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Abstract This paper introduces a nested sequent system for predicate logic.
The system features a structural universal quantifier and a universally closed
existential rule. One nice consequence of this is that proofs of sentences cannot
contain free variables. Another nice consequence is that the assumption of
a non-empty domain is isolated in a single inference rule. This rule can be
removed or added at will, leading to a system for free logic or classical predicate
logic, respectively. The system for free logic is interesting because it has no need
for an existence predicate. We see syntactic cut-elimination and completeness
results for these two systems as well as two standard applications: Herbrand’s
Theorem and interpolation.
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1 Introduction

The mismatch. Traditional analytic proof systems like Gentzen’s sequent calculus often
cannot capture non-classical logics. Various formalisms have been designed to overcome
this problem. The most prominent ones seem to be hypersequents [1], the display calcu-
lus [3], labelled systems [18], the calculus of structures [12], and nested sequents [5, 6].
All these formalisms work by enriching the structural level of proofs. We can thus see
the problem of the traditional sequent calculus as a mismatch between the logic and the
structural level of proofs, and we can see these formalisms as ways of repairing it. See
also the note [11] by Guglielmi for an exposition of this mismatch.

The mismatch in predicate logic. Our proposition here is that the mismatch even affects
sequent systems for classical predicate logic. Technically, there is obviously no match
between structural and logical connectives, in particular there is no structural counter-
part for quantification. The question is whether that is a problem. It turns out that it
is if we either want to extend the logic, such as to modal predicate logic, or to slightly
weaken the logic, such as by admitting models with an empty domain.

It is a well-known problem in modal predicate logic that combining a traditional sequent
system for modal logic with one for predicate logic results in a system which forces the
provability of the converse Barcan formula. The existential (right) rule is responsible
for that. As it happens, the same existential rule forces the provability of the formula
VxA > dzA and thus restricts us to non-empty domains.

Repairing the mismatch. We now take a quick look at Hilbert-style axiom systems,
because there these two problems also occur, but have an elegant solution. The analogue
of the existential rule, and equally problematic, is the axiom of instantiation. It typically

has the form:
VeA> Alx :=y]

where it suffices to have a variable y instead of an arbitrary term because we have no
function symbols. This axiom can be universally closed as follows:

Vy(VzA> Alx :=y])

And indeed, this closed form of instantiation leads to an axiomatisation for modal pred-
icate logic which does not force the converse Barcan formula and is thus modular in the
sense that we can add or remove the converse Barcan formula at will. It also leads to an
axiomatisation for predicate logic which does not force non-empty domains, so we can
add or remove the non-emptyness requirement at will. This trick of universally closing
the instantiation axiom is attributed to Kripke in the context of modal predicate logic
in [8] and to Lambert in the context of free logic in [4]. The purpose of the present work
is essentially to bring this trick to cut-free systems.

Nested sequents. To that end, we use nested sequents. Compared to usual sequents,
nested sequents simply add more structural counterparts for logical connectives. In
modal logic, for example, in addition to having the comma (on the right) as a structural



counterpart for disjunction, one also has a structural connective for the modality. Since in
the present work we are concerned with predicate logic, we have a structural counterpart
for universal quantification.

The first use of nested sequents under that name seems to be by Kashima in [13] for tense
logics. However, the concept is very natural, and it has been used independently many
times in different places. The earliest references I am aware of are from the seventies,
by Dunn [7] and by Mints [14], on proof systems for relevance logics. More recent uses
for modal logics can be found in the work by the author [5], by Goré, Tiu and Postniece
[10], by Dyckhoff and Sadrzadeh [16], or by Poggiolesi [15].

Why repair the mismatch? For now, repairing the mismatch gives us a proof system
in which the assumption of a non-empty domain is isolated in a single inference rule.
This rule can be removed or added at will, leading to a system for free logic or classical
predicate logic, respectively. This is of course not possible in the standard sequent
calculus. The system for free logic is interesting because it does not rely on a so-called
existence predicate, contrary to traditional sequent systems for free logic. This allows
for a syntactic proof of an interpolation theorem, which is slightly stronger than what
can be (easily) obtained from the traditional systems: the existence predicate does not
occur in the interpolant. However, this is just for now. I think that repairing the
mismatch becomes more fruitful the further we move away from classical logic. I am
currently working on proof systems for modal predicate logic, in which both the Barcan
and converse Barcan formula can be added in a modular fashion. I also think that nested
sequents can provide proof systems for logics which currently do not seem to have cut-
free systems such as (first-order) Godel-logic without constant domains, see for example
[2].

Outline. The outline of this paper is as follows. In Section 2 we introduce our two nested
sequent systems: System Q for predicate logic and a subsystem of it, called System FQ,
for free logic. In Section 3 we show some basic properties such as invertibility and some
admissible rules. Section 4 relates System Q to a traditional system for predicate logic,
and Section 5 relates System FQ to traditional proof systems for free logic. In Section
6 we prove cut-elimination. Finally, in Section 7 we show two simple consequences of
cut-admissibility: Herbrand’s Theorem and interpolation.

2 The Sequent Systems

Formulas. We assume given an infinite set of predicate symbols for each arity n > 0 and
an infinite set of variables. Predicate symbols are denoted by P, variables by z,vy,z. A
proposition, denoted by p, is an expression P(z1,...,x,) where P is a predicate symbol
of arity n and z1,...,x, are variables. Formulas, denoted by A, B,C, D are given by
the grammar

A:x=p|p|(AVA)|(ArA)|TzA|VzA

Propositions p and their negations p are called atoms. Given a formula A, its negation



A is defined as usual using the double negation law and the De Morgan laws, A > B
is defined as A v B and both T and L are respectively defined as p v p and p A p for
some proposition p. The binary connectives are left-associative, and we drop parentheses
whenever possible, so for example AV B Vv C denotes ((Av B) v ().

Nested sequents. A nested sequent is defined inductively as one of the following: 1)
a finite multiset of formulas, 2) the singleton multiset containing the expression Vz[I']
where T' is a nested sequent, or 3) the multiset union of two nested sequents. The
expression Vz[ | in Vz[I['] is called the structural universal quantifier: the intention is
that it relates to the universal quantifier just like comma relates to disjunction. It
binds variables in the same way as usual quantifiers, these variables are then called
structurally bound. We will often save brackets and write VzI" instead of Vz([I'] and VayI'
instead of VzVyI' if it does not lead to confusion. In the following, a sequent is a nested
sequent. Sequents are denoted by I' and A. We adopt the usual notational conventions
for sequents, in particular the comma in the expression I', A is multiset union. A sequent
I" is always of the form

Al, ves ,Am,Vxl[Al], e ,VCL’n[An]
The corresponding formula I'c of the above sequent is
A1v...vAvaxlng...VVxn&F ,

where an empty disjunction is | and both the shown formulas and the shown variables
are ordered according to some fixed total order.

Structural a-equivalence. Two sequents are structurally a-equivalent if they are equal
up to the naming of structurally bound variables. This is a weaker equivalence than the
usual notion of a-equivalence, which identifies formulas and sequents up to the naming
of all bound variables. In particular, given different variables x and y, the sequents Va[A]
and Vy[A[z := y]] are structurally a-equivalent while the sequents Vx A and VyA[z := y]
are not. Our inference rules will apply modulo structural a-equivalence.

Sequent contexts. Informally, a context is a sequent with holes. We will mostly encounter
sequents with just one hole. A unary context is a sequent with exactly one occurrence
of the symbol { }, the hole, which does not occur inside formulas. Such contexts are
denoted by I'{ }, A{ }, and so on. The hole is also called the empty context. The sequent
I'{A} is obtained by replacing { } inside I'{ } by A. For example, if I'{ } = A,Vz[B,{ }]
and A = C, D then T'{A} = A,Vz[B, C, D]. More generally, a context is a sequent with
n > 0 occurrences of { }, which do not occur inside formulas, and which are linearly
ordered. A context with n holes is denoted by I'{ }...{ } .
—_——

n—times

Holes can be filled with sequents, or contexts, in general. For example, if I'{ }{ } =

AVz[B,{}],{} and A{ } = C,{ } then
F{A{ }}{ } = Avng[Bva{ }]v{ } )



T{A} T{B} T{A, B}

T 5} I{Ar B} "T{Av B}

v F{Vl‘[A]} scp Va [F{A}] where x does not
T{vzA} T{va[a]} ocwinTll

I{3zA Alz == y]} ) . I'{3zA,Vz[A]}
F{H.%A} binds y F{Ele}

C1

Figure 1: System Q

where in all contexts the holes are ordered from left to right as shown.

Inference rules, derivations, and proofs. Inference rules are of the form

where the I'(;) are schematic sequents and p is the name of the rule. We sometimes write
p"" to denote n instances of p and p* to denote an unspecified number of instances of
p. A system, denoted by S, is a set of inference rules. A derivation in a system S is a
finite tree which is built in the usual way from instances of inference rules from S, which
are applied modulo structural a-equivalence. The sequent at the root is the conclusion
and the sequents at the leaves are the premises of the derivation. An axiom is a rule
without premises. A proof of a sequent I' in a system is a derivation in this system with
conclusion I" where each premise is an instances of an axiom. Derivations are denoted
by D and proofs are denoted by P. A derivation D in system S with premises I'y ... T,
and conclusion I' and a proof P in system S of I' are respectively denoted as

r T

Systems Q and FQ. We say that a unary context binds y if it is of the form I'1 {Vy[['2{ }]}.
Figure 1 shows System Q, the set of rules {id, A, v, V, scp, Jc1, Icp}. The id-rule is also
called the identity axiom and the scp-rule is also called the scope rule. Notice how the
existential rule is closed, and how the system thus has the free variable property: all free
variables that occur in a proof occur in its conclusion. The Jcp-rule postulates that the
domain is non-empty. Removing it from System Q gives us System FQ, our system for
free logic.



scp

v,V

L

8

<

<

—~

Iy

8

~

U

i)
—~ |~ |

<
S~— | ~— | ~

Jdeo

Figure 2: A proof of the drinker’s formula

Provisos modulo renaming. Note that, since rules apply modulo structural a-equiva-
lence, so do their provisos. In particular, the following is a valid instance of the scp-rule:

" Va[P(z), V2Q(z)]
Vz[P(x)],VzQ(z)

A proof of the drinker’s formula. Figure 2 shows a proof of the drinker’s formula: there
is a man such that when he drinks, everyone drinks. The proof makes use of the 3;-rule,
which is just the dc-rule without built-in contraction and will be shown to be admissible
in the next section. The notation scp? denotes two instances of the scope rule and the
notation Vv,V denotes an instance of the v-rule followed by an instance of the V-rule. Note
also that implication is a defined connective.

The drinker’s formula is not provable in System FQ. Notice also that this is very easy to
see: the dci-rule does not apply because of its proviso and thus no rule at all is applicable
to the formula.

System Q is complete for sentences only. System Q does not prove all valid sequents. In
particular it is easy to see that it does not prove the valid sequent 3xP(x), P(y). It only
proves its universal closure Vy[3zP(z), P(y)]. This is by design: the non-closed sequent
is not valid in varying domain semantics for modal predicate logic. Note that, thanks
to the free variable property, restricting ourselves to sentences is less problematic than
in the usual sequent calculus.

Why structural a-equivalence? Without a-renaming our system would not be complete
even for sentences. The closed valid sequent Vy[3z3yP(x), P(y)] would not be provable.
Of course this situation is well-known. Many systems handle it by treating formulas mod-
ulo a-equivalence. In System Q it is sufficient to allow for structural a-renaming. The
intention here is that a connective should be free while its corresponding structural con-
nective is subject to some equations. We have disjunction and its corresponding comma
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Figure 3: Admissible rules

(with associativity and commutativity) and similarly we have the universal quantifier
and its corresponding structural universal quantifier (with a-renaming).

3 Admissible Rules and Invertibility

Figure 3 show some rules which are admissible for System Q. Their names are: gen-
eral identity, weakening, contraction, instantiation, generalisation, permutation, vacuous
quantification, cut, first existential and second existential. To show their admissibility
we first need some definitions of standard notions.

Cut rank. The depth of a formula A, denoted depth(A), is defined as usual, the depth of
possibly negated propositions being zero. Given an instance of the cut-rule as shown in
Figure 3, its cut formula is A and its cut rank is one plus the depth of its cut formula.
For r > 0 we define the cut,-rule which is cut with at most rank . The cut rank of a
derivation is the supremum of the cut ranks of its cuts.

Admissibility and derivability. An inference rule p is (depth-preserving) admissible for a
system S if for each proof in SU{p} there is a proof in § with the same conclusion (and
with at most the same depth). An inference rule p is derivable for a system S if for each
instance of p there is a derivation D in & with the same conclusion and the same set of
premises. A rule is cut-rank (and depth-) preserving admissible for a system S if for all
r > 0 the rule is (depth-preserving) admissible for S + cut,.

Invertibility. For each rule p there is its inverse, denoted by p~', which is obtained
by exchanging premise and conclusion. The inverse of a two-premise-rule allows each
premise as a conclusion. An inference rule p is (depth-preserving) invertible for a system
S if p~' is (depth-preserving) admissible for S. An inference rule p is cut-rank (and
depth-) preserving invertible for a system S if p~' is cut-rank (and depth-) preserving
admissible for S.



We are now ready to state our lemma on admissibility and invertibility.

Lemma 3.1 (Admissibility and Invertibility)

(i) For each system S € {FQ, Q}, each rule of S is cut-rank and depth-preserving invert-
ible for S.

(ii) For each system S € {FQ,Q}, each of the first six rules from Figure 3 is cut-rank
and depth-preserving admissible for S.

(iii) The vacuous quantification rule is depth-preserving admissible for System Q.

Proof. To show (i) we need admissibility of the weakening and permutation rules for both
systems, so we show this admissibility first. The proof of cut-rank and depth-preserving
admissibility is as usual, by induction of the number of instances of the respective rule
in a given proof. We choose a top-most instance and remove it by induction on the
depth of the proof above it and a case analysis on its lowermost rule. For weakening
admissibility all cases are trivial.

Admissibility of per. For permutation admissibility the only two interesting cases are as
follows:

Yy {VxA}

cp oL Yy {VzA}
F{VyV.%’A} scp ————————

per ————— F{\V/CC\V/yA}
{VavyA}

and

Val'{VyA

op YA VaT {VyA}
I {vyvzA} scp T

per ————— F{vayA}
{VzvyA}

We go on to show (i). Invertibility is trivial for all rules except for the scope rule. So we
just show the invertibility of scope, meaning the admissibility of its inverse scp™!.

Invertibility of scp. The only interesting case is when an instance of scp is above it.
We make a case analysis on the position of the active quantifier in the scp~!-rule with
respect to the active quantifier in the scp-rule. We have the following four cases. First,
the two scopes coincide:

Val'{A}

scp —————
op-t r{vzA} ~ VaT{A} |

VeI {A}

second, the scope of the first includes the second:

. Yyl {Val'2{A}}

- vyl {Val'2{A}} VavyT i {Ta{A}}
 Tifvala{vyAlp  ~ VgVl {To{A})

V:UF1{F2{V?JA}} P Va1 {To{VyA}}



third, the scope of the second includes the first:

. Vyf‘l {Fz {‘v’xA}}

VyL{To{VzA}}

- Vavyl{T2{A

o Diyla{vedl)  ~ pervyviFiFiAﬁ ’
Va1 {Vyl2{A}} P Vel {VyT2{A}}

and fourth, the two scopes are disjoint:

. \V/yF{Al}{v{L'AQ}

VyI{A H{VzAq}
o VaVyl{A H{A
B F{VyAl}{V$A2} ~ per \v/yVil—iAiiiAZ§
Val {VyA; A} Ve Yy AL A}

This concludes the proof of (i) for both Systems FQ and Q. To prove (ii) we now look
at the non-trivial cases in the admissibility arguments for the remaining rules, namely
general identity, contraction, instantiation, and generalisation.

Admissibility of gid. The admissibility argument for the general identity is the standard
induction on the structure of the active formula. The case where the main connective
of the active formula is a quantifier is as follows:

id — —
*Val{A, A, 3z A}

gld T —— > HCI =
I{vzA, 3z A} VaI'{A, Jz A}
vz A, 3rA)

Admissibility of ctr. For contraction, all rules above it except scope are handled by using
invertibility:

, I'{A, A"}
pF{A—’A} pilr{AgAf}
e F{A,A} ~ ctr ‘W y
A "T{a)

and scope is handled as follows:

Val1{T2{A}, To{VaA}}  Val {To{A}, Ta{VaAl}

sc Vil {To{A}, To{A
CTDVeA] (WA~ e ;i;l{{rj{:}{} }
Fl{r2{va}} scp m

Admissibility of ins. For instantiation there are two interesting cases. The first case
is when it is below an dcji-instance, which relies on the structural quantifier that the



instantiation rule removes (seen downwards). Notice that the provisos on the right are
fulfilled since I'1{ } binds z:
[ {Val2{3yA, Aly := x]}}
2}
2]}

. [ {Val'2{3yA, Aly := z|}} iff I {Co{TyA, Aly := 2]}z :

[ {Val'2{3yA}} ~ =
ns I'1{T'2{3 A, Aly := 2|}z :
Ii{To{3y A}z := 2]} e 8 ;{1{?2{3?;%1}[56 ]:}[z]}

The second interesting case is instantiation below scope, if the same structural universal
quantifier is active in both rules:

- Val'{A}
VaD{A} ST vVl {A}
Trvad) o~ WA= y)
{A[z =y} ;p VyI'{Alz := yl}
I{Afz := y]}

Admissibility of gen. For the generalisation rule there is just one interesting case, namely
when it is below a scope:

vyI'{A
vyT{A} gen RONCYS
scp VavyI'{A}
F{VyA} ~> per ————
gen ———— VyV.%'F{A}
VaeI'{VyA} R
Vel {VyA}

This concludes the proof of (ii) for both Systems FQ and Q. We go on to show (iii), the
admissibility of the vacuous quantification rule for Q.

Admissibility of vac. There is just one interesting case, namely when the vac-rule is
below an dci-rule which relies on the vacuous quantifier. It is handled as follows:

o M{VyA{3zA, Alz :=y]}}
] M{vVyA{3zA, Alz :=y]}} ZC VyI'{A{3z A, Alz := y|}}
T T{WAEAY ~ " T{A(32A, Yy[Alr = y]]}}
D{A{3zA}} N - T{A{3zA,Vz[A]}}
T{A{3zA}}

O]

Note that the vacuous quantification rule is not admissible for System FQ: the sequent
Va[Jy(p v p)] is provable, but not the sequent Jy(p v p).

By the V- and v-rules and their invertibility we get the following corollary.

10



Corollary 3.2 Each system from {FQ, Q} proves a sequent iff it proves its corresponding
formula.

By weakening admissibility we also get the following corollary.

Corollary 3.3 The J;-rule is admissible for each system from {FQ,Q}. The Jp-rule is
admissible for System Q.

4 Relation between System Q and the usual Sequent Calculus

We now see how to embed System Q into a standard sequent system and vice versa.
The specific standard system we use is a variant of System GS1 from [17]. We call this
variant System LK1 and the only difference between LK1 and GS1 is that LK1 does not
treat formulas modulo a-equivalence. Instead it requires that free and bound variables
come from disjoint sets, just like in Gentzen’s original System LK [9]. So an LK1-sequent
is a multiset of formulas for which the set of free variables and the set of bound variables
are disjoint.

We denote sets of variables by & and write Z,y for £ U {y}. Given a set of variables
Z, the corresponding sequence of structural universal quantifiers is written as VZ| |,
where variables are ordered according to the fixed total order. The universal closure of
a sequent I' is the sequent VZ[I'] where Z is the set of free variables of T'.

Theorem 4.1 (Embedding System LK1 into System Q) If System LK1 proves an LKI-
sequent then System Q proves its universal closure.

Proof. We proceed by induction on the depth of the given proof in LK1. The identity
axiom and the rules for disjunction and conjunction are trivial, so we just show the
cases for the quantifier rules. For the universal rule there are two cases. Here is the first,
where x occurs free in A (and thus y occurs free in the premise of the V-rule). Note that
the proviso of the scope rule and of the renaming below it are fulfilled because of the
proviso of the V-rule:

o YL Al = 4]
V V_) I_‘, A =
L, A[x = y] where y does scp EJ 1‘[ [I‘ y“
————  not occur in ~> V$[F,Vy[A[x — y]“
F’ Vz A conclusion —
VL, Va[4]
V[T, Va Al

In the second case, where x does not occur free in A, the translation is almost the same,
just the instances of the permutation rule are replaced by an instance of generalisation.

For the existential rule, there are three cases. Here is the first, where y is free in the
conclusion:
D Alz =y v, y[l', Al = y]

=

>
I',3zA vz, y[[, JzA]

11



The second case, where y is free in the premise of the 3-rule but not in the conclusion
is as follows. Note that here the proviso in the scope rule is fulfilled because free and
bound variables are disjoint in LK1-proofs:

vz, y[I', Alz := y]]
per*
VyVZ[l, Alz :=
EF’A[:E = y] SCPV_Z'/[F i/ [A{ yH]
e ~ T T =
T,32A _ e Y
; vZ[L, Ve[ A]]
* vz, 3z 4]

The third case, where y is neither free in premise nor conclusion is similar to the second
case, with the instances of permutation replaced by one instance of generalisation. [

We now see the reverse direction, that is, we embed System Q into System LK1. We first
need some definitions. Define formula conterts in analogy to sequent contexts. Let a
restricted formula context be one where the hole occurs in the scope of at most disjunction
and universal quantification. The glue rules are shown in Figure 4, where F{ } is a
restricted formula context. They are just a technical device useful for embedding System
Q into System LK1.

Lemma 4.2 (Glue for LK1) The glue rules are admissible for System LK1.

Proof. By an induction on the depth of F/{ } and using invertibility of the V-rule and of
a G3-style v-rule, we can reduce the admissibility of each glue rule to the admissibility
of its restriction to an empty formula context F'{ }. The admissibility of the restricted
glue rules is easy to see. O

Theorem 4.3 If System Q proves a sequent, then System LK1 proves its corresponding
formula.

Proof. Since by the previous lemma the {gc, ga,gn}-rules are admissible for LK1 we as-
sume in the following equiprovability of sequents that only differ modulo commutativity
and associativity of disjunction and renaming of universally bound variables. We pro-
ceed by induction on the depth of the given proof in System Q. The propositional rules
are just translated to the corresponding glue rules which are admissible for LK1 by the
previous lemma. The case for the scope rule is as follows:

V% %

~ . val{A} 7
scp VLW where x does not _ w
[{vzA} occwrin () FAL
{vzA}

12



I, F{Av B} T, F{(AvB)vC} T, F{vzA}
“TFBvA) ST, F{Av(BvC)} T, F{¥yAlz —y]}

F,F{A} F,F{B} P,F{A\/A}
“TFpvpy T LLF{AAB) T F{AY
F,F{A[l‘ = y]} where y does F7F{A[x — y]}

gv T, F{va} not occur in €3 F,F{E{EA}

the conclusion

Figure 4: Some glue for embedding System Q into System LK1

where on the right y is a fresh variable, the equality is justified by the proviso of the scope
rule, and we have just written sequents to denote their corresponding formulas. The case
for the dc; is handled easily by splitting it into an instance of 3; and contraction and
using the corresponding glue rules. The case for the dcp-rule is also handled splitting it
into d9 and contraction, and translating 35 as follows:

7 -

~  T{vel)}
; L {vz[A]} " r{A}
" T{3zA} r{a},
NES

where on the right ins is depth-preserving admissible for Q and IH denotes applying the
induction hypothesis to the proof above. O

By soundness and completeness of LK1 our embeddings give us soundness and complete-
ness for System Q.

Theorem 4.4 (System Q is sound and complete) System Q proves a sentence iff it is valid
(for the standard notion of validity in classical predicate logic).

5 Relation between System FQ and Free Logic

We will now see that System FQ is sound and complete with respect to free logic.
For completeness we embed a Hilbert-style system for free logic into System FQ + cut

13



(Tautology) a propositional tautology

(Distributivity) Va(A> B) > (VoA >VaB)

(Vacuous) A>VxA where z does not occur free in A
(Instantiation) Vy(VzA> Alx == y))

(Permutation) VaVyA > VyVax A

Figure 5: Axioms of System FQC

and then use cut elimination for System FQ, which is proved in the next section. The
specific Hilbert-system we use is System FQC from Bencivenga [4], which consists of
modus ponens and all generalisations of instances of the axioms shown in Figure 5. As
usual, a generalisation of a formula is obtained by prefixing it with any sequence of
universal quantifiers.

It is easy to see that the axioms of FQC are provable in System FQ and that modus

pones is admissible for System FQ + cut, so we have the following theorem.

Theorem 5.1 (Embedding System FQC into System FQ + cut) If a formula is provable in
System FQC then it is provable in System FQ + cut.

To show soundness of System FQ we embed it into a sequent system for free logic, a
variant of a system from Bencivenga [4]. System FLKI is System LK1 with the quantifier
rules replaced by the ones shown in Figure 6, where E, the existence predicate, is a fixed
unary predicate symbol, which is not used in formulas.

The proof of the following lemma is standard.

Lemma 5.2 (Invertibility for FLK1) All rules of System FLK1 are depth-preserving in-
vertible for System FLK1.

The free glue rules are shown in Figure 7, where F{ } is a restricted formula context.
The proof of the following lemma follows the lines of the corresponding proof for LK1
and makes use of the invertibility of rules in FLK1.

Lemma 5.3 (Glue for FLK1) The rules {gc, 8a, 8a> 8id, &r, Ectr} and the free glue rules are
admissible for System FLK1.

We can now embed FQ into FLK1.

Theorem 5.4 (Embedding System FQ into System FLK1) If System FQ proves a sequent,
then System FLK1 proves its corresponding formula.

Proof. The proof is similar to the embedding of System Q into System LK1. The differ-
ence is in the translation of the scope rule and the Jci-rule, and, of course, the fact that
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T, A[I‘ = y], E(y) where y does I, A[aj‘ = y] T, E(y)
A F, VoA not occur in the Fr F, JzA

conclusion

Figure 6: Quantifier rules of System FLK1

F,F{A[l‘ = y]},E(y) Wh:reydges . F,F{A[ZE = y}} F,F{E(y)}
not occur in 3
& I, F{\V/Z‘A} the conclusion ’ L F{HxA}

Figure 7: Glue for FLK1

we do not need to translate the dco-rule. Here is the case for the scope rule:

Val'{A}
ScpvxF{A} where z does not -~ F:F{A}[x = y], (y)
D{vad} oornri) Al =y} B
" r{vzA}

where on the right y is a fresh variable, the equality is justified by the proviso of the
scope rule, and we have just written sequents to denote their corresponding formulas.

For simplicity we just show d; since dcy is derivable for 3; and contraction:

id ————
E(z), E(z)
Az =y} where T'{ } ” vi
T inds y ~ PV wk” L(y) ,
[{3zA} b riap=yy " T{EG)}
& r{3zA}

O]

By soundness of FLK1 and completeness of FQC with respect to free logic, our embed-
dings, and cut-elimination for FQ we obtain soundness and completeness for System FQ
with respect to free logic.

Theorem 5.5 (System FQ is sound and complete) System FQ proves a formula iff it is a
theorem of free logic.
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6 Syntactic Cut-Elimination

We now turn to cut-elimination. As usual, the reduction lemma is the centerpiece of the
cut elimination argument.

Lemma 6.1 (Reduction Lemma) Let S € {FQ, Q + vac}. If there is a proof as shown on
the left, then there is a proof as shown on the right:

S+cutT v8+cutr
~> S+cut,

r{o}

Proof. We first prove the lemma for System FQ. We proceed as usual, by an induction
on the sum of the depths of P; and P, and by a case analysis on their lowermost
rules. All passive cases (that is, those where the lowermost rule does not apply to the
cut-formula) are handled using invertibility, and using contraction admissibility in the
passive conjunction case. Note that scope can only be passive. The active cases for
the axiom and the propositional connectives are as usual. We now look at the only
interesting case, namely V vs. Jci, which is handled as follows:

N

vF{VJ:[A]} . {3z A, Alz = y]}
r{vzA}  T{dzA}
r{o}

o/

I{vz[A]}
wk —
~ v VF{A}T = yl,Vz[A]} v )
. {vz[A]} » I{Alz :=y|,VzA} T{3zA, Alx =y}
"Il = 4]} C{Af = y])
I {o}

cuty4q

C

where the proviso of the ins-rule is fulfilled because of the proviso of the dci-rule. This
concludes the proof for System FQ. The proof for System Q + vac is the same, but with
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the additional case V vs. Jco:

o/ Ny

T{valA]} T304, valA))
T{vzA} T{3zA}
I{ao}

I{vz[A]}

wk —
N e N\
W (VoA YalA]}  T{30A, Vel 4]}

T{valA)} T{vz[A]}
T{vz[2]}
Ir{o}

cuty4q

cu

vac

O

Cut-elimination for System FQ now follows from a routine induction on the cut-rank of
the given proof with a subinduction on the depth of the proof, using the reduction lemma
in the case of a maximal-rank cut. To get cut-elimination for System Q we first prove it
for System Q + vac, in the same way as we did for FQ, and then use the admissibility of
the vac-rule. So we have the following theorem.

Theorem 6.2 (Cut-Elimination) Let S € {FQ,Q}. If a sequent is provable in System
S + cut then it is provable in System S.

7 Herbrand’s Theorem and Interpolation

We now see two simple applications of our cut-free system: Herbrand’s Theorem and
interpolation, both for classical predicate logic and free logic. The point here is of
course not that these results are new, the point is that our cut-free systems are useful
enough to easily provide them. That said, in the case of free logic the syntactic proof
of interpolation seems to be new: it is not easy to see how to get it from System FLK1
without allowing the existence predicate to occur in the interpolant.

Theorem 7.1 (Mid-Sequent Theorem) Let S € {FQ,Q} and let I contain only prenex
formulas. If there is a proof as shown on the left, then there is a proof as shown on the
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right:

V{id,mv}
DZCERN
T | S—{id,A,v}
r

Proof. We first establish the claim that each rule in {V, scp, 3c;, 3cp} is depth-preserving
invertible for System {id, A, v}.

To prove the decomposition theorem we now proceed by induction on the depth of the
given proof and a case analysis on the lowermost rule. Consider the case when that is
the A-rule, which is the only interesting case. We first decompose the left subproof by
induction hypothesis. Then we permute all the quantifier rules we obtained down below
the A-rule, using invertibility to compensate on its right premise. Note that the depth
of the right subproof is preserved. Now we decompose the right subproof by induction
hypothesis. Then we permute all the quantifier rules that we obtained down below the
A-rule, using the claim to compensate on its left premise. We have now obtained a proof
of the desired form. O

The mid-sequent I may still contain formulas with quantifiers as well as structural
universal quantifiers. However, since its proof contains only propositional rules, both
can be easily removed. So we have the following corollary.

Corollary 7.2 (Herbrand’s Theorem) Let S € {FQ,Q} and let A be a prenex formula
which is provable in System S. Then there is a sequent which 1) consists only of substi-
tution instances of the matrix of A and 2) is propositionally provable.

We also easily obtain the following interpolation theorem, by a standard induction on
the depth of the given proof.

Theorem 7.3 (Interpolation) Let S € {FQ,Q}. If S proves the sequent VZ[I', A] then
there is a formula C, called interpolant, such that 1) each predicate symbol and each
free variable in C' occurs both in I" and in A, and 2) system S proves both the sequent
VZ[l, C] and the sequent VZ[C, Al.

Proof. We just show the case for System Q since the case for FQ is properly contained
in it. We first separate the existential rules in the given proof from contraction. We
then proceed by induction on the depth of the obtained proof and a case analysis on the
lowermost rule. The cases for the propositional rules are as usual, and the cases for the
V-rule and the d>-rule are trivial. This leaves the cases of the scp- and Jj-rule. For scp
we have a proof which ends in:

. VzZ[Fl,FZ{A}]
" WALy, Do {va[A]}]
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for which we construct the desired proofs as follows:

Va1, O | vaFlC,Ty{A}
zvz[rl,vx[cn and 'Vei[3zC, To{A)]
VZLy, V2] " V320, To (V[ A]}]

where C' is the interpolant obtained by induction hypothesis. For the case of the J;-
rule we only show the subcase where we need to prevent y from occuring free in the
interpolant, which is the only non-trivial subcase. It is the one where I'o{ } does not
bind y and y is not free in T'o{ }:

VZy[l'1, To{ Alx = y]}]
VZy[l'y, To{3x A}

We construct the desired proofs as follows:

VZy[C, To{Alx := y]}

gen,per™ oA ]

- Vy'yZ]C, To{ Az := y]}]

VZy[l'y, C] and ] Vyzy'[C, To{Alx = y]}]
"vzy[Ty, 3yC] CwyE[C,To{3xA)]

V,sc —
’ VZy' [VyC, Te{3xA}]

- VZy[VyC, To{3zA}]

where again C is the interpolant obtained by induction hypothesis. ]
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