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Abstract

Deep inference is a proof theoretical methodology that generalizes the traditional notion of inference in the
sequent calculus. In contrast to the sequent calculus, the deductive systems with deep inference do not rely
on the notion of main connective, and permit the application of the inference rules at any depth inside logical
expressions, in a way which resembles the application of term rewriting rules. Deep inference provides a
richer combinatoric analysis of proofs for different logics. In particular, construction of exponentially shorter
proofs becomes possible. In this paper, aiming at the development of computation as proof search tools, we
propose the Maude language as a means for designing and implementing different deep inference deductive
systems and proof strategies that work on these systems. We demonstrate these ideas on classical logic and
argue that these ideas can be analogously carried to other deductive systems for other logics.
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1 Introduction

In recent years, automated proof search has started to find broader applications,

especially in the fields of automated theorem proving and software verification. In

this regard, development of formalisms and tools that allow the construction of

shorter analytic proofs is gaining more and more importance.

Deep inference is a proof theoretical methodology that generalizes the traditional

notion of inference of the sequent calculus. In contrast to the sequent calculus, the

deductive systems with deep inference do not rely on the notion of main connec-

tive and permit the application of the inference rules at any depth inside logical

expressions, similar to the application of term rewriting rules.

Deep inference has originally emerged as a means to conceive the logical system

BV [7]. System BV is a conservative extension of multiplicative linear logic and

it admits a self-dual noncommutative logical operator resembling the operators for

sequential composition in process algebras. Although multiplicative linear logic is

often represented as s a sequent calculus deductive system, it is not possible to
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design system BV in a standard sequent calculus [20]. A notion of deep rewriting is

necessary for deriving all the provable structures of system BV.

Deep inference also provides deductive systems which bring new insights to the

proof theory of other logics. The applicability of inference rules at arbitrary depths

inside logical expressions brings about a rich combinatoric analysis of proofs, which

previously has not been available by means of traditional approaches to proof the-

ory: In [2], Brünnler presents deep inference systems for classical logic; in [18],

Straßburger presents systems for different fragments of linear logic. In [16,17],

Stewart and Stouppa give systems for a class of modal logics. Tiu presents, in [19],

a local system for intuitionistic logic. All these systems follow a common scheme of

inference rules which enjoys a rich proof theory.

Availability of deep inference provides shorter proofs than in the sequent cal-

culus. For example, there is a class of theorems, called the Statman’s tautologies,

for which the size of proofs in the sequent calculus grows exponentially over the

size of the theorems. However, over the same class, there are deep inference proofs

that grow polynomially [6]. This is because applicability of the inference rules at

any depth inside a structure makes it possible to start the construction of a proof

by manipulating and annihilating substructures without any prior branching. How-

ever, because inference rules can be applied in many more ways, nondeterminism

in proof search is much greater than in the sequent calculus and the breadth of the

search space grows rather quickly during proof search. In this respect, development

of new techniques for reducing nondeterminism in proof search without sacrificing

from proof theoretic cleanliness gains importance.

The language Maude [3,4] allows implementing term rewriting systems modulo

equational theories due to the very fast matching algorithm that supports different

combinations of associative, commutative theories, also with the presence of units.

Furthermore, Maude allows to integrate conditional rules, equational, and meta-

level reasoning in the modules. Exploiting these features, in this paper we propose

the language Maude as a platform for designing and implementing deep inference

systems where proof theoretic techniques for reducing nondeterminism [11] can be

tested and further developed. We demonstrate these ideas on a system for classical

logic and argue that they can be generalized to other deep inference systems.

2 Proof Theory with Deep Inference

In this section, we introduce the calculus of structures, the proof theoretic formalism

that employs deep inference as its distinguishing feature from the sequent calculus.

The calculus of structures works with logical expressions called structures. From

a syntactic point of view, structures can be seen as equivalence classes of formu-

lae: The laws such as associativity and commutativity, which are usually implicitly

imposed on formulae, become explicit on structures by means of an underlying

equational system in a logical system of the calculus of structures. If one considers

the notion of a structure from the point of view of the sequent calculus, structures

can be seen as expressions intermediate between formulae and sequents which unify

these two entities. Let us now see the classical logic structures:

Definition 2.1 [2] There are countably many positive atoms and negative atoms
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which are denoted by a, b, c,. . . Classical logic (KSg) structures are generated by

R ::= ff | tt | a | [ R , R ] | ( R , R ) | R

where ff and tt are the units false and true, respectively. [R,R] is a disjunction

and (R,R) is a conjunction. R is the negation of the structure R. KSg structures

are considered equivalent modulo the smallest congruence relation induced by the

equational system consisting of the equations for associativity and commutativity for

disjunction and conjunction, De Morgan equations for negation, and the equations

(ff, ff) ≈ ff , [ff, R] ≈ R , [tt, tt] ≈ tt , (tt, R) ≈ R .

Inference rules of the calculus of structures are applied to the structures, however

these rule applications are not restricted to the top-level connective of the logical

expressions as in the sequent calculus. In contrast, they can be applied at any depth

inside logical expressions. The context, in which the rule is applied, is represented

explicitly and denoted with S{ }. Let us see a deductive system for classical logic:

Definition 2.2 [2] System KSg for classical logic is the system given by the rules

S{tt}
ai↓ ,

S [a, ā]

S([R,U ], T )
s ,
S [(R, T ), U ]

S{ff}
w↓ ,

S{R}

S [R,R]
c↓

S{R}

which are called atomic interaction, switch, weakening, and contraction, respectively.

The inference rules above denote implications inside contexts, where the premise

implies the conclusion. An application of an inference rule coincides with the rewrit-

ings in a term rewriting system modulo equational theory. Here, we would like to

consider the application of the inference rules from a bottom-up, proof search point

of view. Then, these rewritings are the rewritings defined by the rewrite relation

R/E (see, e.g., [1]), where R is a rewriting system (corresponding to system KSg)

and E is the equational theory (given in Definition 2.1) [9]. For instance, for the

rule s ∈ KSg, we have that

(c, [a, (ā, [b, b̄])])
s

(c, [a, b, (ā, b̄) ])
iff

(c, [a, [b, (ā, b̄)] ]) ≈E (c, [ [(b̄, ā), b], a]) →s

(c, [([b̄, b], ā), a]) ≈E (c, [a, (ā, [b, b̄])]) .

Thus, a derivation in (system KSg of) the calculus of structures can be equivalently

seen as a chain of instances of inference rules or a chain of rewrites. A derivation

∆ with premise T and conclusion R, and whose inference rules are in KSg will be

written as
T

R
KSg∆ or equivalently as R

∆
−→KSg T . The proof of a structure R in

system KSg is a derivation where the conclusion is R and the premise is tt.

Apart from classical logic, the calculus of structures provides deductive sys-

tems for linear logic [18], modal logics [16,17], intuitionistic logic, and logics BV

[7] and NEL [8]. All the calculus of structures deductive systems for these logics

follow the same scheme, where the rules switch and atomic interaction are common
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components of these systems. However, these rules deal with different notions of

conjunction and disjunction, dictated by the equations for the unit in the subject

system. In this respect, the notion of a structure which provides a uniform syntax

for these logics, allows to observe the common behavior in these systems.

In order to see this on an example, let us consider system BV. In fact, the

calculus of structures was originally conceived to introduce system BV in order to

capture the sequential composition of process algebras by means of a self-dual, non-

commutative logical operator. This logic extends multiplicative linear logic (MLL)

with the rules mix and nullary mix (see, e.g., [7]), and a noncommutative self-dual

operator that resembles the prefixing in the process algebras. System BV cannot

be expressed without deep inference, as Tiu proved in [20].

Definition 2.3 There are countably many positive atoms and countably many neg-

ative atoms. Atoms are denoted by a, b, c, . . . BV structures are generated by

R ::= ◦ | a | [ R , R ] | ( R , R ) | 〈R ; R 〉 | R

where ◦, the unit, is not an atom. [ R , R ] is called a par structure, (R , R ) is

called a copar structure, and 〈R ; R 〉 is called a seq structure. R is the negation

of the structure R. BV structures are considered equivalent modulo the smallest

congruence relation induced by the equational system consisting of the equations for

associativity and commutativity for par and copar, associativity for seq structures,

and the equations

[◦, R] ≈ R , (◦, R) ≈ R ,

〈◦, R〉 ≈ R , (R, ◦) ≈ R ,

[R, T ] ≈ (R, T ) , 〈R, T 〉 ≈ 〈R, T 〉 ,

(R, T ) ≈ [R, T ] , R ≈ R , ◦̄ ≈ ◦ .

System BV is given with the rules

S{◦}
ai↓ ,

S [a, ā]

S([R,U ], T )
s ,
S [(R, T ), U ]

S〈[R,U ]; [T, V ]〉
q↓

S [〈R;T 〉, 〈U ;V 〉]

which are called atomic interaction, switch, and seq, respectively.

It is important to observe that the seq is a logical operator which is noncom-

mutative and self-dual. A BV structure R has a proof if and only if there is a

derivation with the conclusion R and the premise ◦. For an indepth exposure to

the proof theory of system BV, the reader is referred to [7,20,12].

3 Implementing Deep Inference in Maude

The language Maude [3,4] allows implementing term rewriting systems modulo equa-

tional theories due to its very fast matching algorithm that supports different com-

binations of associative commutative theories, also in the presence of units. These

features of language Maude can be used to implement the deductive systems of

the calculus of structures in a straight-forward and simple way such that there is
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a one-to-one match between the definitions of the deductive systems and the cor-

responding Maude modules. Let us see this first on system KSg. The following

Maude functional module implements Definition 2.1:

fmod KSg-Signature is

sorts Unit Atom Structure .

subsort Unit Atom < Structure .

ops tt ff : -> Unit .

op -_ : Structure -> Structure [prec 50] .

op [_,_] : Structure Structure -> Structure [assoc comm id: ff] .

op {_,_} : Structure Structure -> Structure [assoc comm id: tt] .

ops a b c d e f g h : -> Atom .

endfm

In this module, negation of a structure is represented with -_. We use the

syntax {_,_} for conjunction instead of (_,_). This way, we avoid ambigui-

ties, because brackets are often used in meta-level programming and elsewhere in

Maude. The information about the associativity and commutativity of the struc-

tures and their units are expressed simply by means of the operator attributes, e.g.,

[assoc comm id: ff] for the disjunction.

The following Maude system module implements Definition 2.2.

mod KSg is

inc KSg-Signature .

var R T U : Structure . var A : Atom .

rl [a_interaction] : [ A , - A ] => tt .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [weakenning1] : [ R , T ] => [R , ff ] .

rl [weakenning2] : { R , T } => { R ,ff }

rl [contraction] : R => [ R , R ] .

rl [tt] : [ tt , tt ] => tt .

rl [ff] : { ff , ff } => ff .

endm

This module uses the module KSg-Signature above. It is important to observe

that the rules of system KSg are expressed as bottom proof search term rewriting

rules. In order to avoid the application of the rule weakening to negative atoms,

in the module above, we have two rules for weakening. The rules [tt] and [ff]

implement the corresponding equations for unit in Definition 2.1, however from the

point of view of proof search, it suffices to consider these equations by orienting

them from left to right.

Similarly to the above module, we can implement system BV. The following two

modules implement Definition 2.3:

fmod BV-Signature is

sorts Atom Unit Structure .

subsort Unit Atom < Structure .

op o : -> Unit .

op -_ : Structure -> Structure [prec 50].
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op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e f g h l : -> Atom .

endfm

mod BV is

inc BV-Signature .

var R T U V : Structure . var A : Atom .

rl [ai-down] : [ A , - A ] => o .

rl [s] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [q-down] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

endm

Because Maude implements the transitive closure of the rewriting relation R/E

it is possible to use these modules for proof search by resorting to the built in

search function which implements breadth-first search. This way, for example for

the structure [a, b, (ā, b̄)], one can explore all the possible one step rule applications,

or search for derivations (or proofs), respectively:

search [ a , [ b , { - a , - b } ] ] =>1 R .

search [ a , [ b , { - a , - b } ] ] =>* [ a, - a ] .

Then, after a successful search, one can display the computed derivation:

Maude> show path 78 .

state 0, Structure: [a,[b,{- a,- b}]]

===[ rl [U,{R,T}] => {T,[R,U]} [label s] . ]===>

state 8, Structure: [a,{- a,[b,- b]}]

===[ rl [A,- A] => o [label ai-down] . ]===>

state 78, Structure: [a,- a]

In the calculus of structures, inference rules can be applied to the structures that

are not in the scope of negation. For this reason, it is more favorable to consider

only those structures that are in negation normal form. Furthermore, although the

equations for units can be easily expressed in Maude, these equations often cause

redundant matchings of the inference rules where the premise and the conclusion

of the instance of the inference rules are equivalent structures. In the following, we

will consider the structures to be in normal form when they are in negation normal

form, and no units can be equivalently removed. For this pupose, within functional

modules, which we integrate to the above modules, we orient the equations for De

Morgan laws, and equations for unit, in such a way that delivers the normal forms

of the structures. By doing so, we can remove the operator attributes id: ff and

id: tt from the module KSg-Signature and the operator attribute id: o from

the module BV-Signature. Furthermore, we can move all the invertible rules 2 in

the module KSg to the module KSg-UNF in the form of equations. The rules [tt],

[ff], and [interaction] are such invertible rules. Because we are interested in

proof search, we allow weakening only in the disjunctive contexts.

2 Invertible rules are those rules for which the premise and the conclusion of every instance of these rule
are equivalent logical expressions.
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fmod KSg-UNF is

inc KSg-Signature .

var R T U : Structure . var A : Atom .

eq - tt = ff . eq - ff = tt . eq - - R = R .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq [ ff , R ] = R . eq { tt , R } = R .

eq [ tt , tt ] = tt . eq { ff , ff } = ff .

eq [ A , - A ] = tt .

endfm

mod KSg is including KSg-UNF .

var R T U : Structure .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [weakenning] : [ R , T ] => [R, ff ] .

rl [contraction] : R => [ R , R ] .

endm

Removing the equations for unit in system KSg does not require the modification

of the inference rules of system KSg. However, for the case of system BV, when

we remove the operator attribute id: o from the module BV-Signature, some

applications of the rule [q-down] are broken. In order to maintain these aplications,

thus the completeness, we must include the following rules in the module BV:

rl [q2] : [ R , T ] => < R ; T > .

rl [q3] : [ R , < T ; U > ] => < [ R , T ] ; U > .

rl [q4] : [ R , < T ; U > ] => < T ; [ R , U ] > .

Because these modifications disable the redundant instances of the inference rules

due to the applications of the equations for unit, they provide a better performance

in proof search for system BV [10]. However, because of the rule [contraction],

it is not possible to use system KSg for proof search: In breadth-first search, in-

stances of this rule, which copy arbitrary substructures, cause the search space to

grow rather quickly. In order to get over this, the application of this rule must be

controlled. In the following, we will address this issue in conjunction with some

proof theoretical ideas that aim at reducing nondeterminism in proof search.

4 Implementing Proof Theoretic Strategies:

In the calculus of structures, we can construct proofs which consist of separate

phases such that in each phase only certain inference rules are used.

Theorem 4.1 If a structure R has a proof in system KSg, then there exist struc-
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tures R1, R2, R3, R′
1, R′

2, and R′
3 and proofs of the following forms:

tt

R3

{w↓ }∆3

R2

{ ai↓ }∆2

R

{ s, c↓ }∆1

i.
;

tt

R3

{w↓ }∆3

R2

{ ai↓ }∆2

R1

{ s }∆1,b

R

{ c↓ }∆1,a

ii.
;

tt

R′
3

{ ai↓ }∆2

R2

{w↓ }∆3

R1

{ s }∆1,b

R

{ c↓ }∆1,a

iii.
;

tt

R′
3

{ ai↓ }∆2

R′
2

{ s }∆′

1,b

R′
1

{w↓ }∆′

3

R

{ c↓ }∆1,a

Proof. We can derive the rule, that we call distributive(d), as follows:

S([R,U ], [T,U ])
s

S [([R,U ], T ), U ]
s

S [(R, T ), U, U ]
c↓

S [(R, T ), U ]

By applying this rule exhaustively to structure R bottom up, we obtain the deriva-

tion ∆1 with the premise R2 which is in conjunctive normal form. Because R2 is

provable, each disjunction in R2 must have an atom a and its dual ā. By applying

the rule ai↓ bottom up to each one of these pairs of dual atoms, we obtain the

derivation ∆2 with the premise R3, where each disjunction has an instance of the

unit tt. By applying the rule w↓ exhaustively to all the remaining structures in each

disjunction which are different from the unit tt, we obtain the derivation ∆3.

i. With structural induction on R, we obtain the derivations ∆1,a and ∆1,b from the

derivation ∆1. If R is an atom or the unit tt or ff, then it is already in conjunctive

normal form. If R = (T,U) or R = [T,U ] then we have the derivations (1.) and

(2.) below by induction hypothesis where T2 and U2 are in conjunctive normal form.

Let n be the number of disjunctions in U2. We assume that n is greater than one.

Otherwise, we can exchange T2 with U2, or if in both T2 and U2, there are less than

2 disjunctions, then they are already in conjunctive normal form. We construct the

derivations for R = (T,U) and R = [T,U ], respectively, as in (3.) and (4.) below:

(1.) (2.) (3.) (4.)

T2

T1

{s}∆′

T

T
{c↓}∆T

U2

U1

{s}∆′

U

U
{c↓}∆U

(T2, U2)

(T1, U1)

{ s }[∆′

T ,∆′

U ]

(T,U)

{ c↓ }[∆T ,∆U ]

R2

[T2, . . . , T2, U2 ]

{ s }

[T1, . . . , T1, U1 ]

{ s }[∆′

T ,...,∆′

T ,∆′

U ]

[T, . . . , T, U ]

{ c↓ }[∆T ,...,∆T ,∆U ]

[T,U ]

{ c↓ }

ii. We trivially permute each instance of w↓ under the instances of ai↓.
iii. We permute the instances of the rule s over the rule w↓: Other cases being
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trivial, we consider the following: (a.) The redex is of w↓ is inside the contractum

of s. (b.) The contractum of s is inside the redex of w↓.

S(ff, T )
w↓

S( [R,U ] , T )
s
S [(R, T ), U ]

a.
;

S(ff, T )
w↓

S(R, T )
w↓

S [(R, T ), U ]

S([R,U ], ff)
w↓

S([R,U ], T, P )
s
S([(R, T ), U ], P )

b.
;

S([R,U ], ff)
s
S([(R, ff), U ], ff)

w↓
S([(R, T ), U ], ff)

w↓
S([(R, T ), U ], P )

2

In [2] and [18], Brünnler and Straßburger, respectively, present classes of theo-

rems, called decomposition theorems, for classical logic and linear logic. The left-

most derivation in the theorem above is given in the semantic cut elimination proof

in [2]. When these theorems provide normal forms at intermediate stages between

phases, they can be used as search strategies in proof search. The availability of

conjunctive normal provides such a strategy, however with an exponential cost in

the transformation, for some classes of formulae.

4.1 Using the Meta-level Features to Implement Decomposition of Proofs

In order to implement the ideas in Theorem 4.1, we require a mechanism that allows

to pass information between modules for the inference rules at different phases of the

proof. For this purpose, we employ the meta-level features of language Maude (see,

e.g., [5]), which allow to represent such information as meta-data in the presence of

normal forms. We need to include the meta-level module in module KSg-Signature

and we also need to add an operator (error) which serves as an error token in the

meta-level computation:

inc META-LEVEL .

op error : -> [Structure] .

Instead of exploring the search space by using the search function to find a

proof, in the modules below, we use functional modules which deterministically

compute the proof by means of a strategy corresponding to the left-most derivation

of Theorem 4.1.

fmod distribute is inc KSg-Signature .

var R T U : Structure .

eq [ U , { R , T } ] = { [ U , R ] , [ U , T ] } .

endfm

fmod interaction is inc KSg-Signature .

var A : Atom .

eq [ A , - A ] = tt .

endfm

fmod weakening is inc KSg-Signature .

var R : Structure .

eq [ tt , R ] = tt . eq { tt , R } = R .

endfm
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fmod KSg-Strat is

inc KSg-Signature . inc KSg-UNF . inc distribute .

inc interaction . inc weakening .

op prove_ : Structure -> Structure .

var R : Structure .

eq prove R =

downTerm( getTerm( metaReduce([’weakening],

getTerm( metaReduce([’interaction],

getTerm( metaReduce([’distribute],

getTerm(metaReduce([’KSg-UNF], upTerm( R ) )))))))), error) .

endfm

In the implementation above, the different phases of the proof, where different

sets of inference rules are used, are represented by functional modules which are

called by the operator prove of the functional module KSg-Strat. Seen procedu-

rally, by means of the operation upTerm, this operator first converts the object level

representation of the input query term to a Maude meta-level representation of the

same term with respect to the module KSg-Signature. Then the meta-level term

corresponding to the negation normal form of the input term is computed by means

of the operation metaReduce which takes the meta-representation of the functional

module KSg-UNF as argument. Then the computed meta-level terms are passed

similarly to the meta-level representations of the functional modules distribute,

interaction and weakening, respectively, which reduce these meta-level terms

with respect to their rules.

4.2 Interaction Rules with Controlled Contraction n Proof Search

Availability of deep inference provides shorter proofs than in the sequent calculus

[6]: Applicability of the inference rules at any depth inside a structure makes it

possible to start the construction of a proof by manipulating and annihilating sub-

structures. This provides many more different proofs of a structure, some of which

are shorter than in the sequent calculus. However, deep inference causes a greater

nondeterminism: Because the inference rules can be applied at many more posi-

tions than in the sequent calculus, the breadth of the search space increases rather

quickly. In order to get over this problem, in [11] we have introduced the following

modification on the rule s which exploits an interaction scheme on the structures.

Definition 4.2 For a structure R, let atR denote the set of atoms appearing in

structure R. The rule lazy interaction switch (lis) is the rule

S([R,W ], T )
lis

S [(R, T ),W ]
,

where atW ∩ atR 6= ∅ and W is not a disjunction (par structure).

The intuition behind the rule lis can be seen as follows: Let us consider the

subformulae which are in a disjunction relation as interacting formulae, whereas
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those formula in a conjunction relation as non-interacting formula. For example,

when we consider the formula [a, b, (ā, b̄)], a is interacting with b, ā, and b̄, whereas

ā is interacting with a and b, but it is not interacting with b̄. The interacting

formulae have the potential to annihilate each other to construct a proof, whereas

the non-interacting formulae do not. In [11], we have shown that the rule switch can

be replaced with the rule lis in systems BV and KSg without losing completeness.

Theorem 4.3 [11] Systems {ai↓, s} and {ai↓, lis} are equivalent, that is, they prove

the same structures.

In the following, by integrating the contraction rule to the rule lis we will obtain

a system where the nondeterminism in proof search is reduced and the application

of the contraction rule is controlled.

Definition 4.4 The rule cis is the rule

S [([R,W ], T ),W ]
cis

S [(R, T ),W ]

where atW ∩ atR 6= ∅, and W is not a disjunction (par structure).

Definition 4.5 System KSgic is the system resulting from replacing the rule s and

c↓ with the rule cis.

Theorem 4.6 Systems KSg and KSgic are equivalent, that is, they prove the same

structures.

Proof. Every proof in system KSgic is a proof in system KSg. For the proof of the

other direction, let R be a provable KSg structure.

(1.) (2.) (3.) (4.)

tt

R3

{ ai↓ }

R2

{ s }

R1

{w↓ }

R

{ c↓ }

;

tt

R′
3

{ ai↓ }

R′
2

{ lis }

R1

{w↓ }

R

{ c↓ }

;

tt

R′
2

{w↓ }

R′
3

{ ai↓ }

R1

{ lis }

R

{ c↓ }∆

;

tt

R′′
2

{w↓ }

R′
1

{ ai↓ }

R

{ cis }

Consider the proof (1.) which we construct by Theorem 4.1. By Theorem 4.3, we

construct the proof (2.). By trivial permutations of the rule w↓ over the rule lis,

we then construct the proof (3.). In order the construct the proof (4.), we repeat

the following procedure inductively: We take the top-most instance of the rule c↓

11
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in derivation ∆: If the redex of this rule is a par structure, we replace it as follows:

S [R1, R2, . . . , Rn, R1, R2, . . . , Rn ]
c↓

S [R1, R2, . . . , Rn ]
;

S [R1, R2, . . . , Rn, R1, R2, . . . , Rn ]
c↓

...
c↓

S [R1 , R2, . . . , Rn, R1 ]
c↓

S [R1 , R2, . . . , Rn ]

We then permute the top-most instance of the rule c↓ until it cannot be permuted

and where its contractum is used in an instance of the rule lis and we replace these

two rule instances with an instance of the rule cis. 2

The condition imposed on the rule s reduces the breadth of the search space

by reducing the numbers of the possible rule instances of this rule. This situation

delays the exponential blow-up in proof search and makes it plausible to consider

more complex formulae for proof search.

We implement the conditional inference rules as conditional rewrite rules in

Maude. In order to compute the condition of the rules lis and cis, we use the

functional module below which implements the function can-interact.

fmod Can-interact is inc KSg-Signature .

sort Interaction_Query .

op can-interact : -> Interaction_Query .

op empty-set : -> Interaction_Query .

op _or_ : Interaction_Query Interaction_Query

-> Interaction_Query [assoc comm prec 70] .

op _ci_ : Atom Structure -> Interaction_Query [prec 60] .

var R T U V : Structure . var A B : Atom .

var C : Interaction_Query .

eq A ci - A = can-interact .

eq - A ci A = can-interact .

eq A ci B = empty-set [owise] .

eq [ T , U ] ci R = T ci R or U ci R .

eq { T , U } ci R = T ci R or U ci R .

eq A ci [ R , T ] = A ci R or A ci T .

eq A ci { R , T } = A ci R or A ci T .

eq can-interact or C = can-interact .

eq empty-set or C = C .

endfm

The following system module implements system KSgic.

mod KSgic is inc KSg-UNF . inc Can-interact .

var R T U V P Q : Structure . var A : Atom .

12



Kahramanoğulları

crl [rls11] : [ { R , T } , A ] => [ { [ R , A ] , T } , A ]

if ( R ci A ) == can-interact .

crl [rls21] : [ { R , T } , { U, V } ] =>

[ { [ R , { U , V } ] , T } , { U , V } ]

if ( R ci { U , V } ) == can-interact .

endm

Remark 4.7 In proof search, the rule cis copies many structures which are often

superfluous and weakened during the construction of the proofs. When we consider

the way sequent calculus proofs are constructed, an alternative to this rule is as

follows: The rules cis1 and cis2 are the rules

S([R,W ], [T,W ])
cis1

S [(R, T ),W ]

S([R,W ], T )
cis2

S [(R, T ),W ]

where W is not a disjunction, in cis1 we have atW ∩ atR 6= ∅ and atW ∩ atT 6= ∅,
and in cis2 we have atW ∩ atR 6= ∅ and atW ∩ atT = ∅. Let us call KSgic′ the

system obtained by replacing the cis in system KSgic with the rules cis1 and cis2.

Although for some formulae KSgic seems to be more advantegous, for pigeon-hole

formulae, system KSgic performs better than system KSgic′ (See 4.3).

4.3 Experiments

We performed experiments on the modules discussed by running them on the

formulae below. The results are displayed in Table 4.3. There, fDKSg denotes the

module KSg-Strat; DKSg denotes the module where the switch rule is replaced

with the following rule:

rl [distributive] : [ { R , T } , U ] => { [ R , U ] , [ T , U ] } .

The proof marked with (*) is computed in 920 ms. All other displayed proofs

are computed in less than 20ms.

1. [(a, b), ([ā, b̄], [ā, b̄])] 2. [a, b, (ā, b̄, [c, d, (c̄, d̄, [e, f, (ē, f̄)])])]

3. [c̄, (d̄, ē), (e, ā), (c, [a, d])] 4. [([a, b], [ c̄, [a, b] ]), (ā, d̄), ([(c, d), b̄], [c, d])]

5 Discussion

We have presented a general procedure for implementing deep inference deductive

systems by exploiting term rewriting features of Maude. In particular, we have

presented implementations of systems KSg and BV. We have also shown that proof

theoretical strategies can be implemented using the meta-level features and condi-

tional rewriting rules of this language. We have analogously applied the ideas of

this paper to other deep inference systems for linear logic (system LS) [18], and

system NEL [8]. These implementations are available for download. 3

3 http://www.doc.ic.ac.uk/~ozank/maude cos.html
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System # states

explored

# of

trewrites

1. fDKSg – 29

DKSg 7 61

KSgic 8 265

KSgic’ 8 202

3. fDKSg – 46

DKSg 158 1150

KSgic 15 313

KSgic’ 11 466

System # states

explored

# of

rewrites

2. fDKSg – 32

DKSg 187 2468

KSgic 18 265

KSgic’ 18 822

4. fDKSg – 86

DKSg – –

KSgic 302 34126

KSgic’ 10846 (*) 1765578

Table 1

In [13], Marti-Oliet and Meseguer present a Maude implementation of linear

logic as a sequent calculus system. There, in order to capture the branching at the

application of multiple premise sequent calculus inference rules, they introduce an

operator, called configuration, which provides a representation of the meta-level at

the object-level. In deep inference deductive systems, because the meta-level merges

with the object level, and hence there is no multiple premise inference rules, the

deep inference implementation of linear logic does not require additional operators

on top of those of linear logic.

An other aspect that distinguishes our implementation of linear logic, is due

to the promotion rule. In the sequent calculus, promotion rule is defined as the

inference rule on the left below, which involves a global knowledge of the context:

the application of this rule requires each formula in the context of !A to be checked

to have the form ?B. In the calculus of structures this rule is replaced with the rule

on the right, which does not require such a global view of the formulae.

` A, ?B1, . . . , ?Bn
!
` !A, ?B1, . . . , ?Bn

S{! [R, T ]}
p↓

S [?R, !T ]

Schäfer has developed a graphical proof editor, called GraPE [15], which func-

tions as a graphical user interface to the Maude modules discussed in this paper.

This tool makes it possible to use the Maude implementations interactively: By

using the GraPE tool, the user can guide the proof construction and choose be-

tween automated proof search and user-guided proof construction. Then the output

derivation can be exported as LATEXcode. The GraPE tool is available online 4 .

In [6], Guglielmi has shown that for a class of classical tautologies called Stat-

man’s tautologies, deep inference provides an exponential speed up in contrast to

the sequent calculus proofs. The restrictions imposed by the rules discussed in

this paper preserve the shortest proofs of [6]. However, proof search applications

4 http://grape.sourceforge.net/
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of these deductive systems require further restrictions in the application of the in-

ference rules, which is a topic of on going work in conjunction with an extensive

comparison of these implementations and proof complexity analysis. A deep infer-

ence system for the logic of bunched implications [14] is also a potential application

of the ideas above for future work. Other topics of future investigation include

introducing strategies for partitioning the search space by resorting to the splitting

theorem (see, e.g., [7,12]).
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