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In this note (originally posted on 9.2.2004 to the Frogs mailing 
list) I would like to suggest an improvement on the current notions 
of deep inference, including what I called formalism A [AG11]. The 
suggested formalism is called B, for the time being. 
 
The slogan for this note is very simple: 
 
   inference rules operate on derivations . 
 
Not on formulae, not on structures, but on entire derivations. It's 
a simple idea, but there are non-trivial consequences. What I find 
difficult, of course, is assessing the impact of this notion in the 
long run, because the change is almost like moving from the sequent 
calculus to the calculus of structures (CoS). 
 
In any case, the general idea is that this approach should be more 
general than CoS (which in turn is more general than the sequent 
calculus). As you will see, the problem with the new formalism is 
that a decent concrete syntax is currently unknown: we will have one 
when we will have deductive proof nets, but for the time being 
there's nothing viable. On the other hand, I hope that formalism B 
will make us progress towards the goal of getting deductive proof 
nets, because at least it describes nice properties they should 
have. 
 
For this reason, it's important that CoS is a faithful description 
of formalism B, meaning that we can study proofs and their 
properties in the syntax of CoS, and then we see them in the more 
semantic setting of formalism B. For example: decomposition and cut 
elimination are done in CoS; proof identity in formalism B. 
 
There are many motivations for using deep inference, but the one I'm 
going to use here is `getting rid of bureaucracy´, which, of course, 
is a (or the?) problem for proof identity. 
 
 
Bureaucracy in Derivations 
 
Let us distinguish two kinds of annoying trivialities that occur in 
CoS derivations (the situation in the sequent calculus is even 
worse): 
 
Type A Bureaucracy 
 
We have type A bureaucracy whenever we find ourselves in the 
following situation: `there are two non-overlapping redexes´, or, in 
other words, `there's a diamond in the proof search space´. More 
precisely, let S{R}{T} be a structure where R and T appear in the 
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context S{ }{ } and they don't overlap. We are in a situation in 
which there exist two proofs 
 
   S{R'}{T'}       S{R'}{T'} 
       |               | 
      Δ

2
|              Δ

1
| 

       |               | 
   S{R'}{T}   and   S{R}{T'} . 
       |               | 
      Δ

1
|              Δ

2
| 

       |               | 
    S{R}{T}         S{R}{T} 
 
They are made up from the more elementary derivations 
 
     R'          T' 
     |           | 
    Δ

1
|   and    Δ

2
| . 

     |           | 
     R           T 
 
This is an obvious case of bureaucracy, corresponding to a trivial 
case of permutability (of inference rules, or of the entire 
derivations Δ

1
 and Δ

2
). 

 
Formalism A takes care of this problem, by allowing the expressing 
of the derivation 
 
   S{R'}{T'} 
      |  | 
     Δ

1
|  |Δ

2
 , 

      |  | 
    S{R}{T} 
 
in which Δ

1
 and Δ

2
 are simply put `in parallel´. 

 
 
Type B Bureaucracy 
 
We have type B bureaucracy when redexes are nested. For example, 
take Δ

1
 as above, but put it `inside´ a switch, as follows: 

 
    (R',[T,U]) 
      | 
     Δ

1
| 

      | 
     (R,[T,U]) 
   s −−−−−−−−−− ; 
     [(R,T),U] 
 
Clearly, one can permute the switch all the way up and do 
 
 



3 

     [(R',T),U] 
   s −−−−−−−−−−− 
     (R',[T,U]) 
       | 
      Δ

1
|       , 

       | 
      (R,[T,U]) 
 
or any of the intermediate derivations. In general, the phenomenon 
is the same when in the place of a simple switch one has an entire 
derivation: a clear case of bureaucracy, but how can we get rid of 
it? 
 
 
Inference on Derivations 
 
The simple solution is to allow inference rules on derivations, for 
example the switch rule becomes 
 
     (Δ,[Δ',Δ"]) 
   s −−−−−−−−−−−−− , 
     [(Δ,Δ'),Δ"] 
 
where Δ, Δ' and Δ" are derivations. This also takes care of more 
complex cases in which you have three `parallel´ derivations Δ, Δ' 
and Δ" inside a switch. At this time, it's the most general notion 
of deep inference I can think of. 
 
Note that one extends the equivalence classes of structures to 
derivations, meaning that the above object is also to be taken 
modulo associativity, commutativity, etc. 
 
I believe that this notion actually further simplifies the picture, 
because we now have just one first-class object, the derivation, and 
all the other objects are projections, special cases of it: CoS 
derivations, sequent calculus derivations, structures, formulae, 
atoms,... 
 
Now, there is a series of simple considerations one should make. 
Let's call these new rules `B rules´. 
 
At face value, a B rule increases bureaucracy simply because it 
copies (from premise to conclusion) entire derivations. This is why 
I'm saying that the syntax is an insufficient approximation. Of 
course, one should not think of a B rule as a term rewriting rule; 
rather it's a moral, semantical understanding of a more concrete 
(CoS, sequent calculus) object. 
 
The example above with Δ

1
 and switch should correspond to something 

like this: 
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   (  R' ,[T,U] ) 
    +---+  \   / 
    |   |   \ / 
    |  Δ

1
|    X   , 

    |   |   / \ 
    +---+  /   \ 
   [( R ,T) ,U  ] 
 
where somehow the logical relations get crossed by some net. But 
there is no duplication of Δ

1
. If one gets the idea of this one, 

it's easy to get the idea in general, where one has three 
subderivations for switch. It clearly is worse than DNA in mid-
mitosis as far as drawing these beasts goes. 
 
Now, an even more delicate case occurs when you have moral 
duplication (as opposed to the fake syntactical one above): 
 
      [Δ,Δ] 
   c↓ −−−−−−   (contraction). 
        Δ 
 
There are two considerations one can make for contraction and 
similar cases: 
 
1   Contraction can be pushed up along Δ in such a way that it 
duplicates a minimum of information (contraction can always be 
reduced to structures, and then to atoms for most logics). 
 
2   CoS already does an excellent job at making rules linear (in the 
sense of term rewriting, meaning: `no duplication´). While in the 
sequent calculus one has plenty of duplication, in CoS this is 
always reduced to a minimum. 
 
But now one asks oneself a strange question. 
 
 
Negation?? 
 
What is 
 
        t 
   i↓ −−−−−−   (interaction)? 
      [Δ,¬Δ] 
 
The problem is, of course, ¬Δ. Maybe I'm wrong, but this is not a 
stupid question. 
 
 
Reference 
 
[AG11] Alessio Guglielmi. Formalism A. Manuscript, 2004. URL:  
http://iccl.tu-dresden.de/~guglielm/p/AG11.pdf.  
 



5 

Web Site 
 
http://alessio.guglielmi.name/res/cos. 


