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Abstract In this paper we will see deductive systems for classical propositional and predicate

logic in the calculus of structures. Like sequent systems, they have a cut rule which is

admissible. Unlike sequent systems, they drop the restriction that rules only apply to the

main connective of a formula: their rules apply anywhere deeply inside a formula. This

allows to observe very clearly the symmetry between identity axiom and the cut rule. This

symmetry allows to reduce the cut rule to atomic form in a way which is dual to reducing the

identity axiom to atomic form. We also reduce weakening and even contraction to atomic

form. This leads to inference rules that are local : they do not require the inspection of

expressions of arbitrary size.

Keywords cut elimination, deep inference, locality

Mathematics Subject Classification 03F05 Cut-elimination and normal-form theorems,

03F07 Structure of proofs

Table of Contents

1 Introduction 1

2 The Calculus of Structures 2

3 Propositional Logic 5

3.1 A Deep Inference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Correspondence to the Sequent Calculus . . . . . . . . . . . . . . . . . . . . . 7

3.3 Soundness, Completeness and Cut Admissibility . . . . . . . . . . . . . . . . 11

3.4 Atomicity and Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Predicate Logic 16

4.1 A Deep Inference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Correspondence to the Sequent Calculus . . . . . . . . . . . . . . . . . . . . . 18

4.3 Soundness, Completeness and Cut Admissibility . . . . . . . . . . . . . . . . 20

4.4 Atomicity and Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions 23



1 Introduction

The design of the logical rules in Gentzen’s sequent system LK [11] allows to
inductively replace instances of the identity axiom on compound formulas by
instances on smaller formulas. The identity axiom can thus be reduced to atomic
form, i.e.

A ` A can be equivalently replaced by a ` a ,

where a is an atom. This property is desirable: in general it is desirable to build
complex objects from primitives that are as simple as possible and the atomic
version of the rule is simpler than the general version. Indeed, this property
simplifies somewhat the frequent case analysis of what happens to a formula
during the course of going up in a proof.

A natural question is thus whether other rules in LK are similarly reducible to
atomic form, but it is not difficult to see that this is not the case. The cut is of
course reducible to atomic form, and trivially so once we have established cut
elimination. But this requires a complex argument which is nowhere nearly as
simple as the reduction of the identity axiom. The observation that contraction
cannot be reduced to atomic form can be found in [6].

It turns out that it is possible to reduce identity axiom, cut, weakening and
contraction to atomic form once we leave the sequent calculus and use the
calculus of structures [13], a formalism which can be seen as a generalisation of
the sequent calculus. Inference rules in the sequent calculus only apply at the
main connective of a formula. This restriction was lifted already in Schütte’s
calculus of positive and negative parts [26], which allows inference rules to apply
at certain places inside a formula. The calculus of structures can be seen as
taking Schütte’s idea to the ultimate: inference rules apply anywhere deep inside
a formula, just like rules in term rewriting [1].

Thanks to deep inference our systems have several features that sequent systems
do not have. We can clearly observe the duality between the identity axiom and
the cut rule which take the following form:

true
identity

A ∨ Ā
and

A ∧ Ā
cut

false
.

One can be obtained from the other by exchanging premise and conclusion
and negating them. We see that this is the notion known under the name
contrapositive.

Thanks to this symmetry, the cut is reducible to atomic form in the same way
that the identity axiom is reducible to atomic form – cut elimination is not
needed for that.

Contraction is decomposed into two rules: atomic contraction, which only ap-
plies to atoms and a rule baptised medial which is due to Tiu [8]. It corresponds
to the inference

(A ∧ B) ∨ (C ∧ D)

(A ∨ C) ∧ (B ∨ D)
,
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which also occurs in Blass’ work on game semantics [2] and is thus some-
times referred to as Blass’ principle. The decomposition of contraction inspired
Lamarche and Straßburger to a new notion of classical proof net [20, 19].

Weakening can also be reduced to atomic form. Consequently all the rules that
duplicate formulas, erase formulas or check the equality of formulas only need to
duplicate, erase or check atoms. All rules only affect a small, bounded portion
of the formula they are applied to, a property that I call locality.

All the rules in our systems are sound in the strong sense that the premise
implies the conclusion. The R∀-rule in the sequent calculus is only sound in
the weaker sense that the validity of the premise implies the validity of the
conclusion. Our rule corresponds to the inference

∀x(A ⊃ B)

∀xA ⊃ ∀xB
,

which happens to be exactly what is required in order to reduce identity axiom
and cut to atomic form. Soundness in this stronger sense allows us to prove a
deduction theorem which has no analogue in the one-sided sequent calculus. The
rule above also allows us to restrict formulas that occur in proofs to sentences,
i.e. formulas that do not contain free variables. Quine already found it desirable
to avoid the use of free variables in proofs and did so by using the above rule as
an axiom in his (Hilbert-style) system given in [23].

The calculus of structures was conceived by Guglielmi in order to express a log-
ical system with a connective that resembles sequential composition in process
algebras [13, 16, 17, 9]. The ideas developed in [13] have also been explored in
the setting of classical logic: in [8] to obtain locality for propositional logic and
in [4] to obtain a particularly simple cut elimination procedure for propositional
logic, which does not require an induction on the cut rank. Both of these works
are contained in my PhD thesis [5] which also treats predicate logic. The present
work is a revised version of a part of this thesis. The cut elimination procedure
from [4] has been extended to predicate logic in [7].

The calculus of structures has also been employed by Straßburger to give systems
for linear logic which neither suffer a nondeterministic context-splitting in the
tensor rule nor a global promotion rule [28, 29].

This paper is structured as follows: in the next section I introduce the basic
notions of the proof-theoretic formalism used, the calculus of structures. Section
3 is devoted to classical propositional logic and Section 4 to predicate logic.

2 The Calculus of Structures

Definition 2.1. Propositional variables p and their negations p̄ are atoms. Atoms
are denoted by a, b, c and so on. The formulas of the language KS are generated
by

S ::= f | t | a | [ S, S ] | ( S, S ) ,

where f and t are the units false and true, [S1, S2 ] is a disjunction and (S1, S2)
is a conjunction. Formulas are denoted by S, P , Q, R, T , U and V . Formula
contexts, denoted by S{ }, are formulas with one occurrence of { }, the empty
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context or hole. S{R} denotes the formula obtained by filling the hole in S{ }
with R. We drop the curly braces when they are redundant: for example,
S [R, T ] is short for S{[R, T ]}. A formula R is a subformula of a formula T if
there is a context S{ } such that S{R} is T .

Definition 2.2. We define S̄, the negation of the formula S, as follows:

f = t [R, T ] = (R̄, T̄ )

t = f (R, T ) = [R̄, T̄ ]
¯̄p = p

Notation 2.3. We use [R, T, U ] to abbreviate a formula that could be either
[R, [T, U ] ] or [ [R, T ], U ], and likewise for an arbitrary number of formulas in
a disjunction. We do the same for conjunction.

What we have defined above are just formulas in negation normal form. The
sequent calculus has two types of objects to deduce over, namely formulas and
sequents. The inference systems that we will see will have just one type of
objects, namely formulas. Since formulas will have to play the role of sequents
it turns out that the outfix notation for connectives is more convenient than
the standard infix notation. For the same reason it will be convenient to equip
connectives of formulas with the same properties that the comma in a sequent
typically enjoys:

Definition 2.4. We define a syntactic equivalence on formulas which is the small-
est congruence relation induced by commutativity and associativity of conjunc-
tion and disjunction as well as the following equations for the units:

[R, f ] = R [t, t] = t

(R, t) = R (f, f) = f .

Definition 2.5. An inference rule is a triple (ρ, R, T ), where R and T are formulas
that may contain schematic formulas and schematic atoms. It is written

S{T }
ρ

S{R}
,

where ρ is the name of the rule, S{T } is its premise and S{R} is its conclusion.
An instance of an inference rule consists of a context S{ } together with the
inference rule in which all schematic formulas and schematic atoms are replaced
by formulas and atoms, respectively. In an instance of an inference rule the
formula taking the place of R is its redex, the formula taking the place of T
is its contractum and the context taking the place of S{ } is its context. A
(deductive) system S is a set of inference rules.

An inference rule is thus just a rewrite rule as known from term rewriting with
the minor difference that there are two kinds of variables, one for atoms and one
for arbitrary formulas, and the notational difference that the context is made
explicit. For example, the rule ρ from the previous definition seen top-down
corresponds to a rewrite rule T → R.

We now define derivations which are top-down symmetric, contrary to the
derivations in the sequent calculus, which are trees and thus asymmetric:
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Definition 2.6. A derivation ∆ in a certain deductive system is a finite sequence
of instances of inference rules in the system:

T
π

V
π′

...
ρ′

U
ρ

R

.

A derivation can consist of just one formula. The topmost formula in a deriva-
tion is called the premise of the derivation, and the formula at the bottom is
called its conclusion. The size of the derivation is the number of instances of
inference rules, without counting the equivalence rule.

Sometimes in the literature the word derivation is used as being synonymous
to the word proof. Note that here it instead corresponds to the more general
notion of partial proof.

Definition 2.7. There is a special inference rule, the equivalence rule

T
= ,

R

where R and T are syntactically equivalent formulas. This rule is contained in
every deductive system without being explicitly mentioned. Obvious instances
of it are usually omitted from derivations. This means that, morally speaking,
we are not deducing over formulas but over equivalence classes of formulas.

Notation 2.8. A derivation ∆ whose premise is T , whose conclusion is R, and
whose inference rules are in S is denoted by

T

R

S∆ .

Definition 2.9. Given a derivation ∆ and a context S{ }, the derivation S{∆}
is obtained by replacing each formula U in ∆ by S{U}. Given two derivations
∆1 from U to T and ∆2 from T to R we define the derivation ∆1; ∆2 from U
to R as the vertical composition of these two derivations in the obvious way.
Given two derivations ∆1 from R1 to T1 and ∆2 from R2 to T2 we define the
derivation (∆1, ∆2) from (R1, R2) to (T1, T2) as (R1, ∆2); (∆1, T2) and we do
likewise for [∆1, ∆2 ].

Definition 2.10. A rule ρ is derivable for a system S if for every instance of
T

ρ
R

there is a derivation
T

R

S .

The symmetry of derivations, where both premise and conclusion are arbitrary
formulas, is broken in the notion of proof :

4



Definition 2.11. A proof is a derivation whose premise is the unit t. A proof Π
of R in system S is denoted by

R

SΠ
.

3 Propositional Logic

In this section we see deductive systems for classical propositional logic with
inference rules that apply deep inside formulas. Thanks to that, we observe a
vertical symmetry that can not be observed in the sequent calculus.

The section is structured as follows: I first present system SKSg, a set of in-
ference rules for classical propositional logic which is closed under a notion of
duality. I then translate derivations of a one-sided sequent system into this sys-
tem, and vice versa. This establishes soundness and completeness with respect
to classical propositional logic as well as cut admissibility. In the following I
obtain an equivalent system, named SKS, in which identity, cut, weakening and
contraction are reduced to atomic form. This entails locality of the system.

3.1 A Deep Inference System

Taking a close look at the identity axiom and the cut rule in the sequent calculus
[11], in its one-sided version [25, 31], we notice a certain duality:

Ax
` A, Ā

` Φ, A ` Ψ, Ā
Cut

` Φ, Ψ
.

When seen bottom-up, the cut introduces an arbitrary formula A together with
its negation Ā. The identity axiom also introduces an arbitrary formula A and
its negation Ā, but this time when seen top-down. Clearly, the two rules are
intimately related. However, their duality is obscured by the fact that a certain
top-down symmetry is inherently broken in the sequent calculus: derivations
are trees, and trees are top-down asymmetric.

Since the calculus of structures abandons the tree-shape of derivations, we can
reveal the duality between the two rules:

Definition 3.1. We define the following two inference rules where the rule i↓ is
called identity and the rule i↑ is called cut :

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}
.

The duality between the two is well-known under the name contrapositive:

Definition 3.2. The dual of an inference rule is obtained by exchanging premise
and conclusion and replacing each connective by its De Morgan dual.

The rules i↓ and i↑ respectively indeed correspond to the identity axiom and the
cut rule in the sequent calculus, as we will see shortly.
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Definition 3.3. A system of inference rules is called symmetric if for each of its
rules it also contains the dual rule.

A symmetric system for classical propositional logic is shown in Figure 1. Note
that a symmetric system that contains the identity rule by definition contains
the cut rule as well, so in general we can read “symmetric” as “contains cut”.
The name of the system is SKSg, where the first S stands for “symmetric”, K

stands for “klassisch” as in Gentzen’s LK and the second S says that it is a
system in the calculus of structures. Small letters are appended to the name of
a system to denote variants. In this case, the g stands for “global” or “general”,
meaning that rules are not restricted to atoms: they can be applied to arbitrary
formulas. We will see in the next section that this system is sound and complete
for classical propositional logic.

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S([R, U ], T )
s

S [(R, T ), U ]

S{f}
w↓

S{R}

S{R}
w↑

S{t}

S [R, R]
c↓

S{R}

S{R}
c↑

S(R, R)

Figure 1: System SKSg

The rules s, w↓ and c↓ are called respectively switch, weakening and contraction.
Their dual rules carry the same name prefixed with a “co-”, so e.g. w↑ is called
co-weakening. Rules i↓, w↓, c↓ are called down-rules and their duals are called
up-rules. The dual of the switch rule is the switch rule itself: it is self-dual.

The notion of duality generalises from rules to derivations:

Definition 3.4. The dual of a derivation is obtained by turning it upside-down
and replacing each rule, each connective and each atom by its dual. For example

[(a, b̄), a]
w↑

[a, a]
c↓

a

is dual to

ā
c↑

(ā, ā)
w↓ .

([ā, b], ā)

This vertical symmetry (i.e. symmetry with respect to a horizontal axis), which
is depicted in Figure 2, is very much the same as the horizontal left-right symme-
try of proofs in the two-sided sequent calculus. The crucial difference is that it
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T R̄

R T̄

Figure 2: Two dual derivations

is in line with the duality of cut and identity while the symmetry of the sequent
calculus is in some sense orthogonal to the duality of these two rules.

Note that the notion of proof is an asymmetric one: the dual of a proof is not
a proof, it is a refutation.

3.2 Correspondence to the Sequent Calculus

The sequent system that is most similar to system SKSg is the one-sided system
GS1p [31], also called Gentzen-Schütte system or Tait-style system. In this
section we consider a version of GS1p with multiplicative context treatment
and constants > and ⊥, and we translate its derivations to derivations in SKSg

and vice versa. Both translations increase the size of the derivation at most
linearly. Translating from the sequent calculus to the calculus of structures is
straightforward, in particular, no new cuts are introduced in the process. But
to translate in the other direction we have to simulate deep inferences in the
sequent calculus, which is done by using the cut rule.

One consequence of those translations is that system SKSg is sound and com-
plete for classical propositional logic. Another consequence is cut elimination:
one can translate a proof with cuts in SKSg to a proof in GS1p + Cut, apply cut
elimination for GS1p, and translate back the resulting cut-free proof to obtain
a cut-free proof in SKSg.

Definition 3.5. Formulas are denoted by A and B. They contain negation only
on atoms and may contain the constants > and ⊥. Multisets of formulas are
denoted by Φ and Ψ. The empty multiset is denoted by ∅. In A1, . . . , Ah, where
h ≥ 0, a formula denotes the corresponding singleton multiset and the comma
denotes multiset union. Sequents, denoted by Σ, are multisets of formulas.

Derivations are defined as usual and denoted by ∆ or

Σ1 · · · Σh

∆

Σ

, where h ≥

0, the sequents Σ1, . . . , Σh are the premises and Σ is the conclusion. Proofs,
denoted by Π, are derivations where each leaf is an instance of Ax or of >. The
size of a derivation is the number of instances of inference rules.

It is rather obvious how to translate from formulas of KS to formulas of GS1p

and back, it is just a change between infix and outfix notation and between
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>
` >

Ax
` A, Ā

` Φ, A ` Ψ, B
R∧

` Φ, Ψ, A ∧ B

` Φ, A, B
R∨

` Φ, A ∨ B

` Φ, A, A
RC

` Φ, A

` Φ
RW

` Φ, A

Figure 3: GS1p: a one-sided sequent system for propositional logic

different symbols for the units. We translate a multiset (and thus a sequent)
consisting of the formulas A1, . . . , An into a disjunction [A1, . . . , An ] and the
empty multiset into the unit f. In order to not clutter up notation too much, we
just use the same letter, say Σ, to denote a sequent if it occurs inside a sequent
calculus derivation and to denote the corresponding formula if it occurs in a
derivation in the calculus of structures.

From the Sequent Calculus to the Calculus of Structures

Theorem 3.6. For every derivation

Σ1 · · · Σh

Σ

in GS1p + Cut there exists a

derivation

(Σ1, . . . , Σh)

Σ

SKSg \ {c↑,w↑} with the same number of cuts.

Proof. By structural induction on the given derivation ∆. If ∆ = Σ then take

Σ. If ∆ = >
` >

then take t . If ∆ = Ax
` A, Ā

then take
t

i↓
[A, Ā]

.

In the case of the R∧ rule, we have a derivation

∆ =

Σ1 · · · Σk

` Φ, A

Σ′
1 · · · Σ′

l

` Ψ, B
R∧

` Φ, Ψ, A ∧ B

.
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By induction hypothesis we obtain derivations

(Σ1, . . . , Σk)

[Φ, A]

∆1 SKSg \ {c↑,w↑} and

(Σ′
1, . . . , Σ′

l)

[Ψ, B ]

∆2 SKSg \ {c↑,w↑} .

The derivation in SKSg we are looking for is obtained by composing ∆1 and ∆2

and applying the switch rule twice:

(Σ1, . . . , Σk, Σ′
1, . . . , Σ′

l)

(∆1,∆2)
‖
‖ SKSg \ {c↑,w↑}

([Φ, A], [Ψ, B ])
s

[Ψ, ([Φ, A], B)]
s .

[Φ, Ψ, (A, B)]

The other cases are similar, where

` Φ, A ` Ψ, Ā
Cut

` Φ, Ψ
translates to

([Φ, A], [Ψ, Ā])
s

[Φ, (A, [Ψ, Ā])]
s

[Φ, Ψ, (A, Ā)]
i↑

[Φ, Ψ, f ]
=

[Φ, Ψ]

,

` Φ, A, A
RC

` Φ, A
translates to

[Φ, A, A]
c↓ ,

[Φ, A]

` Φ
RW

` Φ, A
translates to

Φ
=

[Φ, f ]
w↓ .

[Φ, A]

Clearly, the size of the resulting derivation in the calculus of structures is roughly
the same as the size of the original derivation in the sequent calculus. In the
worst case, in which the original derivation consists entirely of cuts, the size is
increased by a factor of three.

Corollary 3.7.

1. If a sequent Σ has a proof in GS1p then Σ has a proof in SKSg \ {i↑, c↑, w↑}.

2. If a sequent Σ has a proof in GS1p + Cut then Σ has a proof in SKSg \
{c↑, w↑}.
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From the Calculus of Structures to the Sequent Calculus

Lemma 3.8. For every two formulas A, B and every formula context C{ } there

exists a derivation

` A, B̄

` C{A}, C{B}

in GS1p.

Theorem 3.9. For every derivation

Q

P

SKSg there exists a derivation

` Q

` P

in GS1p + Cut.

Proof. We construct the sequent derivation by induction on the length of the
given derivation ∆ in SKSg. If ∆ consists of just one formula P , then P and Q
are the same. Take ` P . If length of ∆ is greater than zero we single out the
topmost rule instance in ∆:

Q

P

∆ SKSg =

S{T }
ρ

S{R}

P

∆′ SKSg

The corresponding derivation in GS1p will be as follows:

Π

` R, T̄

∆1

` S{R}, S{T } ` S{T }
Cut ,

` S{R}

∆2

` P

where ∆1 exists by Lemma 3.8 and ∆2 exists by induction hypothesis. The
proof Π depends on the rule ρ. It is easy to check that the proof Π exists for all
the rules of SKSg, let us see just the case of the switch rule,

S([U, V ], T )
s

S [(U, T ), V ]
,
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for which we have

Ax
` U, Ū

Ax
` V, V̄

R∧
` U, Ū ∧ V̄ , V

Ax
` T, T̄

R∧
` (U ∧ T ), V, (Ū ∧ V̄ ), T̄

R∨2

` (U ∧ T ) ∨ V, (Ū ∧ V̄ ) ∨ T̄

.

When checking all the cases in the proof above, we see that the size of the
derivation grows at most by a factor of 8 + 3 · d, where d is the maximum depth
in which rules are applied in the original derivation. It is important, however,
to keep in mind that we introduce cuts.

Corollary 3.10. If a formula S has a proof in SKSg then ` S has a proof in
GS1p + Cut.

3.3 Soundness, Completeness and Cut Admissibility

Soundness and completeness of SKSg, i.e. the fact that a formula has a proof
if and only if it is valid, follows from soundness and completeness of GS1p by
Corollaries 3.7 and 3.10. Moreover, a formula T implies a formula R if and
only if there is a derivation from T to R, which follows from soundness and
completeness and the following theorem:

Theorem 3.11 (Deduction Theorem).

There is a derivation

T

R

SKSg if and only if there is a proof

[T̄ , R]

SKSg
.

Proof. A proof Π can be obtained from a given derivation ∆ as follows:

T

R

∆ SKSg ;

t
i↓

[T̄ , T ]

[T̄ , R]

SKSg[T̄ ,∆]
,

and a derivation ∆ from a given proof Π as follows:

[T̄ , R]

Π SKSg
;

T

(T, [T̄ , R])
s

[R, (T, T̄ )]
i↑

R

(T,Π) SKSg

.
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If one is just interested in the provability of a formula, i.e. the derivability of
a formula from the premise t as opposed to the derivability of a formula from
some arbitrary given premise, then the up-rules of system SKSg, i.e. i↑, w↑ and
c↑, are superfluous. By removing them we obtain the system

KSg = {i↓, s, w↓, c↓} .

Definition 3.12. A rule ρ is admissible for a system S if for every proof
S

S∪{ρ}

there is a proof
S

S
. Two systems S and S′ are (weakly) equivalent if for every

proof
R

S
there is a proof

R

S′

, and vice versa. Two systems S and S′ are

strongly equivalent if for every derivation
T

R

S there is a derivation
T

R

S′ , and

vice versa.

The admissibility of all the up-rules for system KSg follows from cut admissibility
in GS1p and the translation from the previous section:

Theorem 3.13 (Cut Admissibility).

1. The rules i↑, w↑ and c↑ are admissible for system KSg.

2. The systems SKSg and KSg are equivalent.

Proof.

S

SKSg Corollary 3.10 GS1p
+Cut

` S

Cut elimination
for GS1p GS1p

` S

Corollary 3.7

S

KSg

This theorem can also be proved without relying on the sequent calculus, see
[4, 7].

The systems SKSg and KSg are not strongly equivalent. The cut rule, for
example, can clearly not be derived in system KSg since there is no way of
introducing new atoms going up. So, when a formula R implies a formula T
then there is not necessarily a derivation from R to T in KSg, while there is one
in SKSg. While the asymmetric, cut-free system is useful for proving formulas,
we therefore have to use the symmetric system (i.e. the system with cut) for
deriving conclusions from premises.

As a result of cut elimination, sequent systems fulfill the subformula property.
Our systems do not distinguish between formulas and sequents, so technically of
course they do not fulfill the subformula property – just as sequent systems do
not fulfill a “subsequent property”. However, seen bottom-up, in system KSg no
rule introduces new atoms. It thus satisfies one main aspect of the subformula
property: when given a conclusion of a rule there is only a finite number of
premises to choose from.
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3.4 Atomicity and Locality

Consider the contraction rule in the sequent calculus :

` Φ, A, A
.

` Φ, A

Here, going from bottom to top in constructing a proof, a formula A of arbitrary
size is duplicated. Whatever mechanism performs this duplication, it has to
inspect all of A, so it has to have a global view on A. Having a local view on a
bounded portion of A is not enough.

I see two reasons why such a global behaviour is undesirable.

First, say that we want to measure the computational effort required for proof-
checking. The effort required for checking the correctness of a given instance of
the contraction rule depends on the size of the formula that is duplicated. The
usual measures on proofs, like the depth or the number of instances of inference
rules thus are not suitable for the complexity of proof-checking. A good measure
would be more complicated, as it would have to look inside the rule instances.

Second, say that we want to implement contraction on a distributed system,
where each processor has a limited amount of local memory. The formula A
could be spread over a number of processors. In that case, no single processor
has a global view on it.

I should stress that, given a suitable implementation, both of these objections
become irrelevant. It is certainly possible to represent sequents in such a way
that the contraction rule can be proof-checked in constant time just as it is
possible let several processors duplicate a formula which is distributed among
them. However, all the problems of a proof-theoretic system that are solved
in its implementation of course widen the gap between the original system and
its implementation. It may thus be worthwile to solve these problems already
inside the proof-theoretic system, i.e. by avoiding global rules. This is what we
set out to do in this section. We achieve locality by reducing the problematic
rules to their atomic forms.

To reduce contraction we need to add the medial rule [8]:

S [(R, U), (T, V )]
m

S([R, T ], [U, V ])
.

This rule has no analogue in the sequent calculus. But it is clearly sound because
we can derive it:

Proposition 3.14. The medial rule is derivable for {c↓, w↓}. Dually, the medial
rule is derivable for {c↑, w↑}.
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Proof. The medial rule is derivable as follows (or dually):

S [(R, U), (T, V )]
w↓

S [(R, U), (T, [U, V ])]
w↓

S [(R, U), ([R, T ], [U, V ])]
w↓

S [(R, [U, V ]), ([R, T ], [U, V ])]
w↓

S [([R, T ], [U, V ]), ([R, T ], [U, V ])]
c↓ .

S([R, T ], [U, V ])

An analogue to the medial rule has also been considered by Došen and Petrić
as a composite arrow in the free bicartesian category, cf. the end of Section 4 in
[10]. It is composed of four projections and a pairing of identities (or dually) in
the same way as medial is derived using four weakenings and a contraction in
the proof above.

We define atomic variants of the rules for identity, cut, weakening and contrac-
tion from system SKSg shown in Figure 4.

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S{f}
aw↓

S{a}

S{a}
aw↑

S{t}

S [a, a]
ac↓

S{a}

S{a}
ac↑

S(a, a)

Figure 4: Atomic identity, cut, weakening and contraction

Theorem 3.15. The rules i↓, w↓ and c↓ are derivable for {ai↓, s}, {aw↓} and
{ac↓, m}, respectively. Dually, the rules i↑, w↑ and c↑ are derivable for {ai↑, s},
{aw↑} and {ac↑, m}, respectively.

Proof. I will show derivability of the rules {i↓, w↓, c↓} for the respective systems.
The proof of derivability of their co-rules is dual.

Given an instance of one of the following rules:

S{t}
i↓

S [R, R̄]
,

S{f}
w↓

S{R}
,

S [R, R]
c↓

S{R}
,

construct a new derivation by structural induction on R:

14



1. R is an atom. Then the instance of the general rule is also an instance of
its atomic form.

2. R = t or R = f. Then the instance of the general rule is an instance of the
equivalence rule, with the only exception of weakening in case that R = t.
Then this instance of weakening can be replaced by

S{f}
=

S([t, t], f)
s
S [t, (t, f)]

= .
S{t}

3. R = [P, Q]. Apply the induction hypothesis respectively on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄ ], [Q, Q̄])
s
S [Q, ([P, P̄ ], Q̄)]

s ,
S [P, Q, (P̄ , Q̄)]

S{f}
=

S [f, f ]
w↓

S [f, Q]
w↓ ,

S [P, Q]

S [P, P, Q, Q]
c↓

S [P, P, Q]
c↓ .

S [P, Q]

4. R = (P, Q). Apply the induction hypothesis respectively on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄ ], [Q, Q̄])
s
S [([P, P̄ ], Q), Q̄]

s ,
S [(P, Q), P̄ , Q̄]

S{f}
=

S(f, f)
w↓

S(f, Q)
w↓ ,

S(P, Q)

S [(P, Q), (P, Q)]
m

S([P, P ], [Q, Q])
c↓

S([P, P ], Q)
c↓ .

S(P, Q)

We now define the local system SKS to be obtained from SKSg by restricting
identity, cut, weakening and contraction to atomic form and adding medial, i.e.

SKS = {ai↓, ai↑, s, m, aw↓, aw↑, ac↓, ac↑} .

Theorem 3.16. System SKS and system SKSg are strongly equivalent.

Proof. Derivations in SKSg are translated to derivations in SKS by Theorem
3.15, and vice versa by Proposition 3.14.

Thus, all results obtained for the global system, in particular the correspondence
with the sequent calculus and admissibility of the up-rules, also hold for the local
system. By removing the up-rules from system SKS we obtain system KS, i.e.

KS = {ai↓, s, m, aw↓, ac↓} .

Theorem 3.17. System KS and system KSg are strongly equivalent.
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Proof. As the proof of Theorem 3.16.

In system SKS, no rule requires duplicating formulas of arbitrary size. The
atomic rules only need to duplicate, erase or compare atoms. The rules switch
and medial do involve formulas of arbitrary size, just like the equations for
associativity, commutativity and units. In the switch rule, for example, the
formulas R, T and U are of arbitrary size. But applying those rules or equations
does not require inspecting those formulas, so they are local. To see this, consider
formulas represented as binary trees in the obvious way. Then the switch rule
just changes the marking of two nodes and exchanges two pointers:

[ ]

( )

R U T

;

( )

[ ]

R U T

.

The same is true for medial. The equivalence rule clearly is not local, however,
it is easily replaced by separate rules for associativity, commutativity and units
which are local.

The informal notion of locality depends on the representation of formulas. Rules
that are local for one representation may not be local when another representa-
tion is used. For example, the switch rule is local when formulas are represented
as trees, but it is not local when formulas are represented as strings.

For the propositional case we can now give a candidate for a representation-
independent definition of locality. In the terminology of term rewriting, local
rules are very special: they are non-erasing, meaning that the variables occuring
in the left-hand-side are exactly those that occur in the right-hand-side, and
left-linear as well as right-linear, meaning that in both left- and right-hand-side
there are no multiple occurrences of variables.

4 Predicate Logic

In this section I extend the deductive systems and the results about them from
the previous section to predicate logic. The use of deep inference allows to
design these systems in such a way that each rule corresponds to an implication
from premise to conclusion, which is not true in the sequent calculus. Also,
checking the eigenvariable conditions in this system does not require checking
the entire context, in contrast to the R∀ rule in the sequent calculus. This
allows to formulate a deduction theorem which does not have an analogue in
the one-sided sequent calculus.

This section is structured as the previous one: after some basic definitions I
present system SKSgq, a set of inference rules for classical predicate logic. I then
extend the translations from the previous section, which establishes soundness
and completeness with respect to classical predicate logic as well as cut admis-
sibility. In the following I obtain an equivalent system, named SKSq, in which
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S{∀x[R, T ]}
u↓

S [∀xR, ∃xT ]

S(∃xR, ∀xT )
u↑

S{∃x(R, T )}

S{R[x/t]}
n↓

S{∃xR}

S{∀xR}
n↑

S{R[x/t]}

Figure 5: Quantifier rules of System SKSgq

identity, cut, weakening and contraction are reduced to atomic form. The re-
sulting system is local except for the rules that instantiate variables or check
for free occurrences of a variable.

4.1 A Deep Inference System

We start with some basic definitions.

Definition 4.1. Variables are denoted by x and y. Terms are defined as usual in
first-order predicate logic. The formulas of the language KSq are just like the
formulas for propositional logic except that 1) instead of propositional variables
they contain expressions of the form p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms, and 2) they may contain existential and
universal quantifiers ∃x and ∀x. The definition of the negation S̄ of a formula
S is extended as usual by ∃xR = ∀xR̄ and ∀xR = ∃xR̄. The notions of formula
context and subformula are defined in the same way as in the propositional case.

Definition 4.2. Formulas are syntactically equivalent modulo the smallest con-
gruence induced by the laws given in Definition 2.4 and the following laws:

Variable Renaming
∀xR = ∀yR[x/y ]
∃xR = ∃yR[x/y ]

if y is not free in R

Vacuous Quantifier ∀yR = ∃yR = R if y is not free in R

We obtain system SKSgq, a symmetric system for predicate logic, by adding the
quantifier rules shown in Figure 5 to system SKSg, i.e.

SKSgq = SKSg ∪ {u↓, u↑, n↓, n↑} .

The rules u↓ and u↑ follow a scheme or recipe due to Guglielmi [12], which also
yields the switch rule and ensures atomicity of cut and identity not only for
classical logic but also for several other logics. The u↓ rule corresponds to the
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` Φ, A[x/t]
R∃

` Φ, ∃xA

` Φ, A[x/y ]
R∀

` Φ, ∀xA

Proviso: y is not free in the conclusion of R∀.

Figure 6: Quantifier rules of GS1

R∀ rule in GS1, shown in Figure 6. We could equivalently replace it by

S{∀x[R, T ]}
uv↓

S [∀xR, T ]
if x is not free in T .

In the sequent calculus, going up, the R∀ rule removes a universal quantifier
from a formula to allow other rules to access this formula. In system SKSgq,
inference rules apply deep inside formulas, so there is no need to remove the
quantifier: it can be moved out of the way using the rule u↓ and it vanishes once
the proof is complete because of the equation ∀xt = t.

The rule n↓ corresponds to R∃. As usual, the substitution operation requires t
to be free for x in R: quantifiers in R do not capture variables in t. The term t
is not required to be free for x in S{R}: quantifiers in S may capture variables
in t.

4.2 Correspondence to the Sequent Calculus

We extend the translations between SKSg and GS1p to translations between
SKSgq and GS1. System GS1 is system GS1p extended by the rules shown in
Figure 6.

From the Sequent Calculus to the Calculus of Structures

Theorem 4.3.

For every derivation

Σ1 · · · Σh

Σ

in GS1+Cut there exists a formula P{Σ1, . . . , Σh}

built from Σ1, . . . , Σh using only conjunction and universal quantification, and

a derivation

P{Σ1, . . . , Σh}

Σ

SKSgq \ {w↑,c↑,u↑,n↑} with the same number of cuts.

Proof. The proof is mostly similar to the proof of Theorem 3.6. The difference
are two more inductive cases, one for R∃, which is easily translated into an n↓,
and one for R∀, which is shown here:
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Σ1 · · · Σh

` Φ, A[x/y ]
R∀

` Φ, ∀xA

.

By induction hypothesis we obtain a derivation ∆ from which we build

∀yP{Σ1, . . . , Σh}

∀y [Φ, A[x/y ] ]
u↓

[∃yΦ, ∀yA[x/y ] ]
=

[Φ, ∀yA[x/y ] ]
=

[Φ, ∀xA]

∀y{∆} SKSgq \ {w↑,c↑,u↑,n↑}

,

where in the lower instance of the equivalence rule y is not free in ∀xA and in
the upper instance of the equivalence rule y is not free in Φ: both due to the
proviso of the R∀ rule.

Corollary 4.4.

1. If a sequent Σ has a proof in GS1 + Cut then Σ has a proof in the system
SKSgq \ {w↑, c↑, u↑, n↑}.

2. If a sequent Σ has a proof in GS1 then Σ has a proof in the system
SKSgq \ {i↑, w↑, c↑, u↑, n↑}.

From the Calculus of Structures to the Sequent Calculus

Lemma 4.5. For every two formulas A, B and every formula context C{ } there

exists a derivation

` A, B̄

` C{A}, C{B}

in GS1.

Theorem 4.6. For every derivation

Q

P

SKSgq there exists a derivation

` Q

` P

in GS1 + Cut.

Proof. The proof is an extension of the proof of Theorem 3.9. The base cases
are the same, in the inductive cases the existence of ∆1 follows from Lemma 4.5.
Corresponding to the rules for quantifiers, there are four additional inductive
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cases, which are simple. We show the case for

S{∀x[R, T ]}
u↓

S [∀xR, ∃xT ]
for which we have

Ax
` R, R̄

Ax
` T, T̄

R∧
` R, T, R̄ ∧ T̄

R∃
` R, ∃xT, R̄ ∧ T̄

R∃
` R, ∃xT, ∃x(R̄ ∧ T̄ )

R∀
` ∀xR, ∃xT, ∃x(R̄ ∧ T̄ )

R∨
` ∀xR ∨ ∃xT, ∃x(R̄ ∧ T̄ )

.

Corollary 4.7. If a formula S has a proof in SKSgq then ` S has a proof in
GS1 + Cut.

4.3 Soundness, Completeness and Cut Admissibility

Just like in the propositional case, soundness and completeness of SKSgq, i.e.
the fact that a formula has a proof in SKSgq if and only if it is valid, follows
from soundness and completeness of GS1 by Corollaries 4.4 and 4.7.

All inference rule in GS1 are sound in the sense that the validity of the premise
implies the validity of the conclusion. For system SKSgq something more is
true: for each inference rule the premise implies the conclusion. This is not true
for system GS1: the premise of the R∀ rule does not imply its conclusion. The
R∀ rule is the only rule in GS1 with this behaviour.

The “strong soundness” of inference rules in system SKSgq relies on the fact
that, by dropping the restrictions of the sequent calculus, we can pull out a
universal quantifier going up in the u↓ rule instead of having to drop it, as
happens in the R∀ rule. As a consequence we can prove a deduction theorem
which does not have an analogue in the one-sided sequent calculus:

Theorem 4.8 (Deduction Theorem).

There is a derivation

T

R

SKSgq if and only if there is a proof

[T̄ , R]

SKSgq
.

The proof is the same as the proof of Theorem 3.11 on page 11. Note that this
proof does not work for the sequent calculus because adding to the context of a
derivation can violate the proviso of the R∀ rule.

Just like in the propositional case, the up-rules of the symmetric system are
admissible. By removing them from SKSgq we obtain the asymmetric, cut-free
system KSgq, i.e.

KSgq = KSg ∪ {u↓, n↓} .

Theorem 4.9 (Cut Elimination). The rules i↑, w↑, c↑, u↑ and n↑ are admissible
for system KSgq. Put differently, the systems SKSgq and KSgq are equivalent.
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Proof.

S

SKSgq Corollary 4.7 GS1

+Cut

` S

Cut elimination
for GS1 GS1

` S

Corollary 4.4

S

KSgq

4.4 Atomicity and Locality

Just like in the propositional case, we can reduce identity, cut, weakening and
contraction to their atomic forms. In order to reduce contraction to atomic
form, we need to add the following local rules:

S [∃xR, ∃xT ]
m1↓

S{∃x[R, T ]}

S{∀x(R, T )}
m1↑

S(∀xR, ∀xT )

S [∀xR, ∀xT ]
m2↓

S{∀x[R, T ]}

S{∃x(R, T )}
m2↑ .

S(∃xR, ∃xT )

Like medial, they have no analogues in the sequent calculus. In system SKSgq,
and similarly in the sequent calculus, the corresponding inferences are made
using contraction and weakening:

Proposition 4.10. The rules {m1↓, m2↓} are derivable for {c↓, w↓}. Dually, the
rules {m1↑, m2↑} are derivable for {c↑, w↑}.

Proof. We show the case for m1↓, the other cases are similar or dual:

S [∃xR, ∃xT ]
w↓

S [∃xR, ∃x[R, T ] ]
w↓

S [∃x[R, T ], ∃x[R, T ] ]
c↓ .

S{∃x[R, T ]}

Theorem 4.11. The rules i↓, w↓ and c↓ are derivable for {ai↓, s, u↓}, {aw↓} and
{ac↓, m, m1↓, m2↓}, respectively. Dually, the rules i↑, w↑ and c↑ are derivable
for {ai↑, s, u↑}, {aw↑} and {ac↑, m, m1↑, m2↑}, respectively.

Proof. The proof is an extension of the proof of Theorem 3.15 by the inductive
cases for the quantifiers. Given an instance of one of the following rules:

S{t}
i↓

S [R, R̄]
,

S{f}
w↓

S{R}
,

S [R, R]
c↓

S{R}
,

construct a new derivation by structural induction on R:

1. R = ∃xT . Apply the induction hypothesis respectively on
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S{t}
=

S{∀xt}
i↓

S{∀x[T, T̄ ]}
u↓ ,

S [∃xT, ∀xT̄ ]

S{f}
=

S{∃xf}
w↓ ,

S{∃xT }

S [∃xT, ∃xT ]
m1↓

S{∃x[T, T ]}
c↓ .

S{∃xT }

2. R = ∀xT . Apply the induction hypothesis respectively on

S{t}
=

S{∀xt}
i↓

S{∀x[T, T̄ ]}
u↓ ,

S [∀xT, ∃xT̄ ]

S{f}
=

S{∀xf}
w↓ ,

S{∀xT }

S [∀xT, ∀xT ]
m2↓

S{∀x[T, T ]}
c↓ .

S{∀xT }

We now obtain system SKSq from SKSgq by restricting identity, cut, weakening
and contraction to atomic form and adding the medial rules, i.e.

SKSq = SKS ∪ {u↓, u↑, n↓, n↑} ∪ {m1↓, m2↓, m1↑, m2↑} .

As in all the systems considered, the up-rules are admissible and hence system

KSq = KS ∪ {u↓, n↓, } ∪ {m1↓, m2↓}

is complete.

Theorem 4.12.

1. System SKSq and system SKSgq are strongly equivalent.

2. System KSq and system KSgq are strongly equivalent.

Proof. Derivations in SKSgq are translated to derivations in SKSq by Theorem
4.11, and vice versa by Proposition 4.10. The same holds for KSgq and KSq.

Thus, soundness, completeness and cut admissibility as obtained for system
SKSgq also hold for system SKSq.

As we have seen in the previous section, the technique of reducing contrac-
tion to atomic form to obtain locality also works in the case of predicate logic:
the general contraction rule is equivalently replaced by local rules, namely
{ac↓, m, m1↓, m2↓}.

However, there are other sources of globality in system SKSq. One is the con-
dition on the quantifier equations:

∀yR = ∃yR = R where y is not free in R.

To add or remove a quantifier, a formula of arbitrary size has to be checked for
occurrences of the variable y.

Another is the n↓ rule, in which a term t of arbitrary size has to be copied
into an arbitrary number of occurrences of x in R. It is global for two distinct
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reasons: 1) the arbitrary size of t and 2) the arbitrary number of occurrences
of x in R. The arbitrary size of term t can be dealt with, since n↓ can easily be
derived and thus replaced by the following two rules:

S{∃y1 . . . ∃ynR[x/f(y1, ..., yn)]}
n1↓ and

S{∃xR}

S{R}
n2↓ ,

S{∃xR}

where f is a function symbol of arity n. Still, rule n1↓ is not local because of
the arbitrary number of occurrences of x in R.

Is it possible to obtain a local system for first-order predicate logic? It is cer-
tainly possible if we were to add new symbols to the language of predicate logic.
We could introduce substitution operators together with rules that explicitly
handle the instantiation of a variable in a formula piece by piece. However, ex-
tending the language for that purpose seems ad-hoc and would not achieve our
goal of having locality inside the proof-theoretical system, i.e. inside a system
which should be simple and should allow to comfortably study properties like
cut admissibility.

5 Conclusions

We have seen deductive systems for classical propositional and predicate logic
in the calculus of structures. They are sound and complete, and the cut rule
is admissible. In contrast to sequent systems, their rules apply deep inside
formulas, and derivations enjoy a top-down symmetry which allows to dualise
them.

Those features allow to reduce the cut, weakening and contraction to atomic
form, which is not possible in the sequent calculus. This leads to local rules, i.e.
rules that do not require the inspection of expressions of arbitrary size. Apart
from the treatment of variables in the system for predicate logic, the systems
that I presented are entirely local.

Compared to the sequent calculus, there is much more freedom in applying
inference rules in the calculus of structures. This freedom allows to easily embed
not only the sequent calculus itself and natural deduction, but also methods
known from automated theorem proving. Resolution [24], for instance, can
straightforwardly be seen as a strategy for proof search in system SKS [15]. The
calculus of structures could thus be used to study these methods in a unified
formalism.

The freedom in applying inference rules is a mixed blessing. Compared to
the sequent calculus it allows for shorter proofs, cf. [14], but the greater non-
determinism in proof search also makes it harder to find proofs. It will be
interesting to see how to restrict this non-determinism by finding a suitable no-
tion of goal-driven proof like the notion of uniform proofs by Miller et al. [22].
Since the sequent calculus can be seen as a strategy in the calculus of struc-
tures and uniformity can be seen as a strategy in the sequent calculus it seems
promising to try to obtain a more general notion of goal-drivenness.

Some progress has already been made in restricting the non-determinism in
system SKS by so-called decomposition theorems [5], which provide notions of
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normal form for derivations in a natural way, namely by restricting the choice
of which inference rules to apply. Finding more decomposition theorems is an
interesting task for future research since it turns out that many proof theoretical
phenomena can be stated as a suitable decomposition theorem, like Herbrand’s
Theorem, Craig interpolation or cut admissibility. There is also work by Kahra-
manoğullari [18] on reducing non-determinism and implementations.

The decomposition of the contraction rule into atomic contraction and medial
has been fruitful for the work by Lamarche and Straßburger [20, 30] who de-
velop notions of classical proof net and categorical axiomatisations for classical
proofs. McKinley [21] also gives a categorical axiomatisation for proofs in clas-
sical predicate logic which is partly inspired by the shape of the medial rules.

An interesting question is whether there are local systems for non-classical logics.
In the case of modal logic the reducibility of rules to atomic form straightfor-
wardly scales to the systems presented by Stewart and Stouppa in [27]. In the
case of intuitionistic logic this is not so straightforward. Implication can not be
expressed by disjunction and negation as in the classical case, we need it as a
primitive connective in the system. The reduction of identity and cut still works
[3], but we have yet to find a way to reduce contraction to atomic form in the
presence of implication.
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[10] Kosta Došen and Zoran Petrić. Bicartesian coherence. Studia Logica,
71(3):331–353, 2002.

[11] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland Publishing Co., Amsterdam, 1969.

[12] Alessio Guglielmi. Recipe. Manuscript. http://www.wv.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG2.pdf, 2002.

[13] Alessio Guglielmi. A system of interaction and structure. Technical Re-
port WV-02-10, Technische Universität Dresden, 2002. To appear in ACM
Transactions on Computational Logic.

[14] Alessio Guglielmi. Polynomial size deep-inference proofs instead of ex-
ponential size shallow-inference proofs. Manuscript. http://www.ki.inf.tu-
dresden.de/˜guglielm/res/notes/AG12.pdf, 2003.

[15] Alessio Guglielmi. Resolution in the calculus of structures. Manuscript.
http://www.ki.inf.tu-dresden.de/˜guglielm/res/notes/AG10.pdf, 2003.

[16] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in
the calculus of structures. In L. Fribourg, editor, CSL 2001, volume 2142
of Lecture Notes in Computer Science, pages 54–68. Springer-Verlag, 2001.

[17] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In Matthias Baaz and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, volume 2514 of
LNAI, pages 231–246. Springer-Verlag, 2002.
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Annalen, 122:47–65, 1950.
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