
1

AG13

FORMALISM B
Alessio Guglielmi (TU Dresden)
20.12.2004

In this note (originally posted on 9.2.2004 to the Frogs mailing
list) I would like to suggest an improvement on the current notions
of deep inference, including what I called formalism A [AG11]. The
suggested formalism is called B, for the time being.

The slogan for this note is very simple:

 inference rules operate on derivations .

Not on formulae, not on structures, but on entire derivations. It's
a simple idea, but there are non-trivial consequences. What I find
difficult, of course, is assessing the impact of this notion in the
long run, because the change is almost like moving from the sequent
calculus to the calculus of structures (CoS).

In any case, the general idea is that this approach should be more
general than CoS (which in turn is more general than the sequent
calculus). As you will see, the problem with the new formalism is
that a decent concrete syntax is currently unknown: we will have one
when we will have deductive proof nets, but for the time being
there's nothing viable. On the other hand, I hope that formalism B
will make us progress towards the goal of getting deductive proof
nets, because at least it describes nice properties they should
have.

For this reason, it's important that CoS is a faithful description
of formalism B, meaning that we can study proofs and their
properties in the syntax of CoS, and then we see them in the more
semantic setting of formalism B. For example: decomposition and cut
elimination are done in CoS; proof identity in formalism B.

There are many motivations for using deep inference, but the one I'm
going to use here is `getting rid of bureaucracy´, which, of course,
is a (or the?) problem for proof identity.

Bureaucracy in Derivations

Let us distinguish two kinds of annoying trivialities that occur in
CoS derivations (the situation in the sequent calculus is even
worse):

Type A Bureaucracy

We have type A bureaucracy whenever we find ourselves in the
following situation: `there are two non-overlapping redexes´, or, in
other words, `there's a diamond in the proof search space´. More
precisely, let S{R}{T} be a structure where R and T appear in the

2

context S{ }{ } and they don't overlap. We are in a situation in
which there exist two proofs

 S{R'}{T'} S{R'}{T'}
 | |
 Δ

2
| Δ

1
|

 | |
 S{R'}{T} and S{R}{T'} .
 | |
 Δ

1
| Δ

2
|

 | |
 S{R}{T} S{R}{T}

They are made up from the more elementary derivations

 R' T'
 | |
 Δ

1
| and Δ

2
| .

 | |
 R T

This is an obvious case of bureaucracy, corresponding to a trivial
case of permutability (of inference rules, or of the entire
derivations Δ

1
 and Δ

2
).

Formalism A takes care of this problem, by allowing the expressing
of the derivation

 S{R'}{T'}
 | |
 Δ

1
| |Δ

2
 ,

 | |
 S{R}{T}

in which Δ

1
 and Δ

2
 are simply put `in parallel´.

Type B Bureaucracy

We have type B bureaucracy when redexes are nested. For example,
take Δ

1
 as above, but put it `inside´ a switch, as follows:

 (R',[T,U])
 |
 Δ

1
|

 |
 (R,[T,U])
 s −−−−−−−−−− ;
 [(R,T),U]

Clearly, one can permute the switch all the way up and do

3

 [(R',T),U]
 s −−−−−−−−−−−
 (R',[T,U])
 |
 Δ

1
| ,

 |
 (R,[T,U])

or any of the intermediate derivations. In general, the phenomenon
is the same when in the place of a simple switch one has an entire
derivation: a clear case of bureaucracy, but how can we get rid of
it?

Inference on Derivations

The simple solution is to allow inference rules on derivations, for
example the switch rule becomes

 (Δ,[Δ',Δ"])
 s −−−−−−−−−−−−− ,
 [(Δ,Δ'),Δ"]

where Δ, Δ' and Δ" are derivations. This also takes care of more
complex cases in which you have three `parallel´ derivations Δ, Δ'
and Δ" inside a switch. At this time, it's the most general notion
of deep inference I can think of.

Note that one extends the equivalence classes of structures to
derivations, meaning that the above object is also to be taken
modulo associativity, commutativity, etc.

I believe that this notion actually further simplifies the picture,
because we now have just one first-class object, the derivation, and
all the other objects are projections, special cases of it: CoS
derivations, sequent calculus derivations, structures, formulae,
atoms,...

Now, there is a series of simple considerations one should make.
Let's call these new rules `B rules´.

At face value, a B rule increases bureaucracy simply because it
copies (from premise to conclusion) entire derivations. This is why
I'm saying that the syntax is an insufficient approximation. Of
course, one should not think of a B rule as a term rewriting rule;
rather it's a moral, semantical understanding of a more concrete
(CoS, sequent calculus) object.

The example above with Δ

1
 and switch should correspond to something

like this:

4

 (R' ,[T,U])
 +---+ \ /
 | | \ /
 | Δ

1
| X ,

 | | / \
 +---+ / \
 [(R ,T) ,U]

where somehow the logical relations get crossed by some net. But
there is no duplication of Δ

1
. If one gets the idea of this one,

it's easy to get the idea in general, where one has three
subderivations for switch. It clearly is worse than DNA in mid-
mitosis as far as drawing these beasts goes.

Now, an even more delicate case occurs when you have moral
duplication (as opposed to the fake syntactical one above):

 [Δ,Δ]
 c↓ −−−−−− (contraction).
 Δ

There are two considerations one can make for contraction and
similar cases:

1 Contraction can be pushed up along Δ in such a way that it
duplicates a minimum of information (contraction can always be
reduced to structures, and then to atoms for most logics).

2 CoS already does an excellent job at making rules linear (in the
sense of term rewriting, meaning: `no duplication´). While in the
sequent calculus one has plenty of duplication, in CoS this is
always reduced to a minimum.

But now one asks oneself a strange question.

Negation??

What is

 t
 i↓ −−−−−− (interaction)?
 [Δ,¬Δ]

The problem is, of course, ¬Δ. Maybe I'm wrong, but this is not a
stupid question.

Reference

[AG11] Alessio Guglielmi. Formalism A. Manuscript, 2004. URL:
http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf.

5

Web Site

http://alessio.guglielmi.name/res/cos.

