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Kai Brünnler
kai.bruennler@inf.tu-dresden.de

Technische Universität Dresden, Fakultät Informatik, D - 01062 Dresden, Germany

Abstract. System SKS is a set of rules for classical propositional logic
presented in the calculus of structures. Like sequent systems and unlike
natural deduction systems, it has an explicit cut rule, which is admissi-
ble. In contrast to sequent systems, the cut rule can easily be reduced
to atomic form. This allows for a very simple cut elimination procedure
based on plugging in parts of a proof, like normalisation in natural deduc-
tion and unlike cut elimination in the sequent calculus. It should thus be
a good common starting point for investigations into both proof search
as computation and proof normalisation as computation.
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1 Introduction

The two well-known connections between proof theory and language de-
sign, proof search as computation and proof normalisation as computa-
tion, have mainly used different proof-theoretic formalisms. While de-
signers of functional programming languages prefer natural deduction,
because of the close correspondence between proof normalisation and re-
duction in related term calculi [4,8], designers of logic programming lan-
guages prefer the sequent calculus [7], because infinite choice and much
of the unwanted non-determinism is limited to the cut rule, which can be
eliminated.

System SKS [2] is a set of inference rules for classical propositional logic
presented in a new formalism, the calculus of structures [5]. This system
admits the good properties usually found in sequent systems: in partic-
ular, all rules that induce infinite choice in proof search are admissible.
Thus, in principle, it is as suitable for proof search as systems in the se-
quent calculus. In this paper I will present a cut elimination procedure
for SKS that is very similar to normalisation in natural deduction. It thus
allows us to develop, at least for the case of classical logic, both the proof



search and the proof normalisation paradigm of computation in the same
formalism and starting from the same system of rules.

Cut elimination in the sequent calculus and normalisation in natural de-
duction, widely perceived as ‘morally the same’, differ quite a bit, tech-
nically. Compared to cut elimination, (weak) normalisation is simpler,
involving neither permutation of a multicut rule, nor induction on the
cut-rank. The equivalent of a cut in natural deduction, for example,

∆1

Γ, A � B⊃I
Γ � A ⊃ B

∆2

Γ � A⊃E ,
Γ � B

is eliminated as follows: first, assumption A and all its copies are removed
from ∆1. Second, the derivation ∆2, with the context strengthened ac-
cordingly, is plugged into all the leaves of ∆1 where assumption A was
used.

This method relies on the fact that no rule inside ∆1 can change the
premise A, which is why it does not work for the sequent calculus. To
eliminate a cut in the sequent calculus, one has to cope with the fact
that logical rules may be applied to both eigenformulas of the cut. This is
usually done by permuting up the cut rule step-by-step. However, given
a cut with an atomic cut formula a inside a sequent calculus proof, we
can trace the occurrence of a and its copies produced by contraction,
identify all the leaves where they are used in identity axioms, and plug
in subproofs in very much the same way as in natural deduction. The
problem for the sequent calculus is that cuts are not atomic, in general.

The calculus of structures generalises the one-sided sequent calculus. It
has led not only to inference systems with interesting new properties for
classical and linear logic [2,9,10], but also to inference systems for new
logics that are problematic for the sequent calculus [5,6,3].

Derivations in the calculus of structures enjoy a top-down symmetry that
is not available in the sequent calculus: they are chains of one-premise
inference rules. ‘Meta-level conjunction’ (the branching of the proof tree)
and ‘object-level conjunction’ (the connective in a formula) are identified.
The two notions of formula and sequent are also identified, they merge
into the notion of structure, which is a formula subject to equivalences
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that are usually imposed on sequents. This simplification makes explicit
the duality between the identity axiom and the cut rule [5]:

S{true}
identity

S{R ∨ R̄}
S{R ∧ R̄}

cut
S{false}

The identity rule is read bottom-up as: if inside a structure there occurs
a disjunction of a structure R and its negation, then it can be replaced
by the constant true. The notion of duality between cut and identity is
precisely the one that is known as contrapositive.

Just like in the sequent calculus, the identity axiom can easily be reduced
to atomic form. The symmetry of the calculus of structures allows to
reduce the cut to atomic form in the same way as the identity axiom,
i.e. without having to go through cut elimination. Atomicity of the cut
then admits a very simple cut elimination procedure that is similar to
normalisation in natural deduction.

After introducing basic notions of the calculus of structures, I show sys-
tem SKS with atomic contraction, weakening, identity and, most signif-
icantly, atomic cut. Then, after establishing some lemmas, I present the
cut elimination procedure.

2 The Calculus of Structures

Definition 1. Propositional variables p and their negations p̄ are atoms,
with the negation of p̄ defined to be p. Atoms are denoted by a, b, . . . .
The structures of the language KS are generated by

S ::= t | f | a | [ S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ ,

where t and f are the units true and false, [S1, . . . , Sh ] is a disjunction
and (S1, . . . , Sh) is a conjunction. S̄ is the negation of the structure S.
The units are not atoms. Structures are denoted by S, R, T , U and V .
Structure contexts, denoted by S{ }, are structures with one occurrence
of { }, the empty context or hole, that does not appear in the scope of
a negation. S{R} denotes the structure obtained by filling the hole in
S{ } with R. We drop the curly braces when they are redundant: for
example, S [R, T ] stands for S{[R, T ]}. Structures are equivalent modulo
the smallest congruence relation induced by the equations shown in Fig.
1, where R and T are finite, non-empty sequences of structures. In general
we do not distinguish between equivalent structures.
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Associativity

[R, [T ] ] = [R, T ]

(R, (T )) = (R, T )

Commutativity

[R, T ] = [T , R]

(R, T ) = (T , R)

Singleton

[R] = R = (R)

Units

[f, R] = [R]

(t, R) = (R)

[t, t] = t

(f, f) = f

Negation

t = f

f = t

[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

¯̄R = R

Fig. 1. Equations on structures

Definition 2. An inference rule is a scheme of the kind
S{T}

ρ
S{R} , where ρ

is the name of the rule, S{T} is its premise and S{R} is its conclusion.
In an instance of ρ, the structure taking the place of R is called redex
and the structure taking the place of T is called contractum. A (formal)
system S is a set of inference rules. To clarify the use of the equational

theory where it is not obvious, I will use the rule
T

=
R

where R and T

are equivalent structures.

Definition 3. The dual of a rule is obtained by exchanging premise and
conclusion and replacing each connective by its De Morgan dual.

Definition 4. A derivation ∆ in a certain formal system is a finite chain
of instances of inference rules in the system:

T
π′

V
π ...
ρ′

U
ρ

R

.
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S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S([R, U ], T )
s

S [(R, T ), U ]

S [(R, U), (T, V )]
m

S([R, T ], [U, V ])

S{f}
aw↓

S{a}
S{a}

aw↑
S{t}

S [a, a]
ac↓

S{a}
S{a}

ac↑
S(a, a)

Fig. 2. System SKS

A derivation can consist of just one structure. The topmost structure in
a derivation is called the premise of the derivation, and the structure at
the bottom is called its conclusion. A derivation ∆ whose premise is T ,
whose conclusion is R, and whose inference rules are in S will be indicated

with
T

R
S∆ . A proof Π in the calculus of structures is a derivation whose

premise is the unit true. It will be denoted by
R

SΠ . A rule ρ is derivable

for a system S if for every instance of
T

ρ
R

there is a derivation
T

R
S . A

rule ρ is admissible for a system S if for every proof
S

S∪{ρ} there is a

proof
S

S .

5



3 System SKS

System SKS, shown in Fig. 2, has been introduced and shown to be sound
and complete for classical propositional logic in [2]. The first S stands
for “symmetric” or “self-dual”, meaning that for each rule, its dual (or
contrapositive) is also in the system. The K stands for “klassisch” as in
Gentzen’s LK and the last S says that it is a system on structures.

The rules ai↓, s, m, aw↓, ac↓ are called respectively atomic identity, switch,
medial, atomic weakening and atomic contraction. Their dual rules carry
the same name prefixed with a “co-”, so e.g. aw↑ is called atomic co-
weakening. The rules s and m are their own duals. The rule ai↑ is special,
it is called atomic cut. Rules ai↓, aw↓, ac↓ are called down-rules and their
duals are called up-rules. In [2], by a semantic argument, all up-rules were
shown to be admissible. By removing them we obtain system KS, shown
in Fig. 3, which is complete.

Cut-free sequent systems fulfill the subformula property. Our case is dif-
ferent, because the notions of formula and sequent are merged. System
KS does not fulfill a “substructure property” just as sequent systems do
not fulfill a “subsequent property”. However, when seen bottom-up, no
rule in system KS introduces new atoms. It thus satisfies the main aspect
of the subformula property: when given a conclusion of a rule there is only
a finite number of premises to choose from. In proof search, for example,
the branching of the search tree is finite.

S{t}
ai↓

S [a, ā]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S([R, T ], U)
s

S [(R, U), T ]

S [(R, T ), (U, V )]
m

S([R, U ], [T, V ])

Fig. 3. System KS

Identity, cut, weakening and contraction are restricted to atoms in system
SKS. The general versions of those rules are shown in Fig. 4.

Theorem 5. The rules i↓, w↓ and c↓ are derivable in {ai↓, s}, {aw↓} and
{ac↓, m}, respectively. Dually, the rules i↑, w↑ and c↑ are derivable in
{ai↑, s}, {aw↑} and {ac↑, m}, respectively.
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S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R, R]
c↓

S{R}
S{R}

c↑
S(R, R)

Fig. 4. General identity, weakening, contraction and their duals

Proof. By an easy structural induction on the structure that is cut, weak-
ened or contracted. Details are in [2]. The case for the cut is shown here.
A cut introducing the structure (R, T ) together with its dual structure
[R̄, T̄ ] is replaced by two cuts on smaller structures:

S(R, T, [R̄, T̄ ])
i↑ �

S{f}

S(R, T, [R̄, T̄ ])
s
S(R, [R̄, (T, T̄ )])

s
S [(R, R̄), (T, T̄ )]

i↑
S(R, R̄)

i↑ .
S{f}

��

So, while general identity, weakening, contraction and their duals do not
belong to SKS, they will be freely used in derivations in SKS to denote
multiple instances of the corresponding rules in SKS according to Theo-
rem 5.

Remark 6. Sequent calculus derivations easily correspond to derivations
in system SKS. For instance, the cut of sequent systems in Gentzen-
Schütte form [11]:

� Φ, A � Ψ, Ā
Cut corresponds to� Φ, Ψ

([Φ, A], [Ψ, Ā])
s

[Φ, (A, [Ψ, Ā])]
s

[Φ, Ψ, (A, Ā)]
i↑ .

[Φ, Ψ ]
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4 Cut Elimination

In the calculus of structures, there is more freedom in applying inference
rules than in the sequent calculus. While this allows for a richer combi-
natorial analysis of proofs, it is a significant challenge for cut elimination.
During cut elimination, the sequent calculus allows to get into the crucial
situation where on one branch a logical rule applies to the main connec-
tive of the eigenformula and on the other branch the corresponding rule
applies to the dual connective of the dual eigenformula. In the calculus
of structures, rules apply deep inside a context, they are not restricted
to main connectives. The methodology of the sequent calculus thus does
not apply. For example, one cannot permute the cut over the switch rule.
One can generalise the cut in order to permute it over switch, but this
requires a case analysis that is far more complicated than in the sequent
calculus. Contraction is an even bigger problem. Despite many efforts,
no cut elimination procedure along these lines has been found for system
SKS.

Two new techniques were developed to eliminate cuts in the calculus of
structures. The first is called decomposition, and has been used in [6,9]
for some systems related to linear logic. Proving termination of decom-
position is rather involved [9]. It makes essential use of the exponentials
of linear logic which restrict the use of contraction. So far, this technique
could not be used for classical logic with its unrestricted contraction. The
second technique is called splitting [5], and essentially makes available a
situation corresponding to the one described above for the sequent cal-
culus. Splitting covers the broadest range of systems in the calculus of
structures, it not only applies to the systems mentioned above, but has
recently also been applied to system SKS (but the proof is not published
yet). Compared to splitting, the procedure given here is much simpler. In
fact, I do not know of any other system with such a simple cut elimination
procedure.

In the sequent calculus as well as in sequent-style natural deduction,
a derivation is a tree. Seen bottom-up, a cut splits the tree into two
branches. To apply a cut, one is forced to split the context among the two
branches (in the case of multiplicative context treatment) or to duplicate
the context (in the case of additive context treatment). In the calculus of
structures, the cut rule does not split the proof.

The crucial idea, illustrated in Fig. 5, is that we can do that during cut
elimination. This allows us to plug-in proofs just like in natural deduction:
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we duplicate the proof above a cut and remove atom a from the copy
shown on the left and the atom ā from the copy shown on the right. We
choose one copy, the one on the left in this case, and replace a by R
throughout the proof, breaking some instances of identity. They are fixed
by substituting the proof on the right. A contraction is applied to obtain
a cut-free proof of R.

[R, a] [R, (a, ā)]
ai↑

R

[R, ā]

S1{t}
ai↓

S1 [R, ā]

[R, R]

...
...

Sn{t}
ai↓

Sn [R, ā]

[R, R]
c↓

R

Fig. 5. Elimination of one atomic cut

In contrast to the sequent calculus, the cut is not the only problematic
rule in system SKS. The rule aw↑ also induces infinite choice in proof-
search. Fortunately, we can not only eliminate the cut rule, but also the
other up-rules. Each up-rule individually can be shown to be admissible
for system KS. However, since we are going to eliminate the cut anyway,
to eliminate rules aw↑ and ac↑ the following lemma is sufficient.

Lemma 7. Each rule in SKS is derivable for identity, cut, switch and its
dual rule.
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Proof. An instance of
S{T}

ρ↑
S{R} can be replaced by

S{T}
i↓

S(T, [R, R̄])
s
S [R, (T, R̄)]

ρ↓
S [R, (T, T̄ )]

i↑
S{R}

.

The same holds for down-rules. ��

When plugging in a derivation in natural deduction, its context has to
be strengthened, to fit into the leaf into which it is plugged. Adding to
a context in natural deduction is easy, since it is a flat object, a set or a
multiset. In the calculus of structures, contexts are more general, nested
objects. The following definition is used to strengthen contexts.

Definition 8. Given a derivation ∆, the derivation S{∆} is obtained as
follows:

∆ =

T
π′

V
π ...
ρ′

U
ρ

R

S{∆} =

S{T}
π′

S{V }
π ...
ρ′

S{U}
ρ

S{R}

.

Definition 9. An instance of atomic cut is called shallow if it is of the
following form:

[S, (a, ā)]
ai↑

S
.

Lemma 10. The atomic cut is derivable for shallow atomic cut and switch.

Proof. An easy induction locally replaces an instance of atomic cut by a
shallow atomic cut followed by instances of switch. Details are in [1]. ��

Lemma 11. Each proof
T{a}

KS
can be transformed into a proof

T{t}
KS

.

Proof. Starting with the conclusion, going up in the proof, in each struc-
ture we replace the occurrence of a and its copies, that are produced by
contractions, by the unit t. Replacements inside the context of any rule
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instance do not affect the validity of this rule instance. Instances of the
rules m and s remain valid, also in the case that atom occurrences are
replaced inside redex and contractum. Instances of the other rules are
replaced by the following derivations:

S [a, a]
ac↓ �

S{a}
S [t, t]

=
S{t}

S{f}
aw↓ �

S{a}

S{f}
=

S([t, t], f)
s
S [t, (t, f)]

=
S{t}

S{t}
ai↓ �

S [a, ā]

S{t}
=

S [t, f ]
aw↓ .

S [t, ā]

��

Properly equipped, we now turn to cut elimination.

Theorem 12. Each proof
T

SKS can be transformed into a proof
T

KS .

Proof. By Lemma 7, the only rule left to eliminate is the cut. By Lemma
10, we replace all cuts by shallow cuts. The topmost instance of cut,
together with the proof above it, is singled out:

T

KS∪{ai↑} =
[R, (a, ā)]

ai↑
R

Π KS

T

∆ KS∪{ai↑}

.

Lemma 11 is applied twice on Π to obtain

[R, a]

Π1 KS
and

[R, ā]

Π2 KS
.
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Starting with the conclusion, going up in proof Π1, in each structure we
replace the occurrence of a and its copies, that are produced by contrac-
tions, by the structure R.

Replacements inside the context of any rule instance do not affect the
validity of this rule instance. Instances of the rules m and s remain valid,
also in the case that atom occurrences are replaced inside redex and con-
tractum. Instances of ac↓ and aw↓ are replaced by their general versions:

S [a, a]
ac↓ �

S{a}
S [R, R]

c↓
S{R}

S{f}
aw↓ �

S{a}
S{f}

w↓ .
S{R}

Instances of ai↓ are replaced by S{Π2}:

S{t}
ai↓ �

S [a, ā]

S{t}

S [R, ā]

S{Π2} KS .

The result of this process of substituting Π2 into Π1 is a proof Π3, from
which we build

[R, R]
c↓

R

Π3 KS

T

∆ KS∪{ai↓}

Proceed inductively downward with the remaining instances of cut. ��

5 Conclusion

System SKS seems a good starting point for developing both the proof
search as well as the proof normalisation paradigm in one system. Since
all up-rules are admissible, it is suitable for proof search as computation.
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The cut elimination procedure given is simpler than those for sequent
calculi. The way in which proofs are substituted resembles normalisation
in natural deduction. This hopefully allows for a computational interpre-
tation in the proof normalisation as computation paradigm.

Of course, a lot of work remains to done. In the proof search as compu-
tation realm, given the admissibility of cut, a suitable notion of uniform
proof as in [7] should be obtainable. For proof normalisation as compu-
tation, natural questions to be considered are strong normalisation and
confluence of the cut elimination procedure when imposing as little strat-
egy as possible. Similarly to [8], a term calculus should be developed and
its computational meaning be made precise. Intuitionistic logic is a more
familiar setting for this, so the possibility of treating intuitionistic logic
should be explored.

A natural question is whether this procedure scales to more expressive
cases, for example to predicate logic. System SKSq extends system SKS
by first-order quantifiers [1]. There, cut elimination is proved via a trans-
lation to the sequent calculus. The procedure presented here does not ap-
pear to easily scale to system SKSq. The problem, which does not occur
in shallow inference systems like sequent calculus or natural deduction,
are existential quantifiers in the context of a cut which bind variables
both in a and ā. The procedure easily extends to closed atomic cuts, that
is, cuts where the eigenformula is an atom prefixed by quantifiers that
bind all its variables. The question then is how to reduce general cuts to
closed atomic cuts. If this problem were solved, then the procedure would
scale to predicate logic. Hopefully this will lead to a cut elimination pro-
cedure for predicate logic, which is simpler than other cut elimination
procedures, as happened for propositional logic.
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