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1 Basic Notions and Definitions

In this note I describe how to capture the kinematics of quantum causal evolution using a logic
called BV developed by the Calculus of Structures group at Dresden. The setting is discrete
quantum mechanics. We imagine a finite “web” of spacetime points. The points are events in
spacetime. They are viewed as verhtees in a directed acyclic graph (DAG); the edges of the DAG
represent causal links mediated by the propagation of matter. The fact that the graph is acyclic
captures a basic causality requirement: there are no closed causal trajectories.

The DAG represents a discrete approximation to the spacetime on which a quantum system
evolves. The graph is technically a dangling graph; there is a set of half edges - in addition to the
ordinary edges - divided into two disjoint subsets: the incoming edges and the outgoing edges. An
incoming edge has no initial point but has a terminal point, and dually for outgoing edges.

Definition 1.1 A spacetime graph G consists of:

1. a finite set P of points,

2. a finite set E of edges,

3. disjoint finite sets I and O of incoming and outgoing edges,

4. maps source, target from E to P , and

5. maps past : I −→ P and future : O −→ P .

We imagine particles propagating along the edges and engaging in interactions at the vertices.
The incoming and outgoing edges represent particles arriving from and going off to distant asymp-
totic regimes. In spirit these graphs are like Feynman diagrams. We say that an edge e immediately
precedes e′ if target(e) = source(e′). The reflexive, transitive closure of the “immediately precedes”
relation is pronounced “precedes” and is written e1 ≤ e2. Since the graph is acyclic this is clearly
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a partial order. We can define a similar relation between vertices and even between vertices and
edges. Incoming edges and outgoing edges can also be ordered - relative to each other and ordinary
edges - by the same relation in the evident way. No edges strictly precede incoming edges nor
do outgoing edges strictly precede any other edges. The precedence relation gives each spacetime
graph a causal structure.

A set of edges such that no two edges in the set are related by causal precedence is called a slice
or spacelike slice; these are anti-chains in the language of posets. A slice may be maximal or not.
Any subset of the incoming edges is a slice as is any subset of the outgoing edges. Given slices S1

and S2 we can define a partial order as follows:

S1 � S2 ⇐⇒ ∀p ∈ S1∃q ∈ S2 p ≤ q and ∀q ∈ S2∃p ∈ S1 p ≤ q.

This is the well known Egli-Milner ordering from concurrency theory in computer science.
The dynamics of quantum systems is described as follows. With each edge we associate a Hilbert

space H and a density matrix ρ associated with the subsystem on that edge. Such a density matrix
is a positive operator on H with trace less than or equal to 11. At each vertex we imagine that we
have an interaction, which may be any one of the following:

1. two, or more, subsystems coming together and interacting;

2. a subsystem breaking into pieces;

3. a subsystem being subject to a unitary transformation;

4. a subsystem being subject to a measurement;

5. a subsystem being partly discarded.

When subsystems come together we form the tensor product of their state spaces. If they have
no interaction we form the tensor product of their density matrices, otherwise we have a unitary
operator acting on the combined density matrices. When a system breaks apart we can have a
single density matrix for all the pieces; if, however, we wish to separate the density matrices of
the individual components we compute partial traces. This, of course, has the effect of removing
information about nonlocal correlations. A unitary transformation U acts on a density matrix ρ
by ρ 	→ UρU † and the effect of a measurement M is to apply a projector P : ρ 	→ PρP . The
most general physical transformation of a system is described by a superoperator, which is a trace-
nonincreasing completely positive map acting on density matrices. A well known theorem, the
Kraus representation theorem, states that every such map E can be written as

E(ρ) =
n∑

i

EiρE†
i

where the Ei are any linear operators such that

n∑

i

E†
i Ei ≤ I.
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Figure 1: A simple causal graph.

Now density matrices can be associated with any slice. If we keep all the data associated with
maximal slices then we cannot guarantee that information does not propagate between acausal
paths.

Consider the causal graph shown in figure 1. If we always take maximal slices then we cannot
be sure that the state of the density matrix at edge b does not influence the density matrix at edge
f . One solution to guaranteeing causal propagation is to only propagate along the individual edges.
In this scheme we would only allow the operators (completely positive maps) at the vertices to act
on density matrices associated with single edges. This would indeed guarantee causal propagation
but would kill all nonlocal correlations.

Consider the system shown in Figure 2. Here the density matrices ρb and ρc do not express
non-local correlations that might exist as a result of their common origin as subsystems of ρa.

The solution to the problem of ensuring causal evolution while preserving important non-local
correlations is to work with slices called locative slices defined below.

Fix any subset of incoming edges. These always form a slice. Suppose S is a slice and v is a vertex
such that all the incoming edges of v are in S. We write In(v) for {e|source(e) = v}∪{i|past(i) = v}
and similarly for Out(v). Then, clearly,

(S \ In(v)) ∪ Out(v)

is always a slice. It is the slice obtained by propagating S through v.

Definition 1.2 A locative slice is defined by induction.

• Any subset of the incoming edges of the graph forms a locative slice.

• If S is a locative slice and v is a vertex with In(v) ⊂ S then the slice obtained by propagating
S through v is locative.

The point is that if S is locative then the density matrix on S can be computed without ever
computing partial traces: no information is lost.

The idea behind the prescription for evolving can now be simply stated. Each edge - more
generally, each slice - has a density matrix. Pick a family of slices linearly ordered so that each

1We allow our density matrices to be not normalized.
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Figure 2: A system with non-local correlations.

slices differs from the immediately preceding one by propagating through one vertex. Work with
a family of locative slices and propagate the density matrix from one slice to the next using the
superoperator at the vertex through which the propagation is being carried out.

We have said before that every vertex corresponds to a superoperator. For trivial reasons
this superoperator will depend on the family of slices. Consider again the causal graph shown in
figure 2. One possible family of slices is a, bc, dc, de, f ; another one is a, bc, be, de, f . The type of
the superoperator at vertex v1 is:

T1 : DM(Ha) −→ DM(Hb ⊗Hc).

In the first slicing, the type of the superoperator at v2 is

T2 : DM(Hb ⊗Hc) −→ DM(Hd ⊗Hc)

while with the second slicing we get the type:

T2 : DM(Hb ⊗He) −→ DM(Hd ⊗He).

Each version of T2 is padded out with the appropriate identity operators: the “real action” of
T2 transforms the b-piece of the density matrix into the d-piece. The important point is that
superoperators at spacelike separated vertices commute.

One can now state the prescription more precisely. In order to compute the density matrix for
an edge e, one first computes the density matrix on the minimal - in the Egli-Milner ordering -
locative slice containing e, then one takes the appropriate partial traces.

Suppose L is a locative slice and u and v are two minimal - in the causal order - vertices above L.
Clearly u and v are acausal with respect to each other so their superoperators commute. Thus we
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can go L −→ Lu −→ Luv or L −→ Lv −→ Luv. Clearly Lu, Lv and Luv are all locative and the density
matrix on Luv will be the same calculated either way. We can piece together such “diamonds”
inductively and prove slicing independence by an easy inductive argument. The fact that we are
calculating the density matrix at an edge by working with the minimal locative slice guarantees
causal propagation: essentially because the only vertices that can affect the outcome are to the
causal past of the edge. It is not hard to formalize these observations.

What this framework does not do very well is to deal with spatially distributed pure states of a
single subsystem; for example the states that arise when one uses a Mach-Zedner type interferometer
as a beam splitter. That will be the subject of later work.

2 A Logic for Causal Propagation: Problems

In the previous section I described the “physics” of discrete quantum causal propagation. Here I
want to describe a logic capturing the essence of the concept of “locative” slice. The idea is to have
a propositional logic where the atoms represent edges, vertices correspond to axioms and locative
slices correspond to derivable sequents.

The key unit of deduction that we [BIP03] took originally is the sequent; its typical form is:

A1, A2, . . . , An  B1, B2, . . . , Bm.

Here the atoms are names of edges appearing in some causal graph. We note that for purposes of
this paper sequents should always be considered “up to permutation”, i.e. one may rearrange the
order of premises and conclusions as one sees fit. Our system will have only one inference rule,
called the Cut rule, which states:

Γ  ∆, A Γ′, A  ∆′

Γ,Γ′  ∆,∆′

Axioms are of the form A1, A2, . . . , An  B1, B2, . . . , Bm, where A1, A2, . . . , An are the incoming
edges of some vertex in our causal graph, and B1, B2, . . . , Bm will be the outgoing edges. There
will be one such axiom for each vertex. For example, consider Figure 3. Then we will have the
following axioms:

a
1
 c b

2
 d, e, f c, d

3
 g, h e

4
 i f, g

5
 j h, i

6
 k

where we have labelled each entailment symbol with the name of the corresponding vertex. The
following is an example of a deduction in this system of the sequent a, b  f, g, h, i.

b  d, e, f

a  c c, d  g, h

a, d  g, h

a, b  e, f, g, h e  i

a, b  f, g, h, i

As a first attempt at capturing quantum evolution on a causal graph G axiomatically we Then
one would (tentatively) define a set ∆ of edges to be valid if there is a deduction in the logic
generated by G of Γ  ∆ where Γ is a set of initial edges.

However, with this notion of validity, we would fail to capture all locative slices, and thus our
tentative notion of validity will have to be modified. For example, consider the dag underlying the
system of Figure 2 shown in Figure 4.
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Figure 3: A typical causal graph

Corresponding to this dag, we get the following basic morphisms (axioms):

a  b, c b  d c  e d, e  f.

Evidently, the set {f} is a locative slice, and yet the sequent a  f is not derivable. The sequent
a  d, e is derivable, and one would like to cut it against d, e  f , but one is only allowed to cut
a single formula. Such “multicuts” are usually expressly forbidden, as they lead to undesirable
logical properties [Blu93]. However, one viewpoint is that it is time to think about logics with such
multicuts and face up to their consequences rather than just avoiding them. That is the subject of
other discussions: we will not pursue it further here.

Physically, the reason for this problem is that the sequent d, e  f does not encode the informa-
tion that the two states at d and e are correlated. It is precisely the fact that they are correlated
that implies that one would need to use a multicut. To avoid this problem, one must introduce some
notation, specifically a syntax for specifying such correlations. We will use the logical connectives of
the multiplicative fragment of linear logic [Gir87, Gir95] to this end. The multiplicative disjunction
of linear logic, denoted � and called the par connective, will express such nonlocal correlations. In
our example, we will write the sequent corresponding to vertex 4 as d�e  f to express the fact
that the subsystems associated with these two edges are possibly entangled through interactions in
their common past.

Note that whenever two (or more) subsystems emerge from an interaction, they are correlated.
In linear logic, this is reflected by the following rule called the (right) Par rule:

Γ  ∆, A,B

Γ  ∆, A�B

Thus we can always introduce the symbol for correlation in the right hand side of the sequent.
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Figure 4:

Notice that we can cut along a compound formula without violating any logical rules. So in the
present setting, we would have the following deduction:

a  b, c b  d

a  c, d c  e

a  d, e

a  d�e d�e  f

a  f

All the cuts in this deduction are legitimate; instead of a multicut we are cutting along a compound
formula in the last step.

The above logical rule determines how one introduces a par connective on the righthand side
of a sequent. For the lefthand side, one introduces pars in the axioms by the following general
prescription. Given a vertex in a multigraph, we suppose that it has incoming edges a1, a2, . . . , an

and outgoing edges b1, b2, . . . , bm. In the previous formulation, this vertex would have been labelled
with the axiom Γ = a1, a2, . . . , an  b1, b2, . . . , bm. We will now introduce several pars (�) on the
lefthand side to indicate entanglements of the sort described above. Begin by defining a relation
∼ by saying ai ∼ aj if there is an initial edge c and directed paths from c to ai and from c to aj .
This is not an equivalence relation, but one takes the equivalence relation generated by the relation
∼. Call this new relation ∼=. This equivalence relation, like all equivalence relations, partitions the
set Γ into a set of equivalence classes. One then “pars” together the elements of each equivalence
class, and this determines the structure of the lefthand side of our axiom. For example, consider
vertices 5 and 6 in Figure 3. Vertex 5 would be labelled by f�g  j and vertex 6 would be labelled
by h�i  k. On the other hand, vertex 3 would be labelled by c, d  g, h.
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Just as the par connective indicates the existence of past correlations, we use the more famil-
iar tensor symbol ⊗, which is also a connective of linear logic, to indicate the lack of nonlocal
correlation. This connective also has a logical rule:

Γ  ∆, A Γ′  ∆′, B
Γ,Γ′  ∆,∆′, A ⊗ B

But we note that unlike in ordinary logic, this rule can only be applied in situations that are
physically meaningful. We will say that two deductions π and π′ are spacelike separated if all the
the vertices of π and π′ are pairwise spacelike separated. In the above formula, we require that the
deductions of Γ  ∆, A and Γ′  ∆′, B are spacelike separated. This restriction of application of
inference rules is similar to the restrictions of ludics [Gir01].

Summarizing, to every causal graph G we associate its “logic”, namely the edges are considered
as formulas and vertices are axioms. We have the usual linear logical connective rules, including the
cut rule which in our setting is interpreted physically as propagation. The par connective denotes
possible correlation, and the tensor lack of correlation. Note that every deduction in our system
will conclude with a sequent of the form Γ  ∆, where Γ is a set of initial edges.

Now one would like to modify the definition of validity to say that a set of edges ∆ is valid if
in our extended logic, one can derive a sequent Γ  ∆̂ such that the list of edges appearing in ∆̂
was precisely ∆, and Γ is a set of initial edges. However this is still not sufficient as an axiomatic
approach to capturing all locative slices. We note the example in Figure 5.
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Figure 5: Induced entanglement

Evidently the slice {f, g} is locative, but we claim that it cannot be derived even in our extended
logic. To this causal graph, we would associate the following axioms:

a  c, h b  d, e c, d  f h, e  g

Note that there are no correlations between c and d or between h and e. Thus no �-combinations
can be introduced. Now if one attempts to derive a, b  f, g, we proceed as follows:
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a  c, h b  d, e

a, b  c ⊗ d, h, e

c, d  f

c ⊗ d  f

a, b  h, e, f

At this point, we are unable to proceed. Had we attempted the symmetric approach tensoring
h and e together, we would have encountered the same problem.

The problem is that our logical system is still missing one crucial aspect, and that is that
correlations develop dynamically as the system evolves, or equivalently as the deduction proceeds.
One approach that we have considered is to let the axioms evolve dynamically. I feel that this is a
very unsatisfactory hack and puts the dyanmics in from the outside; though this “works” I cannot
see what we learn from it. For a while I was convinced that there was no choice but to do it this
way. However, Alessio Guglielmi showed me the logic of the next section which seems to have the
features that we need.

3 The Logic BV and Quantum Evolution

We take the system CBV described as follows. There are atoms, which we take to be purely positive
though in general one has positive and negative atoms; and there are structures which are to be
thought of as compounds. The syntax of structures are as follows:

S ::== A|[S, . . . , S]|〈S, . . . S〉|(S, . . . , S)|0.

The special atom 0 is a unit for the connectives [, ], 〈, 〉 and (, ). The connectives themselves are
associative and commutative.

We use the following rules: for cut we have 0
[a,a] and for axiom we have (a,a)

0 . We do use
negated atoms in our physics application so far; instead we will introduce axioms for vertices as
in the previous section. This logic is not based on sequent calculus notions; instead it uses deep
inference, which allows one to rewrite inside a term. The connectives are all commutative and
associative. The following switch rule is very useful:

(R, [T,U ])
[(R,T ), U ].

The remaining two rules are

〈[R,U ], [T, V ]〉
[〈R, T 〉, 〈U, V 〉] and

(〈R, U〉, 〈T, V 〉)
〈(R,T ), (U, V )〉 .

They are enigmatically named q ↓ and q ↑ respectively.
We use the notation α −◦ β to mean that we can give a derivation of β starting from α on top.

However, we usuually build the proofs from the bottom going up. As a warm-up for novices (like
me) I will show 〈R, T 〉 −◦ [R,T ].

〈R, T 〉
〈[R, 0], [0, T ]〉
[〈R, 0〉, 〈0, T 〉]

[R,T ]
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We will use this as a lemma in the next proof.

Now turning to the causal graph of figure 5 we can introduce axioms as follows: 〈c, d〉
a , 〈e, f〉

b ,
g

〈c, e〉 and h

〈d, f〉 . Now we show that 〈g, h〉 −◦ [a, b]; in order to see this in the spirit of the

last section we have to read the derivations backwards. Everthing in this calculus seems to have a
beautiful symmetry!

〈g, h〉
〈g, 〈d, f〉〉
〈g, [d, f ]〉

〈〈c, e〉, [d, f ]〉
〈[c, e], [d, f ]〉
[〈c, d〉, 〈e, f〉]

[〈c, d〉, b]
[a, b]

Reading the proof from the bottom up the justifications are: graph axiom, graph axiom, q ↓,
lemma, graph axiom, lemma and graph axiom.

One can easily see that - at least for this graph - there are no derivations of non locative slices
and we have got the derivation that we wanted without the time dependence. The key seems to be
the appearance of a third connective, which mediates between the other two.

Recently Abramsky and Coecke have shown a very nice and quite tight connection between
compact closed categgories with biproducts and quantum mechanics. The logic of compact closed
categories has long been looked down upon, especially by those enamoured of linear logic, but now
it is clear that we need to take compact closed proof nets seriously. A recent paper by Abramsky
and Duncan does just that; it gives a typed language for expressing quantum algorithms. Using
compact closed category corresponds, roughly speaking, to allowing multicut. This would solve the
problems associated with expressing correlation but it would not deal with the time dependence of
entanglement. The problem with the induced entanglement is something that only this logic with
its three connectives seems to solve in a nice way. What is the underlying category theory?

Acknowledgements

Instead of thanking all my famous friends and name dropping shamelessly I will thank the people
who actually helped me to understand this, hopefully they will also be famous one day: first and
foremost Alessio Guglielmi who saw this logic in the middle of my babble about entanglement and,
secondly Ross Duncan who worked out a nice treatment of entanglement swapping in this logic.

References

[BIP03] R. F. Blute, I. T. Ivanov, and P. Panangaden. Discrete quantum causal dynamics. Inter-
national Journal of Theoretical Physics, 2003. in press.

[Blu93] R. Blute. Linear logic, coherence and dinaturality. Theoretical Computer Science, 115:3–
41, 1993.

10



[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir95] J.-Y. Girard. Linear logic: its syntax and semantics. In J.-Y. Girard, Y. Lafont, and
L. Regnier, editors, Advances in Linear logic, number 222 in London Mathematics Society
Lecture Note Series, pages 1–42. Cambridge University Press, 1995.

[Gir01] J.-Y. Girard. Locus solum. Mathematical Structures in Computer Science, 2001.

11



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


