
also achievable. The standard proof system for propositional classical logic in deep in-
ference is system SKS, and its cut elimination has been achieved in several different ways
[BTO1, Brii04, GGO8], all requiring at worst exponential time in the size of the proof to
be normalised.

A few years ago Jerabek showed that cut elimination in SKS proofs can be done in
quasipolynomial time [Jef09], more specifically in time 7°0°”), The result is surprising
because all known cut-elimination methods for classical-logic proof systems require ex-
ponential time, in particular for Gentzen’s sequent calculus. Jerabek obtained his result
by relying on a construction over threshold functions by Atserias, Galesi and Pudlk, in
the monotone sequent calculus [AGP02].

Jerabek’s technique is indirect because normalisation is performed over proofs in the
sequent calculus, which are, in turn, related to deep-inference ones by polynomial simu-
lations, originally studied in [Brii06] and [BG09].

In this paper we give a direct proof of Jefabek’s result: that is, we give a quasipoly-
nomial-time cut-elimination procedure in propositional-logic deep inference, which, in
addition to being internal, has a strong computational flavour. Our proof uses two ingre-
dients:

(1) an adaptation of Atserias-Galesi-Pudlak technique to deep inference, which sim-
plifies the technicalities associated with the use of threshold functions; in par-
ticular, the formulae and derivations that we adopt are smaller and structurally
simpler than those in [ AGP02];

(2) arecently introduced graphic formalism, tracing atoms in deep-inference proofs,
called ‘atomic flows’ [GGO8].

Atomic flows, which can be considered specialised Buss flow graphs [Bus91], play a
major role in designing and controlling the cut elimination procedure presented in this pa-
per. Atomic flows are very simple (they only trace structural rules and forget logical rules)
but they are strong enough to faithfully represent cut elimination [ GG08, GGS10] and
to relate several formalisms regarding their proof complexity [Das12, Das14]. Atomic
flows contribute to the overall clarification of this highly technical matter, by reducing
our dependency on syntax. The techniques developed via atomic flows tolerate variations
in the proof system specification. In fact, their geometric nature makes them largely in-
dependent of syntax, provided that certain linearity conditions are respected (and this is
usually achievable in deep inference).

The paper is self-contained. Sections 2 and 3 are devoted, respectively, to the necessary
background on deep inference and atomic flows. Threshold functions and formulae are
introduced in Section 5.

We normalise proofs in two steps, each of which has a dedicated section in the paper:

(1) We transform any given proof into what we call its ‘simple form’. No use is made
of threshold formulae and no significant proof complexity is introduced. This is
presented in Section 4, mostly an exercise on deep inference and atomic flows.

(2) In Section 6, we show the cut elimination step, starting from proofs in simple
form. Here, threshold formulae play a major role.

Normalisation can be taken one step further, by removing the instances of the only
inference rule left that is not analytic in the deep-inference sense, viz. coweakening. This
is performed by a simple and standard deep-inference procedure in Section 7.

Section 8 concludes the paper with comments on future research directions.

Parts of this paper were presented at LPAR 16 [BGGP10] and some appear in [ Gun09].
Recently, threshold functions have been used in [Das14] to build quasipolynomial size
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cut-free deep-inference proofs of the propositional pigeonhole principle that, crucially,
do not use cocontraction, which is a form of dagness.

2. PROPOSITIONAL LOGIC IN DEEP INFERENCE

Inside the deep-inference methodology we can define several formalisms, z.e. general
prescriptions on how to design proof systems, in the same sense as the sequent calculus
and natural deduction are formalisms in Gentzen-style proof theory (where the structure
of proofs is determined by the tree structure of the formulae they prove).

The first, and conceptually simpler, formalism that has been defined in deep inference
is called the calculus of structures, or CoS [Gug07]. Another deep-inference formalism has
later been introduced in [GGP10], called open deduction. Open deduction is more gen-
eral than CoS, in the sense that every CoS derivation is also an open-deduction deriva-
tion. On the other hand, every open-deduction derivation can be transformed into a CoS
derivation by a straightforward transformation that essentially amounts to interleaving
derivations. The cost of this transformation is at most quadratic in the size of the origi-
nal open-deduction derivation; therefore, from the point of view of complexity, CoS and
open deduction are equivalent.

CoS and open deduction are equivalent also from the point of view of proof theory,
because the two formalisms are just two different notations for derivations of the same
nature, and so every derivation transformation that can be performed in one formalism
can also be performed in the other. In this paper we will adopt the open-deduction no-
tation, especially because it is more efficient for the reader. However, given that most
of the literature in deep inference adopts the CoS notation, which is more similar to the
traditional Gentzen syntax, we will present both styles in this section.

The standard proof system of propositional logic in deep inference is called SKS. The
basic proof-complexity properties of SKS, and so of propositional logic in deep inference,
have been studied in [BG09] (which also could be used as an introduction to SKS). Those
properties are:

e SKS is polynomially equivalent to Frege proof systems.

e SKS can be extended with Tseitin’s extension and substitution, and the proof sys-
tems so obtained are polynomially equivalent to Frege proof systems augmented
with extension and substitution.

e Cut-free SKS polynomially simulates cut-free Gentzen proof systems for propo-
sitional logic, but the converse does not hold: in fact, Statman’s tautologies admit
polynomial proofs in cut-free SKS but only exponential ones in cut-free Gentzen
[Sta78].

We now quickly introduce all the necessary notions. An excellent and more relaxed
introduction to SKS in CoS and its basic properties is [Brii04].

Formulae, denoted by A, B, C and D are freely built from: wunits, f (false), t (true);
atoms, denoted by a, b, ¢, d and e; disjunction and conjunction, [Av B] and (AAB). The
different brackets have the only purpose of improving legibility; we usually omit external
brackets of formulae, and sometimes we omit superfluous brackets under associativity.
On the set of atoms a (non-identical) involution - is defined and called negation; a and 4
are dual atoms. We denote contexts, i.e., formulae with a hole, by K{ } and H{ }; for
example, if K{a} is ba[ave], thenK{ }isbA[{ }vc],K{b}isbA[bVvc]and K{and}
isba[(and)ve].

Note that negation is only defined for atoms, and this is not a limitation because,
thanks to De Morgan laws, negation can always be ‘pushed to’ atoms. Also, note that
there are no negative or positive atoms in an absolute sense; we can only say that if we
arbitrarily consider a positive, then a must be negative, for example.
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For both CoS and open deduction an (inference) rule p is an expression ¢ 3 where the
formulae A and B are called premiss and conclusion, respectively; an instance of that rule
. . C .
is an expression oy where C and D are instances of A and B.

System SKS is a proof system, common to CoS and open deduction, defined by the
following structural inference rules:

t f ava
ai — aw| — ac|
ava a a
identity weakening contraction
_ b
ana a a
aif aw] — acl
f t ana
cut coweakening cocontraction

and by the following two logical inference rules:

AN[BVC] (AAB)vV(CAD)

(ArB)vC [AvC]A[BVvD]

switch medial

A cut-free derivation is a derivation where aif is not used, z.e., a derivation in SKS \ {ai}.

C
In addition to these rules, there is a rule = D’ such that C and D are opposite sides in one
of the following equations:

AvB=BVA Avi=A
ANB=BAA Art=A
M _ -
[AVB]vC =AV[BVvC] tvt=t
(AAB)YAC =AA(BAC) faf=f

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The equality relation = on formulae is defined by closing the equations in (1) by
reflexivity, symmetry, transitivity and by stipulating that A = B implies K{A} = K{B};
to indicate literal equality of the formulae A and B we adopt the notation A = B.

We now define both styles of derivations, CoS and open deduction. The difference is
in the way we compose instances of rules: in CoS we only allow inferences to compose
vertically, in chains similar to sequent calculus proofs made only of one-premiss rule in-
stances. In open deduction instead, derivations can be composed by the same connectives
that formulae are made of. For simplicity, we give here a definition of open-deduction
derivation that is limited to our purposes in this paper, and is not the most general.

C
{ , for each context K{ }.
K{D}
A CoS derivation from (premiss) A to (conclusion) B is a chain of inference steps with A at
the top and B at the bottom. A derivation can be denoted by

A
3|7
B

In CoS, arule instance p ) generates an (inference) step p

where 7 is the name of the proof system or a set of inference rules (we might omit ®
and .%); a proof, often denoted by II, is a derivation with premiss t; besides ®, we denote
derivations with U. Sometimes we group 7 > 0 inference steps of the same rule p together
into one step, and we label the step with 7 - p.
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In open deduction, and just for the specific case of propositional logic with v, A and
negation on atoms, we define the notions of derivation, premiss and conclusion inductively
as follows:

e if @ is a unit or an atom then ® is a derivation with premiss ® and conclusion @;
e if ® is a derivation with premiss A and conclusion B and if ¥ is a derivation with
premiss C and conclusion D, then
- [®Vv¥]is a derivation with premiss [AV C] and conclusion [BV D],
- (®AW) is a derivation with premiss (A A C) and conclusion (B A D),

- ifp el is an instance of an inference rule, then o T isa derivation with premiss

A and conclusion D.

We adopt the same conventions as for CoS to denote derivations in open deduction. We
omit structural rule names in open-deduction notation.

The first two rows in Figure 2 illustrate with examples all the concepts introduced
above. The first row shows three example CoS derivations, and below each of them there
is an equivalent derivation in open deduction. An open deduction derivation can be ob-
tained from a CoS one by sharing the contexts in inference steps. Vice versa, a CoS deriva-
tion can be obtained from an open deduction one by choosing an order for the chain of
inference steps.

Besides SKS, another standard deep-inference system is SKSg, which is the same as
SKS, except that it does not contain medial and its structural rules are not restricted to
atoms. In particular, we use in this paper the rules

f A AVA A

wW| — wW| — C d C
iA, Tt , lA an TAAA

Clearly, a derivation in SKS is also a derivation in SKSg. It can easily be proved that SKS
and all its fragments containing the logical and = rules polynomially simulate, respec-
tively, SKSg and its corresponding fragments [BG09]. For example, {s,m,=,ac|} poly-
nomially simulates {s,=,c|}. This allows us to transfer properties from SKS to SKSg;
in particular, the main result in this paper, i.e., that SKS proofs can be transformed into
cut-free ones in quasipolynomial time, holds also for SKSg proofs. One reason to work
with SKS instead of SKSg, as we do in this paper, is that atomicity of rules allows us to
use atomic flows more conveniently.

A notable cut-free system is KS = {s,m,=,ai|,aw|,ac|}, which is complete for propo-
sitional logic [BT01, Brii04]; this, of course, entails completeness for all the systems that
contain KS, such as SKS.

We can replace instances of nonatomic structural rules by derivations with the same
premiss and conclusion, and that only contain atomic structural rules. The price to pay
is a quadratic growth in size. This is stated by the following, routine proposition (keep
in mind that, from now on, we consider the = rule as implicitly present in all systems).
An example is the rightmost upper derivation in Figure 2, which stands for a nonatomic
cocontraction.

Proposition 1. Rule instances of w|, w1, c| and c| can be derived in quadratic time by
derivations in {aw|}, {awT}, {m,ac|} and {m,acl}, respectively.

Sometimes, we use a nonatomic rule instance to stand for some derivation in SKS that
derives that instance, as per Proposition 1.

By A{a,/B,,...,a,/B,}, we denote the operation of simultaneously substituting for-
mulae By, ..., B), into all the occurrences of the atoms 4, ..., 4;, in the formula 4, respec-
tively; note that the occurrences of 4, ..., 4, are not automatically substituted. Often,
we only substitute certain occurrences of atoms, and these are indicated with superscripts
that establish a relation with atomic flows. As a matter of fact, we extend the notion of
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substitution to derivations in the natural way, but this requires a certain care. The issue
is clarified in Section 3 (see, in particular, Notations 2 and 4 and Proposition 3).

The size |A| of a formula A, and the size |®| of a derivation ®, is the number of unit
and atom occurrences appearing in it. The size of CoS derivations is, obviously, at most
quadratic in the size of the corresponding open-deduction derivations. We use this fact
implicitly throughout the paper, and we always measure the CoS size of derivations, even
if we show them in open-deduction notation.

3. Atomic FLOWS

Atomic flows, which have been introduced in [ GGO8], are, essentially, specialised Buss
flow graphs [Bus91]. They are particular directed graphs associated with SKS derivations:
every derivation yields one atomic flow obtained by tracing the atom occurrences in the
derivation. Infinitely many derivations correspond to each atomic flow; this suggests that
much of the information in a derivation is lost in its associated atomic flow; in particular,
there is no information about instances of logical rules, only structural rules play a role.
As shown in [GG08, GGS10], it turns out that atomic flows contain sufficient structure
to control normalisation procedures, providing in particular induction measures that can
be used to ensure termination. Such normalisation procedures require exponential time
on the size of the derivation to be normalised. In the present work, we lower the com-
plexity of proof normalisation to quasipolynomial time, but an essential role is played
by the complex logical relations of threshold formulae, which are external and indepen-
dent from the given proof. This means that atomic flows are not sufficient to define the
normalisation procedure; however, they still are a very convenient tool for defining and
understanding several of its aspects.

We can single out three features of atomic flows that, in general, and not just in this
work, help in designing normalisation procedures:

(1) Atomic flows conveniently express the topological structure of atom occurrences
in a proof. This is especially useful for defining a certain ‘simple form’ of proofs
(Definition 7).

(2) Atomic flows provide for an efficient way to control substitutions for atom oc-
currences in derivations. This helps us to define the cut-free form of proofs (Def-
inition 23).

(3) We can define graph rewriting systems over atomic flows that control normalisa-
tion procedures on derivations. This can be used to control a further refinement
of the normalisation procedure (Theorem 27).

Our aim now is to quickly and informally provide the necessary notions about atomic
flows, especially concerning aspects (1) and (2) above. Although the feature (3) of atomic
flows, namely graph rewriting systems of flows, did help us in obtaining proofs in nor-
mal form, we estimate that formally introducing the necessary machinery is unjustified
in this paper. In fact, given our limited needs here, we can operate directly on deriva-
tions, without the intermediate support of atomic flows. Nonetheless, being aware of
the underlying atomic-flow methods is useful for the reader who wishes to further inves-
tigate this matter. So, we informally provide, in Section 7, enough material to make the
connection with the atomic-flow techniques that are fully developed in [GGO08].

We obtain one atomic flow from each derivation by tracing all its atom occurrences
and by keeping track of their creation and destruction (in identity /cut and weakening/co-
weakening instances), their duplication (in contraction/cocontraction) and their duality
(in identity/cut). Technically, atomic flows are directed graphs of a special kind, but it is
more intuitive to consider them as diagrams generated by composing elementary atomic
flows that belong to one of seven kinds.
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Al ———— — 1 2 aw|— — Tl ac —
alva? al a’ 3
atng? al a’ 3
aiT — 1 2 aWT _— = Ll acT T 2 —
f t a hNa 1 2

FIGURE 1. Vertices of atomic flows.

The first kind of elementary atomic flow is the edge

|,

which corresponds to one or more occurrences of the same atom in a given derivation,
all of which are not active in any structural rule instance, i.e., they are not the atom
occurrences that instantiate a structural rule.

The other six kinds of elementary diagrams are associated with the six structural infer-
ence rules, as shown in Figure 1, and they are called vertices; each vertex has some incident
edges. At the left of each arrow, we see an instance of a structural rule, where the atom
occurrences are labelled by small numerals; at the right of the arrow, we see the vertex
corresponding to the rule instance, whose incident edges are labelled in accord with the
atom occurrences they correspond to. We qualify each vertex according to the rule it
corresponds to; for example, in a given atomic flow, we might talk about a contraction
vertex, or a cut vertex, and so on. Instead of small numerals, sometimes we use € or ¢ or
colour to label edges (as well as atom occurrences), but we do not always use labels.

All edges are directed, but we do not explicitly show the orientation. Instead, we
consider it as implicitly given by the way we draw them, namely, edges are oriented along
the vertical direction. So, the vertices corresponding to dual rules, in Figure 1, are distinct,
for example, an identity vertex and a cut vertex are different because the orientation of
their edges is different. On the other hand, the horizontal direction plays no role in
distinguishing atomic flows; this corresponds to commutativity of logical relations.

We can define (atomic) flows as the smallest set of diagrams containing elementary
atomic flows, and closed under the composition operation consisting in identifying zero
or more edges such that no cycle is created. In addition, for a diagram to be an atomic
flow, it must be possible to assign it a polarity, according to the following definition. A
polarity assignment is a mapping of each edge to an element of {—,+}, such that the two
edges of each identity or cut vertex map to different values and the three edges of each
contraction or cocontraction vertex map to the same value. We denote atomic flows by
¢ and ¢.

Let us see some examples. The flow

’ LA

is obtained by juxtaposing (i.e., composing by identifying zero edges):

e three edges,
e a flow obtained by composing a cut vertex with a cocontraction vertex, and
e a flow obtained by composing an identity vertex with a cut vertex.

Note that there are no cycles in the flow, and that we can find 32 different polarity assign-
ments, ie., two for each of the five connected components of the flow (this is a general
rule).
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Let us see another example. These are three different representations of the same flow:

where we label edges to show their correspondence. In the two rightmost flows, we indi-
cate the two different polarity assignments that are possible.
The following two diagrams are not atomic flows:

A

The left one is not a flow because it contains a cycle, and the right one because there is
no possible polarity assignment.

Let us see how to extract atomic flows from derivations. Given an SKS derivation ®,
we obtain, by the following prescriptions, a unique atomic flow @, such that there is a
surjective map between atom occurrences in ® and edges of ¢:

e Each structural inference step in ® is associated with one and only one vertex in
&, such that active atom occurrences in the rule instance map to edges incident
with the vertex. The correspondence is indicated in Figure 1. For example, the
flow associated with the inference step at the left is indicated at the right:

A (B[ vat]] 3\75/4

al A [b2 v 45]
Note that the nonactive atoms are ‘traced’ by associating each trace with one

. .. . K{ava}
edge; this corresponds well to abbreviating, say, the inference step acl ——— by

Kia)
x|}

e For each other inference step in ®, all the atom occurrences in the premiss are
respectively mapped to the same edges of ¢ as the atom occurrences in the con-
clusion. For example, the flow associated with the inference step

i 1/11/\[(b2/\C3)V(d4/\€5):| _ 1
(v

The flow ¢ so obtained is called the atomic flow associated with the derivation ®. We
show three examples in Figure 2: in the top row we see three SKS derivations in the stan-
dard CoS syntax; in the row below, we show the same derivations in the open deduction
notation; in the bottom row, we see the three corresponding atomic flows.

Perhaps surprisingly, it can be proved that every flow is associated with infinitely many
SKS derivations (see [ GGO8]).

We introduce now some graphical shortcuts. When certain details of a flow are not
important, but only the vertex kinds and its upper and lower edges are, we can use boxes,
labelled with all the vertex kinds that can appear in the flow they represent. For example,
the following left and centre flows could represent the previously seen flow (2), whereas

ac| and
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[avb]ra

“N@ra)vbina

“fara)v(C 2 b)ira

“Menayy (4 D) (en )

[avb])r(ans)

" (e

([

I
Jna)a(lavb]ns)

av a a b
S ara bAb A 2
ana

b

A

FIGURE 2. Examples of derivations in CoS and open deduction nota-
tion, and associated atomic flows.

the right flow cannot:

¢
’ 7

LT
J_LASA

Jp=

and

LT

Y A
| L1

The flow at the right cannot represent flow (2) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As
just shown, we sometimes label boxes with the name of the flow they represent. For
example, flow ¢ above could represent flow (2), and, if the centre flow stands for (2), then
flows ¢ and ¢’ are, respectively,

LA

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).
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We sometimes use a double line notation for representing multiple edges. For example,
the following diagrams represent the same flow:

!
ol -] |«

and ,
al -] G

where /,m > 0; note that we use ({ to denote the vector (ey,...,¢;). We might label
multiple edges with one of the formulae that the associated atom occurrences form in a
derivation.

We extend the double line notation to collections of isomorphic flows. For example,

for m > 0, the following diagrams represent the same flow:

LT 1Y s LT

We observe that the flow of every SKS derivation can always be represented as a col-
lection of m > 0 connected components as follows:

| TT 1 1l TT
AV AT AYAT] - A YAT Y AT
| L1 | | L1 |

such that each edge in flow ¢, is associated with some occurrence of some atom 4;, and
each edge in flow ¢, is associated with some occurrence of atom 4;. Note that it might
happen that for i # j we have ; =a;. If we do not insist on dealing with connected
components, we can adopt the same representation as above and stipulate that i # j
implies a; Za;,4;. This would mean that the derivation only contains occurrences of
atoms dy, ..., 4,,, such that these atoms and their dual are all mutually distinct.

Note that no matter how we assign a polarity, all the edges in ¢; and all those in ¢; are
respectively mapped to dual polarity values. Given a polarity assignment, we talk about
negative and positive rule instances of (co)weakening and (co)contraction rules, according
to whether the edges incident with the associated vertices map to — or +, respectively.

In the following, when informally dealing with derivations, we freely transfer to them
notions defined for their flows. For example, we can say that an atom occurrence is nega-
tive for a given polarity assignment (if the edge associated with the atom occurrence maps
to —) or that two atom occurrences are connected (if the associated edges belong to the
same connected component). In fact, one of the advantages of working with flows is that
they provide us with convenient geometrical notions.

As we mention at the beginning of this section, atomic flows help in selectively substi-
tuting for atom occurrences. In fact, given a derivation and its associated flow, we can use
edges and boxes to individuate atom occurrences in the derivation, and then possibly sub-
stitute for them. For example, let us suppose that we are given the following associated
derivation and flow:

b= ava fva Vv a and
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We can then distinguish between the three occurrences of 4 that are mapped to edge 1 and

the one that is not, as in
f
(anf)vian -
a

o= ava fva' v al|

we can also substitute for these occurrences, for example by {a!/f}; such a situation occurs
in the proof of Theorem 11. Note that simply substituting f for 4! would invalidate this
derivation because it would break the cut and weakening instances; however, the proof
of Theorem 11 specifies how to fix such broken instances.

We generalise this labelling mechanism to boxes. For example, we can use a different
representation of the flow of @ to individuate two classes 2% and 2% of atom occurrences,

as follows:
(anf) i
AV an
T \T/ ‘

o= ava fva® v af and é
— A
a? 4% |

f
In order to define the notion of cut-free form (Definition 23), we need the following
proposition, which we state here because it constitutes a good exercise about atomic flows.
Note that, in the following, we use several boxes labelled by ¢: this means that we are
dealing with several copies of the same flow ¢.

Notation 2. Given a formula A in a derivation whose associated atomic flow contains a
flow ¢, we indicate with 2% every occurrence of the atom a in A whose associated edge is
in . So, as in the following Proposition 3, A{a? /B,a? / B} stands for the formula A where
the atom occurrences of @ and its dual, whose associated edges are in ¢, are substituted
with formula B and its dual, respectively.

Proposition 3. Given a derivation

o|sks

let its associated flow have shape

I

such that ¢ is a connected component each of whose edges is associated with atom a or a; then,
for any formula B, there exists a derivation

A{a?/B,a? B}
T||sKs

A'{a?/B,a? B}
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whose associated flow is

m
where m is the number of atom occurrences in B; moreover, the size of V depends at most
linearly on the size of ® and quadratically on the size of B.

Proof. We can proceed by structural induction on B and then on ¢. For the two cases of
B=CvD and B= C D we have to consider, for each vertex of ¢, one of the following
situations:

t t
—A _
CvC DvD f f f f CvC DvD m%
s = = —V— —A— v v \Y
) R R S A
CVDV<C‘AD)
and their dual ones. O

Notation 4. In the hypotheses of Proposition 3, we can describe ¥ as ®{a?/B,i? B};
one of a? /B or 4% /B might be missing, when no identity or cut vertices are present in

4, NORMALISATION STEP 1: SIMPLE FORM

The first step in our normalisation procedure, defined here, consists in routine deep-
inference manipulations, which are best understood in conjunction with atomic flows.
For this reason, this section is a useful exercise for a reader who is not familiar with deep
inference and atomic flows.

In this section, we define proofs in ‘simple form’, in Definition 7, and we show that
every proof can be transformed into simple form, in Theorem 11.

Let us establish the following conventions (they are especially useful to simplify our
dealing with threshold formulae, in the next sections of the paper).

H n
Notation 5. We use 47, to denote the vector (a,,,4,,,1,-.-,4,).

Convention 6. When we talk about a set of distinct atoms, we mean that no two atoms
are the same or dual.

Definition 7. Given a proof IT of A in SKS, if there exist » > 0 distinct atoms a, ..., a
such that the proof and its atomic flow have shape, respectively,

n

t t

alvjfl/\m/\aanf” ; ;
o and e TAYAL YA YA ]
AVt HE
f_‘

f

we say that IL is in simple form (over a7) and that U is a simple core of II.

Proofs in simple form are such that all the cut instances are connected to identity in-
stances via flows, the ¢, ones above, that only have one lower edge. The idea is that, in a
proof in simple form, we can substitute formulae for all the occurrences of atoms 4; that
map to some edge in ¢,, without altering the conclusion of the proof. Of course, doing
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this would invalidate identity and cut instances, but we actually only need the simple core
of the proof.

Our normalisation procedure essentially relies on gluing together simple cores, where
we substitute the 4; atom occurrences that map to edges in ¢»; with certain formulae called
‘pseudocomplements’ (see Section 5 and Definition 23).

0

1 is cut-free.

Remark 8. A proof in simple form over a

In order to prove Theorem 11, we need two facts, Proposition 9 and Lemma 10.
In the following (routine) proposition, we use the switch rule s to ‘push outside’ or
‘pull inside’ a formula A, relative to a context K{ }.

Proposition 9. For any context K{ } and formula A, there exist derivations whose size s
less than |K{A}|* and have shape

K{A} ANK{t}
s} and [l4s}
AVEK{f} K{A}

Proof. We only build the derivation at the left in the claim, the construction being dual
for the one at the right. We reason by induction on the number 7 of v-A alternations
in the formula-tree branch of { } in K{ }. It » = 0, then K{A} = AvK{f}. If n > 0,
consider
H{A}
s~ B

AvH{f} var o

Av(H{f} AB)
for some context H{ } and formulae B and C, such that K{ } = (H{ }AB)v C and the
number of V-A alternations in the formula-tree branch of { }in H{ }isn—1. The number
of s instances is 7, and we have that n < |K{f}|. O

Note that the atomic flows of the derivations in the previous proposition only consist
of edges because no structural rules appear.

To prove Theorem 11, we could now proceed as follows. Given a proof, we assign it
(and its flow) an arbitrary polarity, under certain assumptions that we can always easily
satisfy. We then focus on the negative paths connecting identity and cut vertices. If cocon-
traction vertices lie along these paths, we have a potential problem because some atoms
in the conclusion of the proof might be connected to atoms in some identity instances.
This would prevent us from substituting pseudocomplements, as previously mentioned,
because by doing so we would alter the conclusion of the proof.

However, we can solve the problem by replacing each cocontraction vertex by an ap-
propriate flow involving identity, cut and contraction vertices, in such a way that the only
contraction vertex so introduced is positive. Actually, the lemma below takes a more rad-
ical approach, which simplifies exposition and also has broader application: we replace
all negative contraction and cocontraction instances. This unnecessarily bloats the proof,
but still stays well inside polynomial bounds.

Lemma 10. Given any derivation
A

3sks
B

we can, in linear time in the size of ®, construct a derivation
A

[|lsks
B
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such that its atomic flow has shape

INEN
TAVA Ll =<,
L]

and such that no two atoms associated with €, ..., €, are dual, for some | > 0.

Proof- Assign a polarity to the flow of ® such that no two dual atoms are both associated
with negative edges; then replace each negative contraction instance as follows:

A
\IJHSKS

t
A ——n[ava]

ava

\I/“SKS s
a

iVa —Alava
K{u} becomes K ana [ava]

62 S—— v -1 -
an[(ana)va] v a
R

N4

\SKS - -
aha ala
- V-

f f

\IJ/

SKS

This corresponds, in the flow, to replacing each negative contraction vertex as follows:

1 2
f becomes

Proceed analogously with negative cocontraction instances. O

1 2

We are now ready to prove the main result of this section.

Theorem 11. Given any proof II of A in SKS, we can, in cubic time in the size of 1I,
construct a proof of A in simple form.

Proof. We proceed in three steps.
.o C sks
(1) By Lemma 10, we can transform II, in linear time in its size, into a proof E R

whose flow has shape

—rvALle
[Ty

1

where [,m > 0 and such that no two atoms associated with ¢, ..., ¢; are dual.
For 1 < i < m, we successively transform IT' as follows, for some I1”, , &', K{ }
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and H{ }:

becomes

v
K{f)

@{d‘x/f}”
H{i/\f}
t
d
A

) L ) J[sks )
This way, we obtain, in linear time, a proof lTl , whose flow is

—

= rAVA

I Ll

and whose size is smaller than |IT'|.

15

(2) Thanks to Proposition 9, for 1 <7 < [, we successively transform II” as follows,

for some ¥, ¥’ and K'{ }:

} becomes

t

ava‘i
[ava]n ||
[ava]AK' {1}

we also apply the dual transformation for each ai instance. This way, we obtain

a proof
t t
~€1 ~€]
ﬂlvﬂl dlvﬂl
\PN'
bl
—€ -€;
aNa,! a;Na
AV 8 Ses U VooV ! /
f f

whose flow is the same as that of II"”” because each transformation conserves the
flow. If [I"”’| = n, and given that n > 2/, the size of each derivation introduced
by virtue of Proposition 9 is at most 47%. So, each of the 2/ transformations
increases the size of the proof by O(n?), which makes for a total complexity of

o(n?).
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(3) Consider b7 such that by, ..., b, are distinct and {a,...,q;} = {b,,..., b,}. We
can build, in linear time, the proof
t t
N —
b vb, b,vb,

{1}
Jnesenfa v

\I}// y
(0 A1) vy 1)

et

[blAélv“.vbn/\Ln}

[a,va;'

A v

f f

which is in simple form over b7. We can then obtain a proof in SKS in time
O(n?), because of Proposition 1. 0

The transformation in Step (1) in the previous proof is a case of ‘weakening reduction’
for atomic flows, studied in [GGO8]. In Section 7 we comment more on this.

Remark 12. In general, given a proof IT and by the construction in the proof of Theo-
rem 11, we can obtain several different simple forms from II. In fact, apart from permu-
tations of rule instances, commutativity and associativity, the simple forms depend on
the choice of a polarity assignment (Lemma 10).

5. THRESHOLD FORMULAE

We present here the main construction of this paper, z.e., a class of derivations I that
only depend on a given set of atoms and that allow us to normalise any proof contain-
ing those atoms. The complexity of the I' derivations dominates the complexity of the
normal proof, and is due to the complexity of certain ‘threshold formulae’, on which the
[ derivations are based. The I' derivations are constructed in Definition 19; this directly
leads to Theorem 21, which states a crucial property of the I' derivations and which is the
main result of this section.

Threshold formulae realise boolean threshold functions, which are defined as boolean
functions that are true if and only if at least £ of 7 inputs are true (see [Weg87] for a
thorough reference on threshold functions).

In the following, | x | denotes the maximum integer 7 such that 7 < x.

There are several ways of encoding threshold functions into formulae, and the problem
is to find, among them, an encoding that allows us to obtain Theorem 21. Efficiently
obtaining the property stated in Theorem 21 crucially depends also on the proof system
we adopt.

The following class of threshold formulae, which we found to work for system SKS,
is a simplification of the one adopted in [AGP02].

Definition 13. Consider » > 0, distinctatomsa,, ..., a,,andlet p =|n/2|and g = n—p;
for k > 0, we define the threshold formulae GZ a’! as follows:
e forany n>0let 6] a} =t;
e forany n>0and k> n let 6} a} =f;
CHENETF
e forany n>1and0<k <7 let 67 af =Vitjok (efaf /\G?a” )

p+1
0<i<p
0<7<g
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0ia,b)=t
01(a,b) = (61(a) A 05(8)) v (B5(@) A 01(B) = (a 1)V (tn b)
=avb s
03(a,0) = 61(a) 1 61(2)
=anb
0(a,b,c) =t

)A03(5,0)) v (Bo(a) A 615, 0)) = (@nt)V (kA [(B A1)V (Enc)])

c

Bi(a,b,¢c) = (6i(a
avb
63(a,,¢) = (61(a) 7 61(b,¢)) v (B5(a) A 63(b, )
= (an[bvc])v(bnrc)
03(a,b,¢) = 01(a) AB3(b,c) = (an(brc))
=anbnrc
e‘g(a,b,c,d,e) =t ,
62(a,b,c,d,e) = (B3(a,b) A B3(c,d,e)) v (B(a, b) nB(c,d,e))
=avbvevdve |
63(a,b,c,d,e) = (B5(a, b) A B(c,d,e)) v (0i(a, b) B} (c,d,e)) v (63(a, b) O3 (c,d,e))
= (anb)v([avb]n[cvdve])v(cr[dve])v(dne) ,
(63(a,b)703(c,d,e)) Vv (6%(a,b) A O3(c,d,e)) Vv (03(a,b) A Bi(c,d,e))
e bafevdvel)e(las BInLlenfdeeheld
03(a,b,c,d,e) = (85(a, b) A B3(c,d,e)) Vv (B3(a,b) n6}(c,d,e))
= (anbr[(cnldve])v(dnre)])v([avb]rcrdnre)
eg(a,b,c,d,e) = eg(a,b)/\eg(c,d,e)
=anbnrcrdnre

GZ(a,b,c,d,e) =f

dne))v(crdne)

FIGURE 3. Examples of threshold formulae.

17

Compared to the definition in [ AGP02], we require i+ = k instead of i+ > k. The

semantics of the formulae does not change but their size is smaller and their structure

1S

much simpler, arguably benefiting further research. See, in Figure 3, some examples of

threshold formulae.

The only reason why we require atoms to be distinct in threshold formulae is to avoid
certain technical problems with substitutions in the definition of cut-free form, later on.
However, there is no substantial difficulty in relaxing this definition to any set of atoms.

The formulae for threshold functions adopted in [AGP02] correspond, for each choice
of k and 7, to \/l.> , 07 al. We presume that [AGP02] employs these more complicated

formulae because the formalism adopted there, the sequent calculus, is less flexible than
deep inference, requiring more information in threshold formulae in order to construct

suitable derivations.

Remark 14. For n >0, we have 67 a7 =a,v---va, and 0} a} =a, r---ra,,.



18 PAOLA BRUSCOLI, ALESSIO GUGLIELMI, TOM GUNDERSEN, AND MICHEL PARIGOT

The size of the threshold formulae dominates the cost of the normalisation procedure,
so, we evaluate their size. We leave as an exercise the proof of the following proposition.

Proposition 15. Foranyn>0andk >0, |6} a}| < all.

n
|n/2]+1
Lemma 16. The size of efn/2J+1 al is 5 Ologn).

Proof. Observe that |67 a}

< en+1 dn-ﬁ-l‘. Let p =|n/2] and g = n— p and consider:

q
1“1|—ZZ+J =p+1 ‘9 a ‘—i—‘@ p+1‘)
0<i<p
0<;<g

3) < Ditj= p+1
0<i,j<q

q q
<2q+1) ‘etq/zw"l‘ ’

P+ 87 )

where we use Proposition 15. We show that, for » =2/(log3 —log2) and for any n > 0,

hlogn

we have |9 all | <n We reason by induction on 7; the case n = 1 trivially

[n/2]+1
holds. By the inequality (3), and for 7 > 1, we have
hlog(n—|n
‘6 /241 @1 ) <2n—|n/2]+1)(n—|n/2))" ostn=n/2])
<n nblog(Zn/S) hlogn—h(log3—log2)+2 — nblogn . 0

Theorem 17. For any k > O the size of 07 afl is n Ollogn),
Proof. Tt immediately follows from Proposition 15 and Lemma 16. O

Given a threshold formula 67 a;’, we can consider, for each 4; such that 1 </ < #,
the formulae (67 a7){a, /f} and ( b1 @ Ha;/t}: we call both of them, informally, ‘pseu-
docomplements’ of a;. The reason for this name is that we can manage to replace, in
a given proof, all occurrences of those 4; that appear in cut instances with the pseudo-
complements of 4;,. The cut instances and their corresponding identity instances are
then removed, leaving us with derivations whose premiss and conclusion contain each
a threshold formula. Moreover, the k-level of the threshold formula in the premiss is
one less than the k-level of the threshold formula in the conclusion. This way, we ob-
tain several derivations, corresponding to increasing values of &, that we are able to stitch
together until we get a normalised proof.

All this, of course, needs clarification and for many it might be helpful only after
having grasped the full proof in its technical form. However, we think that it is conve-
nient here to provide a summary of the main constructions allowing for this stitching
operation. Let us read derivations top-down; the following are the steps that we need to
perform, for 0 < & < n.

(1) Build

n n
eal

a V(e” ){ﬂz/f}
i.e., create, from a k-level threshold formula, a disjunction between 4; and its
pseudocomplement (67 a7 ){4, /f} (Proposition 22); then replace the pseudocom-
plement into 4;, for each identity instance.
(2) Increase the k-level by using the derivations

(G ”){az/f}
(O, @ ){ﬂz/t}
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(Theorem 21); these are the I derivations mentioned in the introduction to this
section.

(3) For each cut instance, collect the conjunction between 4; and its pseudocomple-

ment (07 a}){a;/t}; then build
a; MO, @) /)
[ )
04l

i.e., create a (k + 1)-level threshold formula (Proposition 22).

The derivations mentioned above do not require any use of identity and cut, and allow
us to move, in 7 + 1 steps, from 07 a7 =t to 9"+1 a’} =f, which is the secret to success.
The constructions in 1 and 3 are deep-mference routine and introduce low complexity.
We deal now with the crucial step 2, by designing Definition 19, and then checking it
carefully, so as to get the property stated in Theorem 21.

Definition 19 is technical, but its philosophy is simple; all one has to do to build the
derivations required by Theorem 21 is:

e identify the atom occurrences that must occur in the premiss and that must not

occur in the conclusion and remove them using coweakening, and
identify the atom occurrences that must occur in the conclusion and that must
not occur in the premiss and add them using weakening.
We have implemented Definition 19 as a program [ Gug09]. It can be useful to read the
definition together with the examples in Figures 4 and 3, which have been generated by
the program.

Remark 18. Given n > 1,let p =|n/2|and g =n—p. For 0 < [

the following derivation is well defined:

k<gand1<I<p,

q
Nap_yNapgheeha Aek p+1

Af

g 05 a)a) /(Y r6lay,,
f

Analogously, forO< k< pand p+1</ <

ep p (q p+1){“l/f}

al/\...
=wl

P p
Gkal/\a

t
< n, we can define the following derivation:

prt N Adp g Nap g A ha

n/\f

wl =wl

f

t

Both classes of derivations are used in Definition 19.

Definition 19. Consider 7 > 0, distinct atomsa,, ..

.a,,andlet p =|n/2]andg = n—p.

e Forn>1and 1</ < n, we define the derivations 'Y‘” a and A” ;47 as follows:
ep P a, [fyn0? g7
WT( ){1/5 k—p “p+1 fp<k<nand!/ <p
™" n_ ep P f
£ otherwise
and
eq fO0<k<gandl<p
E %o+t
A" f
k1% wl——  if0<k<pandp<!
ek a;

otherwise
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P a= v
O,ld_tv v

b cvdve

5 a=bv vj; Alevdvel v f
Maa="b <[t b] [evd ]> CAfdvelv(dne)
frb f

Mia= (b/\[chVe])V<|:tV%i|A[(cA[dVe])V(dAe)])VTV

chdne
AbA[cvdve
ﬁJa::(bARCA[dVeDV(dA€ﬂ>V<[tV%%}AcAdAe>vi___l?____l ,
fabna[(ca[dve])v(dnre)]
f

Mia=(brcandne)v

bl

fabacadne
f

f f
dve avb

f f f
5 — v
ﬂﬁa__<pvb] Pvdve}>vdvevdAevﬂAb

s f f faldve]
rL3¢__<aAbA_tvdve V{[avb]a dvevdAe v(dnre)v . ,

r,a= <a/\b/\ :dvevdLDv<[avb]A[(dAewa[ive]vaAdAe |

Ae f

fA[ive]]>v[wb]AffAdAe

5
QJa._

F53a-_tv

rLﬂZQMbAWA@V

anbafadne

MR.a=
5,3 f

r§54_<[avb [tv-v%])v(wx[tv-])vdvﬁ ,
Fisa::<aAbA tv——v—— > <Asz [(CA[tV;%]> ]) (CAd)Vigj ]
bl b e

ri,sd:<aAbA (cAd)v dTD [evb]rendnt ;

anbnrcAndAf

MR.a=
55 f

FIGURE 4. Examples of I'Z 2 where a =(a,b,c,d,e).
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e For bk > 0and 1 </ < n, we define the derivations F” 40 recursively on 7, as
follows:
- ré,1(“1) =t
- fork >0, F}C’l(al) =f;
- fork>n, T}, 4l =f;
- forn>1and/€ n, let
Vigjor (77, af n6%an VT2 aivar ar i l<p

0<i<p
0</<q

L p_r q n n :
\/z+]_:1e (91. a /\I'].J_paﬁl)ka ailvAy, el ifp<l

0<i<p

0<j<q

n n __
r/«,1"1 =

Example 20. See, in Figure 4, some example of derivations I'? ;@1 - Note that, for clarity,

we removed all instances of the trivial derivations 'T‘f | a% = 'T‘% ,a 'T‘3 "1 = wT— We
can do so because these derivation instances appear as disjuncts.

Theorem 21. Forany n>0, k > 0and 1 <[ < n, the derivation e, ay has shape

(GZ ai){a;/f}
|| {awl,awl}
and FZ’Z al|is nOlogn)

Proof. The shape of I 4 can be verified by inspecting Definition 19. For example, this
is the case when 7 > 1 and I <p<k<g,where p=|n/2]andg=n—p:
(9" aila/f}

[1” =

(0,2 ){ﬂz/t}

ep p f "
( P){ﬂz/} ) (67 aDla,/)76]_,ap, f
\/i+;‘A:k r,t"l” /\9 p+1 Vwl . leq g
25\ Dl
(Remember that
brai=\/ (6/alr6la,,)
i+j=k
0<i<p
0<j<q

and 67 a7 = t.) General (co)weakening rule instances can be replaced by atomic ones
because of Proposition 1. The size bound on 7, a7 follows from Proposition 1 and
Theorem 17. O

6. NORMALISATION STEP 2: CUT-FREE FORM

In this section we define the cut-free form of proofs, based on proofs in simple form.
Proofs in cut-free form have no cut instances, but can have coweakening ones, which
prevent these proofs from being analytic (in the sense that atoms appear in premisses
only if they do so in conclusions). Theorem 24, the main result of the section, shows how
to obtain a cut-free proof from any proof. Most of the i ingenuity of quasipolynomially
normalising an SKS proof into one in analytic SKS resides in going from a simple form to
a cut-free one. Removing coweakening instances from a cut-free form is easy; we dedicate
Section 7 to this.
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Before defining the cut-free form, we need to establish the following fact.

Proposition 22. For any formula A and atom a, there exist derivations whose size is cubic
in |A| and that have shape

A anA{a/t}
||{awl,acl,s} and ||{awT,acT,s}
avA{a/f} A
Proof. 1f there are no occurrences of a in A, the desired derivations are
A anA
fvA and  thA
avA A

If there are b > 0 occurrences of a in A, obtain, by repeatedly applying Proposition 9, the
following derivations:

A
(h—1)-ac]
{s}

aV---Va

AA{a/f})

ﬂ/\.../\ﬂ

{s}
A

and

|:(h—1)»acl vA{a/f}}

If |A| = n, the size of the desired derivations is O(7*) because we have to apply Proposi-
tion 9 at most O(7) times.

Definition 23. For n > 0, let IT be a proof in simple form over a7, such that it and its
atomic flow have shape

t t
alvpifsll\m/\anvoif” . .
Y and e TAYAL YA I YA ]
Aval/\a'f)‘vmvanAdf” H
f f

for some derivation ¥. For0<i <n+1,let 0, = 91’.’ a’. For 0 < k < n, we define the
derivations

O
¥, [|sKs\aif}
Av ek-s-l
as
0
(n—1)-c] k
g, 6,
[{awlacls} A «+- A l{aw],ac],s}
ﬂlvgk{dl/f} dnvek{ﬂn/f}
T, [[SKS\{aiT}
[ Opla,/f} Oy{a,/f}
ay A I—Z,1 ay “{awl,awT} a, A I—Z,n af ”{awl,aWT}
4 Opi1far/t} v Opriia,/t}
\%
' {awT,acl,s} H{awT,acT,s}
k1 k+1
(1)<l
L 6/€+1 J
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T é,
o AvA”
// I HT

I

lo ]
/ |
y
1 AVA T YA
AllT4

=

{

2

¢/
7

NI

Y

Al

FIGURE 5. Atomic flow of a proof in cut-free form.

where ¥, = \I/{dfsl/ﬁk{al/f}, .. ,zif”/@k{an/f}} and where we use Proposition 22. We
define the cut-free form of 11 as the following proof in SKS\ {ai}:

04

@,
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(We recall that @y =tand 0, =f.)

Theorem 24. Given any proof 11 of A in SKS, we can construct a proof of A in SKS\ {ail}
in time quasipolynomial in the size of IL

Proof. By Theorem 11 we can construct from II, in polynomial time, a proof II' of A
in simple form. We can then proceed with the construction of Definition 23, to which
we refer here. For 0 < k < n, constructing @, requires quasipolynomial time because
of Propositions 1, 3 and 22 and Theorems 17 and 21, and because obtaining ¥;, from ¥
requires quasipolynomial time. Constructing the cut-free from of II' from @, ..., ®, is
done in polynomial time. O

Remark 25. In Figure 5, we show the atomic flow of the cut-free form obtained from a
proof IT in simple form. We refer to Definition 23. Let the following be the flow of the
simple core ¥ of II:

L

¢ ¢
TrAYA | YA ]
4] H H
where ¢ is the union of flows ¢, ..., ¢,, and where we denote by A the edges corre-

sponding to the atom occurrences appearing in the conclusion A of II. We then have
that, for 0 < k < 7, the flow of @, is ¢/, as in Figure 5, where ¢, is the flow of the
derivation W,. The flows of ®, and ®, are, respectively, ¢ and ¢/,.

7. NORMALISATION STEP 3: ANALYTIC FORM

Of special importance in this paper is the following proof system:
Definition 26. Analytic SKS is the system aSKS = SKS\ {ai,awT}.

For example, the system {s,m,=,ac|} polynomially simulates the system {s,=,c|},
and aSKS = {s,m,=,ai|,aw|,ac|,acT} polynomially simulates {s,=,i|,w],c|,cl} (where
i] is the nonatomic identity). In this section, we show that we can get proofs in analytic
SKS, i.e., system aSKS, in quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating co-
weakening rule instances. This can be done by transformations that are the dual of those
over weakening instances, employed in Step (1) of the proof of Theorem 11.

Theorem 27 (Jetdbek [Jet09]). Given any proof 11 of A in SKS, we can construct a proof
of A in aSKS in time quasipolynomial in the size of 1L

Proof. By Theorem 24, we can obtain, from II, a cut-free proof IT" of the same formula,
in quasipolynomial time in the size of II. We associate IT" with its atomic flow ¢, so that

we have a way to identify the atom occurrences in IT" associated with each edge of ¢, and
€

. . . a< .
substitute over them. We repeatedly examine each coweakening instance aw — in I/, for
t

some edge € of ¢, and we perform one transformation out of the following exhaustive
list of cases, for some I”, &, ¥, K{ } and H{ }:
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A
The process terminates in linear time on the size of IT' because each transformation elim-
inates some atom occurrences. The final proof is in aSKS. O

The transformations described in the proof of Theorem 27 are the minimal ones nec-
essary to produce a proof in aSKS. However, it is possible to further reduce the proof so
obtained. The transformations in the proof of Theorem 27, together with the one men-
tioned in Step (1) in the proof of Theorem 11, all belong to the class of weakening and
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aw|-ac]: KTz/l |12 acl-awT: Az —
aw|-aif: LLl — Ll ai-awT: FI — T1
aw|-aw1: I -

aw|-acT: 1/1\2 — 1T TZ acl-aw]: 1\1/2 — ll Lz

FIGURE 6. Weakening and coweakening atomic-flow reductions.

1,2

coweakening reductions studied in [GGO8]. In the rest of this section, we quickly outline
apossible, further transformation of the analytic form produced by those reductions, and
refer the reader to [GGO8] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations di-
rectly as atomic-flow reduction rules. These are special graph rewriting rules for atomic
flows, that are known to correspond to sound derivation transformations, in the follow-
ing sense. If @ is a derivation with flow ¢, and ¢ can be transformed into ¢ by one of the
atomic-flow reduction rules, then there exists a derivation ¥ whose flow is ¢ and such
that it has the same premiss and conclusion as ®. Moreover, ¥ can be obtained from @
by instantiating some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6.
The reduction rule labelled aw|-ai is employed in Step (1) in the proof of Theorem 11.
The reduction rules labelled acf-awT, ai|-awT, aw|-aw] and ac|-aw{ are employed in the
proof of Theorem 27, respectively as Case (4), (1), (2) and (3). If we apply the full set of
weakening and coweakening reductions until possible, starting from a proof in cut-free
form, we obtain a proof of the same formula and whose flow has shape

YA
T

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. FINAL COMMENTS AND FUTURE WORK

System aSKS is not a minimal complete system for propositional logic, because the
atomic cocontraction rule ac] is admissible (via ac, s, aif and cut elimination). Remov-
ing acT from aSKS yields system KS. A natural question is whether quasipolynomial-time
normalisation holds for KS as well. We would guess that cocontraction plays an essential
role in keeping the complexity low. For example, one can note in Figure 5 how cocon-
traction limits the size of the 7 pieces of derivation below each 0. If we had to expand
those cocontraction instances into a tree we would have an exponential blow-up. On
the other hand, an encouraging result in the opposite direction is contained in [Das14],
where the author obtains 7°0°818%) size proofs of the weak pigeonhole principle, using
deep-inference techniques to improve the previous bound for monotone proofs.

There is reason to believe that polynomial normalisation is achievable, because it is
possible to compute threshold functions with polynomial formulae. However, the hard-
est problem seems to be obtaining polynomial I'-like (cut-free) derivations with the prop-
erty of Theorem 21. We tend to think that polynomiality ought to be possible, and deep
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inference might be a helpful language for investigating and achieving it, because of its
flexibility in constructing derivations.

The normalisation procedure presented here is peculiar because it achieves its result by
using an external scheme, constituted by the threshold formulae and the I derivations,
which does not depend on the derivation to be normalised. Threshold formulae realise a
clever compositional mechanism built on top of cocontractions. It would be interesting
to interpret this or a similar mechanism computationally. We do not necessarily expect
an interpretation strictly following the Curry-Howard scheme, and there is little evidence
that the threshold construction studied here can be applied in the intuitionistic case. On
the other hand an essential ingredient of our construction, namely sharing by cocontrac-
tions, already allowed us to reach beyond the limitations of Gentzen-style proof theory:
in recent work fully lazy sharing has been achieved in a A-calculus within intuitionistic
deep inference [GHP13a, GHP13b]. For the authors of this paper and for some of their
colleagues this is an active research area.

It is possible to extend the mechanism investigated here to the more general notion
of normalisation that we called streamlining in [GGO8]; this has been done in [Gun09].
Streamlining is a top-down symmetric notion, that does full justice to the additional sym-
metry of deep inference, compared to Gentzen formalisms. Streamlined derivations en-
tail analytic proofs as a special case.

The results of this paper are, as mentioned previously, closely related to results about
the monotone sequent calculus MLK, through the translation between SKS and LK given
in [Brii06]. Atserias, Galesi and Pudlak show in [ AGP02] that MLK can quasipolynomi-
ally simulate LK over monotone sequents, and as shown by Jerabek in [Jer09], this implies
Theorem 24.

Furthermore, in [Jer12], Jerabek considers a conservative extension of MLK, called
MCLK, and shows how MCLK can quasipolynomially simulate LK over arbitrary formu-
lae. MCLK is defined by restricting LK to only allow cuts on monotone formulae. Like
MCLK, streamlined derivations are also a conservative extension of MLK and the two no-
tions are very similar. Exploring this will be the subject of future work.

Finally, we are interested in the normalisation theory of modal logics in deep inference,
and so we are naturally led to consider the methods presented in this paper to that purpose
as well.
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