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My current view of formalisms for deep inference is that we can 
isolate three of them: one is the (now well developed) calculus of 
structures, and two others are possible, A and B (I currently have 
no better name for them). In A there’s a more general notion of 
derivation than in CoS, in B there’s this, plus a more general 
notion of inference rule. 
 
In moving from CoS to A and B one progressively abstracts away from 
unnecessary details, like having to choose an arbitrary order for 
permutable inference rules. B is the formalism with less 
bureaucracy, A is intermediate. On the other hand, CoS is easily 
definable and its derivations are easily written on paper; instead, 
I currently have no viable syntax for B, and the one for A is a bit 
challenging (perhaps I just have to develop some good macros). It is 
likely that B corresponds to some notion of proof net. 
 
The three formalisms are of course mutually compatible, meaning that 
every property observed in one can be observed in the other by 
reasonable transformations on derivations. What changes is how 
convenient it is to observe and define the property of interest. 
 
In this note I will define A, the formal definitions are at the end 
on this document. (I posted all what exists about B to the Frogs 
mailing list on 9.2.04.) 
 
 
What is Deep Inference? 
 
So far, we avoided giving a general definition for CoS, because we 
wanted to gain experience first. I’m very glad we did so, because 
the definition I propose in the attachment is rather different than 
(although compatible to) what we did so far. 
 
The first crucial decision is about equations. Using equations, and 
how much to use them, is always debatable. Unfortunately, there is 
tension between 
 
   no equations = good for implementing 
 
and 
 
   as many equations as semantics ask for = good for doing proof  
                                            theory . 
 
The only reasonable choice here is not to choose, and just providing 
a place where equations can be put under control. 
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That said, in the definition of derivation that I propose, there are 
more equations than ever, although in practical cases these can be 
reduced to one simple associativity law. Nonetheless, the definition 
is more delicate than the one we use for CoS. 
 
The basic idea is to treat derivations the same way we treat 
structures, meaning that derivations can be composed by the same 
operators: this is deep inference, it’s the pure essence of it. 
 
 
Permutations in CoS 
 
Arguably, there is one weak spot in CoS: the abundance of 
permutations. The problem stems from the way we use inference rules: 
we can only chain them in a sequence, and this means that at each 
step we have to copy the context. We can fix this, although we all 
know that it is, morally, just a `cosmetic´ problem. 
 
Example: In CoS we can write the derivations 
 
   S[(a,b),(a,b)]         S[(a,b),(a,b)] 
   --------------         -------------- 
   S([a,a],[b,b])         S([a,a],[b,b]) 
   --------------         -------------- 
   S([a,a], b   )         S( a   ,[b,b]) 
   --------------   and   -------------- . 
   S( a   , b   )         S( a   , b   ) 
 
With the new notion we can write 
 
    {  [(a,b),(a,b)]  } 
    {  -------------  } 
    {        |        } 
    { --------------- } 
   S{ ( [a,a] [b,b] ) } , 
    { ( ----- ----- ) } 
    { (   |  ,  |   ) } 
    { (   -     -   ) } 
    { (   a     b   ) } 
 
where the two contractions live in parallel. Proofs are not 
sequences anymore, they become (generalised) series-parallel orders. 
 
 
Shallow Rules? 
 
Given what I said above, one natural question is to ask what can we 
do when we need the occasional shallow rule. Well, it’s actually 
possible to squeeze shallow rules into the definitions I provide, 
although they quite go against the philosophy of the whole thing. 
 
In that case, resorting to plain CoS might be a good idea, since in 
the rare circumstances when one deals with shallow rules, the good 
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properties brought forward by formalism A are usually not the focus 
of attention. 
 
 
Web Site 
 
http://alessio.guglielmi.name/res/cos. 
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1 Definitions

Formulae are freely built from units and atoms by modalities and binary connectives. We
do not worry about negation at this stage. We use the Polish notation for operators, to
save on parentheses.
1.1 Definition We have the following mutually disjoint sets of symbols:
1 a set U of units, denoted by u;
2 a set A of atoms, denoted by α;
3 a set M of modalities, denoted by µ;
4 a set C of binary connectives, denoted by γ;
each of these sets may be finite (and perhaps empty) or infinite; the set of formulae
F (U ,A ,M ,C ), denoted simply by F when no confusion is possible, is defined as

F ::= U | A | MF | C FF ;

formulae are denoted by F and G.
• The following definition is currently not used in the rest of the paper.
1.2 Definition The set of formula contexts F C is defined as

F C ::= { } | MF C | C F CF | C FF C ,

where { } is called a hole; formula contexts are denoted by F{ }. We write F{G} for the
formula obtained from the formula context F{ } by filling the hole with the formula G.
1.3 Definition Suppose we are given a set of formulae F (U ,A ,M ,C ) and a decidable
equivalence relation =S on it such that

if F =S F ′ then µF =S µF ′ , γFG =S γF ′G and γGF =S γGF ′ ,

for all formulae F , F ′, G and for any µ ∈ M and γ ∈ C . We say that the equivalence
class [F ]=S is a structure and we denote the set of structures by S (U ,A ,M ,C ,=S), or
by S when no confusion is possible; structures are denoted by S. Given structures S and
S′ and any formulae F ∈ S and F ′ ∈ S′, we may sometimes denote

[γFF ′]=S by [γSS′]=S ;

the independence of the structure from the choice of F and F ′ is guaranteed by the
condition above on =S.

We build derivations out of elementary derivations, which correspond to inference
rule instances in the standard sequent calculus terminology.
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1.4 Definition An elementary prederivation of kind ρ for F (U ,A ,M ,C ) is an expres-
sion of the form

F
ρ ,

G

where formulae F and G are the premise and the conclusion of the elementary prederiva-
tion. We denote by ρ the set of all prederivations of kind ρ and we require that such set
be decidable; usually, an inference rule scheme (again denoted by ρ) is all we need for
deciding whether an elementary derivation belongs to a certain kind. The set of all given
elementary prederivations is denoted by E P , and it is the union of all the given kinds.
1.5 Definition Given S (U ,A ,M ,C ,=S) and a set of elementary prederivations E P

for it, we define the set of elementary derivations for S (U ,A ,M ,C ,=S) as

E =
{ [F ]=S

ρ
[G]=S

∣∣∣ F
ρ

G
∈ E P

}
.

Given
[F ]=S

ρ
[G]=S

, the structures [F ]=S and [G]=S are its premise and conclusion, respectively.

We build derivations the same way we build structures, but in addition we have a
composition operator, which corresponds to plugging them together based on their premises
and conclusion.
1.6 Definition We define prederivations and their premises and conclusions as follows;
prederivations are denoted by Ψ , the premise and conclusion of Ψ are denoted by pΨ and
cΨ . Given a binary operator ?, called composition, that does not appear anywhere else,
the set of prederivations DP for S (U ,A ,M ,C ,=S) is defined as the smallest set such
that:
1 Every structure is a prederivation: S ⊆ DP ; for a structure S it holds pS = cS = S.
2 Every elementary derivation is a prederivation: E ⊆ DP ; premise and conclusion are

those defined for the elementary derivation.
3 Given two prederivations Ψ and Ψ ′ such that pΨ = S, cΨ = pΨ ′ and cΨ ′ = S′,

then
?ΨΨ ′

is a prederivation whose premise is S and conclusion is S′.
4 For all µ ∈ M and for any prederivation Ψ ,

µΨ

is a prederivation whose premise and conclusion are

[µ pΨ ]=S and [µ cΨ ]=S .

5 For any γ ∈ C and for all prederivations Ψ and Ψ ′,

γΨΨ ′

is a prederivation whose premise and conclusion are

[γ pΨ pΨ ′]=S and [γ cΨ cΨ ′]=S .

We now introduce an equivalence on prederivations which respects structures, re-
spects composition of prederivations and is associative on composition.
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1.7 Definition Suppose we have a set of prederivations DP for S (U ,A ,M ,C ,=S) and
we have a decidable equality relation =D on DP such that, for all prederivations Ψ , Ψ1 and
Ψ2 and for any µ ∈ M and γ ∈ C :

if Ψ ∈ S then [Ψ ]=D = [Ψ ]=S ;
if Ψ1 =D Ψ2 then ? Ψ1Ψ =D ?Ψ2Ψ and ? ΨΨ1 =D ?ΨΨ2 ,

µΨ1 =D µΨ2 , γΨ1Ψ =D γΨ2Ψ and γΨΨ1 =D γΨΨ2 ;
? ? ΨΨ ′ Ψ ′′ =D ? Ψ ? Ψ ′Ψ ′′ .

A derivation is an equivalence class [Ψ ]=D ; we denote by D(U ,A ,M ,C ,=D) the set of
derivations, or we just use D when no confusion is possible; derivations are denoted by ∆.


