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By a simple example, I show how deep inference can provide for an 
exponential speed-up in the size of proofs with respect to shallow 
inference. In particular, there are classes of tautologies whose 
cut-free proofs only grow polynomially with their size, instead of 
exponentially, as in the sequent calculus. 
 
There are two areas where the use of deep inference can lead to 
lower complexity: complexity of cut elimination and complexity in 
proof search. In both cases the greater liberality of deep inference 
rules is advantageous. In many important cases, the complexity 
passes from being exponential to being polynomial (with low 
exponent). Here we concentrate on the proof search case. 
 
The big picture is the following: 
 
• with shallow inference one has (seemingly!, relatively!) low 

nondeterminism and long proofs; 
 
• with (uncontrolled!, naif!) deep inference one has high 

nondeterminism and short proofs. 
 
One goal is to show that in the more liberal framework of deep 
inference one can develop search algorithms that drastically cut 
down on nondeterminism and still find short proofs (for example, 
something along the lines of a deep version of uniform provability 
[MNPS]). To this purpose, I’d like to remind the reader that very 
successful techniques like resolution are immediately available with 
deep inference, contrary to what happens in shallow inference [AG]. 
 
In any case, a preliminary technical point we should make is that 
the proofs available in deep inference are indeed shorter than those 
available in shallow inference. Of course, miracles are unlikely, 
so, since it's reasonable to believe that NP ≠ coNP, we cannot 
reasonably hope for polynomial-size proofs in all cases. But we can 
of course hope for exponential speed-ups with respect to other 
deduction formalisms, which we do get! 
 
This area is very active. In general, people study classes of 
tautologies and try to establish bounds on the size of their proofs, 
in systems with and without cut. One of the most studied such 
classes of tautologies is derived from the pigeonhole principle. For 
these formulae, in shallow inference, proofs with cuts can be 
polynomial (result by Buss), while proofs without cuts must be 
exponential (result by Haken). 



2 

 
Below, I show a simple argument which proves that there are 
polynomial-size proofs for a class of tautologies, studied by 
Richard Statman, that has the same properties of pigeonhole for our 
purposes here, but it’s simpler: cut-free-shallow/exponential, with-
cut-shallow/polynomial, cut-free-deep/polynomial. 
 
In fact, every with-cut-shallow proof can be transformed into a 
deep-inference proof, in system SKS [KB], whose complexity only 
differs for a polynomial (as a function of the size of the 
conclusion) and which only adopts a finite-choice version of the cut 
rule. In this case, the cut rule behaves like a contraction: it 
completely loses the infinitary character that prevents its 
implementation in proof-search. The necessary transformations are 
outlined in [KB] and [BG]: 1) transform a proof with cuts in the 
sequent calculus into a proof in system SKS (see [KB], Theorem 
2.3.3); 2) transform this proof into one that only employs finite 
choice cuts ([BG], Section 3). 
 
But what about proofs in a system where cuts are completely absent, 
including the finite choice, harmless ones? For these systems we 
don’t know (so far) any automatic transformation that could 
transform with-cut-shallow polynomial proofs into cut-free-deep 
polynomial proofs. 
 
Nonetheless, some ideas seem general enough to be widely 
exploitable. One feature that helps in reducing the complexity of 
proofs is the absence of branching in deep inference. Thanks to 
this, I will show below how the Statman class of tautologies 
receives fair polynomial treatment by CoS system KS. It's a rather 
simple example that makes the point in a striking way. 
 
 
Polynomial Cut-free Proofs for Statman’s Tautologies 
 
We start from propositional variables c

i
 and d

i
, for i ≥ 1.  We then 

define: 
 
        k 

   F
k
 = ∧ (c

j
 ∨ d

j
) ,   for k ≥ 1 ; 

       j=1 
 
   A

1
 = c

1
 ; 

   B
1
 = d

1
 ; 

   ... 
   A

i+1
 = F

i
 ⇒ c

i+1
 ; 

   B
i+1
 = F

i
 ⇒ d

i+1
 ; 

 
   G

n
 = ((A

1
 ∨ B

1
) ∧ ... ∧ (A

n
 ∨ B

n
)) ⇒ (c

n
 ∨ d

n
) . 

 
For example: 
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   G
1
 = (c

1
 ∨ d

1
) ⇒ (c

1
 ∨ d

1
) , 

 
   G

2
 = ((  c

1
 ∨ d

1
)          ∧ 

         (((c
1
 ∨ d

1
) ⇒ c

2
) ∨ 

          ((c
1
 ∨ d

1
) ⇒ d

2
) 

         ) 
        ) ⇒ (c

2
 ∨ d

2
) , 

 
   G

3
 = ((  c

1
 ∨ d

1
 

         )                               ∧ 
         (((c

1
 ∨ d

1
) ⇒ c

2
) ∨ 

          ((c
1
 ∨ d

1
) ⇒ d

2
) 

         )                               ∧ 
         ((((c

1
 ∨ d

1
) ∧ (c

2
 ∨ d

2
)) ⇒ c

3
) ∨ 

          (((c
1
 ∨ d

1
) ∧ (c

2
 ∨ d

2
)) ⇒ d

3
) 

         ) 
        ) ⇒ (c

3
 ∨ d

3
) . 

 
One can easily check that, for n ≥ 1, the formulae G

n
 are 

tautologies. The semantic argument for showing this is 
straightforward and amounts to checking the chain of implications 
 
   (c

1
 ∨ d

1
) ⇒ ... ⇒ (c

n
 ∨ d

n
) , 

 
from left to right. 
 
In the sequent calculus, the size of proofs of formulae G

n
 grows 

exponentially, if cuts are not allowed. In order to get an intuition 
about this, consider G

3
 and the one-sided sequent one immediately 

obtains from it: 
 
   − ¬A

1
 ∧ ¬B

1
 , ¬A

2
 ∧ ¬B

2
 , ¬A

3
 ∧ ¬B

3
 , c

3
 , d

3
 , 

 
which can be expanded to 
 
   − ¬c

1
 ∧ ¬d

1
                    , 

      (c
1
 ∨ d

1
) ∧ ¬c

2
 ∧ 

      (c
1
 ∨ d

1
) ∧ ¬d

2
              , 

      (c
1
 ∨ d

1
) ∧ (c

2
 ∨ d

2
) ∧ ¬c

3
 ∧ 

      (c
1
 ∨ d

1
) ∧ (c

2
 ∨ d

2
) ∧ ¬d

3
   , 

      c
3
 , d

3
 . 

 
The following is a possible proof, of which one branch is shown in 
part (all the others are similar): 
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                               . 
                               . 
                               . 
   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
   − ¬c

1
 , (c

1
 ∨ d

1
) ∧ ¬d

2
 , (c

1
 ∨ d

1
) ∧ (c

2
 ∨ d

2
) ∧ ¬c

3
 , c

3
 , d

3
 

                 = 
       − ¬A

1
, ¬B

2
, ¬A

3
, c

3
, d

3
 

       −−−−−−−−−−−−−−−−−−−−−−−− 
                 .                        .      .      . 
            .    .    .                     .    .    . 
              .  .  .                         .  .  . 
                ...                             ... 
   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
   − ¬A

1
, ¬A

2
∧¬B

2
, ¬A

3
∧¬B

3
, c

3
, d

3
   − ¬B

1
, ¬A

2
∧¬B

2
, ¬A

3
∧¬B

3
, c

3
, d

3
 

   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
              − ¬A

1
 ∧ ¬B

1
, ¬A

2
 ∧ ¬B

2
, ¬A

3
 ∧ ¬B

3
, c

3
, d

3
 

 
Clearly, for G

n
 there are 2n branches. Statman [RS] proved that in a 

cut free system the size of proofs always grows exponentially with 
n. 
 
This is not the case if we allow the cut rule, because in this case 
we can exploit the fact that all sequents 
 
   − ¬F

i
 , ¬A

i+1
 ∧ ¬B

i+1
 , F

i+1
 

 
are provable with bounded complexity proofs, and then join them by 
using cuts, what is linear in n. 
 
In the cut free CoS system KS, there are linear proofs. I show just 
an example for G

3
 but the general pattern is the same (the syntax 

below is the CoS one): 
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                t 
     i↓ −−−−−−−−−−−−−−−−−−− 
        [(-c

3
,-d

3
) , c

3
,d

3
] 

   2×i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
        [([c

2
,d

2
,(-c

2
,-d

2
)],-c

3
,[c

2
,d

2
,(-c

2
,-d

2
)],-d

3
) , c

3
,d

3
] 

    2×s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
        [(-c

2
,-d

2
),(-c

2
,-d

2
) , 

         ([c
2
,d

2
],-c

3
,[c

2
,d

2
],-d

3
) , c

3
,d

3
] 

   1×c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
        [(-c

2
,-d

2
) , 

         ([c
2
,d

2
],-c

3
,[c

2
,d

2
],-d

3
) , c

3
,d

3
] 

   4×i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
        [([c

1
,d

1
,(-c

1
,-d

1
)],-c

2
,[c

1
,d

1
,(-c

1
,-d

1
)],-d

2
) , 

         ([c
1
,d

1
,(-c

1
,-d

1
)],[c

2
,d

2
],-c

3
,[c

1
,d

1
,(-c

1
,-d

1
)],[c

2
,d

2
],-d

3
) , 

         c
3
,d

3
] 

    4×s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
        [(-c

1
,-d

1
),(-c

1
,-d

1
),(-c

1
,-d

1
),(-c

1
,-d

1
) , 

         ([c
1
,d

1
],-c

2
,[c

1
,d

1
],-d

2
) , 

         ([c
1
,d

1
],[c

2
,d

2
],-c

3
,[c

1
,d

1
],[c

2
,d

2
],-d

3
) , c

3
,d

3
] 

   3×c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− . 
        [(-c

1
,-d

1
) , 

         ([c
1
,d

1
],-c

2
,[c

1
,d

1
],-d

2
) , 

         ([c
1
,d

1
],[c

2
,d

2
],-c

3
,[c

1
,d

1
],[c

2
,d

2
],-d

3
) , c

3
,d

3
] 

 
The secret of success here is, of course, the absence of branching 
in CoS. 
 
Remark   To be precise, one has to be more careful than I was with 
brackets and associativity; however, in all the arguments above, the 
substance would not change. 
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