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Abstract

This thesis studies the design of deep-inference deductive systems. In the sys-
tems with deep inference, in contrast to traditional proof-theoretic systems, infer-
ence rules can be applied at any depth inside logical expressions. Deep applicability
of inference rules provides a rich combinatorial analysis of proofs. Deep inference
also makes it possible to design deductive systems that are tailored for computer
science applications and otherwise provably not expressible.

By applying the inference rules deeply, logical expressions can be manipulated
starting from their sub-expressions. This way, we can simulate analytic proofs in
traditional deductive formalisms. Furthermore, we can also construct much shorter
analytic proofs than in these other formalisms. However, deep applicability of
inference rules causes much greater nondeterminism in proof construction.

This thesis attacks the problem of dealing with nondeterminism in proof search
while preserving the shorter proofs that are available thanks to deep inference.
By redesigning the deep inference deductive systems, some redundant applications
of the inference rules are prevented. By introducing a new technique which re-
duces nondeterminism, it becomes possible to obtain a more immediate access to
shorter proofs, without breaking certain proof theoretical properties such as cut-
elimination. Different implementations presented in this thesis allow to perform
experiments on the techniques that we developed and observe the performance
improvements. Within a computation-as-proof-search perspective, we use deep-
inference deductive systems to develop a common proof-theoretic language to the
two fields of planning and concurrency.
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CHAPTER 1

Introduction

An important part of the research effort in theoretical computer science is fo-
cused on providing a mathematical foundation to formal languages like specification
and programming languages. Proof theory, which was originally set up as an area
of mathematics that studies the concepts of mathematical proof and provability,
provides powerful tools for a rigorous formal treatment of formal languages.

Although semantics plays a crucial role in the development of proof theory, the
main concern of proof theory is the formal syntax of logical formulae and syntactic
presentations of proofs. Therefore proof theory can be regarded as logic from the
syntactic point of view.1 An important topic of research in proof theory is the re-
lation between finite and infinite objects. In other words, proof theory investigates
how infinite mathematical objects are denoted by finite syntactic constructions, and
how facts concerning infinite structures are proved by finite proofs. This is par-
ticularly important for computer science, studying computers as syntactic engines,
which perform syntax manipulations for performing computations by using finite
resources, i.e., memory and time. Especially from the point of view of formal theory
of language, which is more concerned with the connectives of a logical system and
their relations, proof theory provides the appropriate mathematical techniques and
tools for a formal analysis of computer languages. By restricting itself to finitary
methods, proof theory studies the objects that computers can deal with, which are
per se finite [Str03a].

From the point of view of computer science, perhaps the most influential work
on proof theory, around which major developments took place, is Gentzen’s sequent
calculus [Gen34, Gen35, Gen69]. In the sequent calculus, inference rules of a
deductive system directly model syntactical properties of logical connectives. This
way, they provide a finite description of an infinite set of formulae which are valid.
This provides a purely syntactic view of logic, the reliability of which is assured by
the cut elimination property.

The cut elimination property, which is central to proof theory, provides a formal
measure of rigour of the proof theoretical systems. A proof theoretical system has
the cut elimination property if for every proof in the system that uses the cut
rule, there is a proof with the same conclusion that does not use the cut rule.
Although the cut rule varies from a proof theoretical system to another, it always
expresses the transitivity of the logical consequence relation. The usage of the cut
rule demonstrates the usage of a lemma in the proof. Thus, the cut elimination
property states that if a logical expression can be proved by using lemmas, it
can be proved also without using any lemma. The cut elimination property has

1In contrast, model theory studies logic with an emphasis on semantics.
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2 1. INTRODUCTION

implications such as consistency and completeness of the system being addressed
(see, e.g., [Gen35, Brü03b, Str03a]).

In contrast to the sequent calculus view of logic, logic in the tradition of Hilbert
and Tarski was primarily semantics oriented. The central interest was in model
theory and problems were mainly inspired by set theory. In general the emphasis
was on infinite mathematical structures. However, computer science is particularly
interested in finite structures, and the formal theory of language is more concerned
about the connectives of a logical system, and their relations, than in traditional
models. Furthermore, syntax in the sequent calculus (and in its off-springs) is much
closer to operational semantics, which describes how programs are interpreted as
sequences of computational steps. In comparison to methods based on traditional
semantics, this is also a clear advantage of proof theory with respect to applications.

1.1. Declarative Programming and Proof Theory

Standing at the core of theoretical computer science and being concerned with
the relation between intuitive proofs and formal systems, proof theory provides the-
oretical foundations for declarative programming. In contrast to imperative pro-
gramming, in declarative programming the intention is to describe what the user
wants to achieve, instead of providing instructions which describe how the machine
is going to achieve it. In such a perspective, it is crucial for the computation of the
machine to meet the intuition of the user. Proof theory provides the theoretical
foundations for the two declarative programming paradigms of functional program-
ming and logic programming. While the theoretical foundations of the functional
programming paradigm are given by the proof theoretical concept of proof normal-
ization (or proof reduction), logic programming is brought to theoretical grounds
by means of proof search (or proof construction) in deductive systems.

1.1.1. Functional Programming and Proof Theory. The relation be-
tween the functional programming paradigm and proof theory is established by
the Curry-Howard isomorphism or the formulae-as-types correspondence (see, e.g.,
[How80, SU99]): Curry-Howard isomorphism describes a correspondence between
deductive systems, as they are studied in proof theory, and computational systems,
as they are studied in type theory. More precisely, a formula corresponds to a type
and a proof of that formula to a term of the corresponding type. For example, nat-
ural deduction proofs of intuitionistic logic correspond to terms of the simply typed
λ-calculus. This mapping between proofs and terms is an isomorphism because a
normalization (cut elimination) step of the proof in the logical system corresponds
exactly to a normalization step of the λ-term, which in turn is a computation step
in functional programming.

Such an interpretation of proofs is powerful enough to capture many aspects of
computation, including concurrent computations (see, e.g., [Abr93]). However, a
large and growing number of applications do not fit well in this paradigm [And01].
This is because functional programming is concerned with programs that are meant
to end and return a result. The cut-elimination procedure (and the strong normal-
ization theorem) give a convenient abstraction of what is going on in the execution
of such programs, but many pieces of software do not fall into that category. In
[And01], Andreoli lists the following applications as examples of such programs:
An operating system; an air-traffic control system which ensures that plane routes
do not collide; an electronic commerce broker, whose role is to mediate between a
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set of service and good providers, and a set of customers; or a web browser which
organizes the interaction between a client and a set of servers on the Internet. The
main characteristic of all such applications is that instead of taking some input
and returning a result, they are concerned with the coordination of entities which
are external to them, and with which they have to continuously interact. Andreoli
makes the following further remark:

“The point is here not to say that the intuitions behind the func-
tional programming paradigm are totally inadequate for the class
of applications mentioned above. Obviously, an operating sys-
tem or an electronic commerce broker will need, at some points
in their execution, to launch a process to perform a functional
computation that takes input, executes at some time as a black-
box and produces output. But the functional programming par-
adigm does not capture the overall picture of the behavior of
the application. It ignores a number of essential characteristics
of these applications, in particular true-nondeterminism, or the
manipulation of the partial information, not to mention a huge
set of deeply woven issues such as security, robustness, etc. Ro-
bustness, for instance, is not just a nice feature to have in an
application such as an air-traffic control system, it is an abso-
lute requirement, almost the “raison-d’être” of the application,
and a programming paradigm which would try to capture the
computational essence of this application without taking into
account this aspect is deemed to fail.”

The logic programming paradigm, which is central to this thesis, addresses the
issues related to above mentioned applications in a more satisfactory manner, while
remaining on formal grounds.

1.1.2. Logic Programming and Proof Theory. Logic programming can
be given a foundation in the sequent calculus by viewing computation as the process
of building a cut-free proof bottom-up: A logic program is a conjunction of formu-
lae. The input to the program is another formula, called the goal. The computation
is the search for a proof (also called proof construction) showing that the goal is
a logical consequence of the program [Str03a]. Thus, in the logic programming
paradigm (or paradigm of proof search as computation) searching for a proof corre-
sponds to the execution of a logic program and a proof corresponds to the trace of
a successful execution. From the point of view of imperative programming, a logic
program can be considered also as follows: The formulae identify instructions of a
program whereas (incomplete) proofs identify states. Each instruction states a set
of possible state transitions of the program.

Historically, logic programming can be traced back to the programming lan-
guage Prolog [Llo87], which is based on the first-order classical theory of Horn
clauses.2 Prolog was initially introduced as an application of the SLD-resolution3

2[Rob00] is a brief survey on the evolution of declarative programming including the devel-
opment of Prolog, starting from the early days of modern logic.

3SLD-resolution is resolution with a selection function for Horn caluses. A Horn clause has
exactly one positive literal. In SLD-resolution, the only positive literal of a Horn clause is selected
to be resolved upon, i.e., replaced in the goal clause by the conjunction of negative literals which
form the body of the clause.
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method. However, the SLD-resolution perspective turned out to be difficult to
extend the pure language of Horn clauses to more expressive languages, without
sacrificing logical purity. In particular, concepts like modular programming or ab-
stract data types, which are common in modern programming languages, cannot
be considered in a resolution setting.

In order to overcome the short-comings of Prolog with respect to above men-
tioned points, several approaches have been considered [MNPS91]: One is mixing
the concepts of other programming languages into Horn clauses, or extending an
interpreter by certain non-logical primitives that provide aspects of the missing
features. “assert” and “retract” commands, and the “cut” primitive of popular
Prolog interpreters are examples for this. Another approach is resorting to more
expressive logics, which capture the desired previously missing mechanism.

Although the former approaches lead, in general, to immediate and efficient ex-
tension of the language, they imply a depart from mathematical rigor. For instance,
previously available logical semantics and declarative reading of the programs be-
come hampered by using the non-logical constructs of the extended language. The
latter approach, on the other hand, brings about the question of which logic should
be employed, such that efficient implementations can still be possible. The solution
can be found somewhere between the two extremes of Horn logic, which is weak but
proof search can be implemented efficiently, and more expressive logics, for which
all purpose theorem provers have to serve as interpreters. This also brings about
problems attached to the efficiency of the proof search implementations of more
and more expressive logics.

The first account of logic programming, following this latter approach, was
given in [MN86, NM90], where Miller and Nadathur used the sequent calculus
to examine design and correctness issues for logic programming. The notion of
uniform provability, introduced in [MNPS91], provides a criterion in these lines, for
judging whether a given logical system is an adequate basis for a logic programming
language.

A uniform proof is a proof that can be found by a goal-directed search, i.e., the
logical connectives in the goal can be interpreted as search instructions. In other
words, when sequents are single-conclusion, a uniform proof is a cut-free proof in
which every sequent with a non-atomic right-hand side is the conclusion of a right
introduction rule. An interpreter attempting to find a uniform proof of a sequent
would directly reflect the logical structure of the right-hand side (the goal) into the
proof being constructed. In a uniform proof, left introduction rules are used only
when the goal formula is atomic, and as part of the backchaining phase, in which
the meaning of an atomic formula with respect to the program is extracted from
the program clauses. This is analogous to applying a Horn clause to an atomic
query in Prolog.

A specific notion of goal formula and program clause along with a proof system
is called an abstract logic programming language [BG03] if a sequent has a proof
if and only if it has a uniform proof. First order and higher order variants of Horn
clauses paired with classical provability [NM90] and hereditary Harrop formulae4

paired with intuitionistic provability [MNPS91] are two examples of abstract logic
programming languages.

4Hereditary Harrop formulae is a generalization of Horn clauses.
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The above mentioned ideas resulted in the development of λ-Prolog [Mil95]
which is based on higher-order hereditary Harrop formulae [MNPS91]. Thus,
λ-Prolog supports modular programming, abstract data types and higher order
programming. Linear logic refinement of λ-Prolog resulted in the programming lan-
guages Lolli [Hod94] and LO [AP91]. Lolli provides various forms of abstraction
(modules, abstract data types, and higher order programming), but lacks primitives
for concurrency. LO, on the other hand, provides some primitives for concurrency,
but lacks abstraction mechanisms.5

Abstract logic programming languages make it possible to consider the ex-
pressive logics within the realm of programming. However, these languages usually
impose syntactic restrictions on the formulae, as in the Horn clauses and hereditary
Harrop formulae: Typically, as in uniform proofs, sequent ∆ ` G represents the
state of an idealized logic programming interpreter in which the logic program is ∆
and the goal is G. These two classes of formulae are duals of each other in the sense
that a negative subformula of a program clause is a goal formula. Goal formulae are
processed immediately by a sequence of invertible right rules and program clauses
are used via a focused application of left-rules, i.e., backchaining. However, this
view of the logic programs focuses attention only on fragments of logical systems
for a computational interpretation. In other words, such restrictions, in general,
do not allow to use these logics directly in their full expressive power in a logic
programming setting.

Andreoli’s focusing proofs [And92, And01] attacks the problem of bringing
linear logic to more efficient grounds in proof construction without imposing any
restrictions on the syntax of the formulae. Although proof construction is, by na-
ture, a highly nondeterministic process, not all the nondeterminism in proof search
is meaningful. Making this observation, Andreoli analyzed the structure of proof
search in linear logic and classified the logical connectives into two sets of con-
nectives, namely asynchronous (deterministic) and synchronous (nondeterministic)
connectives, which are de Morgan duals of each other: Asynchronous connectives
are those whose right-introduction rule is invertible and synchronous connectives
are those whose right-introduction rule is not invertible; that is, the success of ap-
plying a right-introduction rule for a synchronous connective requires information
from the context. A formula is asynchronous or synchronous depending on the top
level (main) connective of the formula.

Given these distinctions, Andreoli showed that a complete bottom-up proof
search procedure for cut-free proofs in linear logic can be described roughly as
follows: First decompose all asynchronous formulae and when none remains, pick
some synchronous formula, introduce its top-level connective and then continue
decomposing all asynchronous subformulae that might arise. Thus interleaving
between asynchronous and synchronous reduction yields a highly normalized proof
search mechanism. Proofs built in this fashion are called focused proofs.

As a consequence of the completeness of focused proofs for linear logic, lin-
ear logic can be seen as a logic programming language that captures the notion of
uniform proofs and backchaining. The language ”Forum” [Mil96], which exploits

5[Mil04] is an overview of the proof search paradigm, focusing on logic programming based
on linear logic.
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these ideas, is a logic programming specification of all of linear logic. Forum mod-
ularly extends λ-Prolog, Lolli, and LO. Forum allows specifications to incorporate
both abstractions and concurrency.

The following are further examples of other linear logic programming languages:
ACL [KY93a], by Kobayashi and Yonezawa, is an asynchronous calculus in which
the send and read primitives were essentially identified by two complementary lin-
ear logic connectives. Lincoln and Saraswat developed [LS92] a linear version of
concurrent constraint programming and used linear logic connectives to extend
previous languages in this paradigm.

1.1.3. Non-commutativity. Proof theoretical insights on classical, intuition-
istic and linear logic have found successful applications in many areas of computer
science.6 Linear logic, also due to its resource sensitive features, is widely recog-
nized as a logic of concurrency (see, e.g., [DQ03, Mil92, EW94]). The proof
theory underlying it faithfully represents some aspects of concurrent computation.
Further, linear logic is also well suited for modeling concepts of action and change
as they appear in planning problems (see Section 8.2). However, one important
limitation of linear logic (and also others) from the point of view of computer sci-
ence, especially with respect to these application areas, is its inability of dealing
with non-commutativity. Sequential composition (of actions, processes, programs,
etc.), which is naturally expressed by non-commutative operators, is not specifiable
in traditional logics without resorting to terms of the logic. For instance, where a
and b are two actions, and C is a non-commutative operator, the syntax a C b can
denote the plan where first a and then b is executed. However, due to the lack of
non-commutative operators this is usually achieved by encoding such a structure
into the terms of the language, e.g., Do(b, Do(a, S) ).

Given that the logic at hand is complexity-wise expressive enough, capturing
the structure of the application domain by means of function symbols is some-
thing which can always be done. For instance, given that first-order Horn logic is
Turing-complete, this logic would suffice for any potential applications of logic pro-
gramming, simply by expressing everything at the term level. However, it is much
more desirable to have the structural content of programs and computations re-
flected into the connectives of the logic. This way, one can use logic in a non-trivial
way, e.g., to do reasoning and draw interesting conclusions about the application
domain, but not as an elegant interface between the application domain and the
user.

Because of its importance in computer science applications, non-commutativity
has been studied by various authors in the context of proof theory: Lambek calculus
[Lam58], which aimed at modeling syntax of natural language, was the first logic
studying non-commutativity. After the introduction of linear logic in 1987, differ-
ent approaches for non-commutative logics have been studied in the lines of linear
logic: By introducing restrictions on the exchange rule, which is the rule responsible
for commutativity in the sequent calculus, the first approaches resulted in differ-
ent versions of purely non-commutative logics (Yetter’s cyclic linear logic [Yet90],
Abrusci’s non-commutative logic with two negations [Abr91], non-commutative
logic in [LMSS90]): In these logics, there are only non-commutative multiplicative
operators. However, many applications in computer science require commutative

6[Ale94] is a survey on applications of linear logic to computer science. Although it is some
what out of date, it gives a good overall picture of early development around linear logic.
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and non-commutative operators at the same level. For instance, in concurrency
theory parallel and sequential composition of processes are equally important, thus
they need to be represented at the same level. Furthermore, in process algebras,
e.g., CCS [Mil89], usually the non-commutative prefix operator is self-dual.

Another approach which attacks this problem is Abrusci and Ruet’s non-
commutative logic [AR00, Rue00]. This logic admits two pairs of multiplicative
connectives, one commutative and one non-commutative. The non-commutative
conjunction and disjunction are duals of each other, thus this logic does not admit
a self-dual non-commutative operator.

Retoré’s pomset logic, introduced in [Ret93], fulfills these requirements: Pom-
set logic is an extension of multiplicative linear logic with a self-dual non-commuta-
tive operator which is intermediate between multiplicative conjunction and multi-
plicative disjunction. Thus, this self-dual non-commutative operator resembles the
sequential composition in process algebras. However pomset logic lacks a sequent
calculus system with cut-elimination property. Guglielmi’s system BV is a logic
which is very similar to pomset logic. In fact, Guglielmi [Gug07] and Straßburger
[Str03a] conjecture that these logics are equivalent.

System BV cannot be designed in a standard sequent calculus, as Tiu showed in
[Tiu01, Tiu06b]. This system is designed in the calculus of structures, a proof the-
oretical formalism with deep inference. The idea of deep inference delivered systems
with interesting and exciting properties for existing logics and brought new insights
to proof theory of these logics: In his PhD thesis, [Brü03b] Brünnler studies clas-
sical logic in the calculus of structures; Straßburger’s PhD thesis [Str03a] presents
systems for different fragments of linear logic. In [SS05] and [HS05], Stewart and
Stouppa, and Hein and Stewart, respectively, give systems for a collection of modal
logics. In [Tiu06a], Tiu presents a local system for intuitionistic logic. One of the
topics, which I discuss in this thesis, is implementations of the systems with deep
inference. The implementations that I present in this thesis are the first imple-
mentations of the deep inference systems. Apart from the academic interest in the
implementations of the deep inference systems, the implementations of the systems
that are designable only in the presence of deep inference, e.g., system BV, should
be of interest for the potential applications of these systems.

1.2. Proof Theory with Deep Inference

Developing new representations of logics, which address properties that are
central to computer science applications, has been one of the challenging goals of
proof theory. In this regard, a proof theoretical formalism must be able to provide
a rich combinatorial analysis of proofs while being able to address issues which are
important for computer science applications. The calculus of structures [Gug07],
introduced in 1999 by Guglielmi, is a proof theoretical formalism with such a per-
spective. Like in other proof theoretical formalisms, e.g., natural deduction, the
sequent calculus, or proof nets [Gir87], in this formalism logical systems are spec-
ified. However, the calculus of structures is motivated by computation, and thus it
is well suited for dealing with aspects of computation such as locality, modularity
and non-commutativity.

1.2.1. Deep Inference. The calculus of structures is a generalization of the
sequent calculus. Structures are expressions intermediate between formulae and
sequents which unify these two latter entities, i.e., the calculus of structures replaces
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the notions of sequent and formulae of the sequent calculus with the notion of
structure. The main feature that distinguishes this formalism is deep inference:
In contrast to the sequent calculus, the calculus of structures does not rely on the
notion of main connective, and permits the application of the inference rules at any
depth inside a structure. Thus, sequent calculus systems can be freely designed
in the calculus of structures, where the inference rules are applied only at the top
level. However, it becomes possible to design other systems, which allow for more
freedom in the application of the inference rules. This provides a combinatorial
richness where inference rules can be applied in many more ways.

The deep inference feature does not only provide a rich combinatorial analysis
of the logic being studied, but also brings shorter proofs than any other formalism
supporting analytical proofs [Gug04c]: Applicability of the inference rules at any
depth inside a structure makes it possible to start the construction of a proof by
manipulating and annihilating substructures.

In order to see this on an example consider the following two proofs of a classical
logic formula, respectively, in the one-sided sequent calculus system GS1p, Gentzen-
Schütte system [TS96] and system KSg of the calculus of structures [Brü03b] (see
Section 2.4). In the proofs, shaded area indicate the places where the inference
rules are applied.

Ax
` a , ā

Ax
` b , b̄

R∨
` b ∨ b̄

R∧
` a , ā ∧ ( b ∨ b̄ )

R∨
` a∨( ā ∧ ( b ∨ b̄ ) )

tt↓
` >

ai↓
` a ∨ ā

ai↓
` a ∨ ( ā ∧ ( b ∨ b̄ ) )

Although the sequent calculus system GS1p and the calculus of structures sys-
tem KSg appear to be very similar, the inference rules in the former system can be
applied only at the main connective whereas the inference rules of the latter can
be applied at any depth inside a structure, and their application this way results
in shorter proofs.

The word structure is used in philosophical logic to indicate a certain kind of
expression used in formalisms where the emphasis is on the structural component of
deduction. The calculus of structures is a deductive formalism, where the deduction
is performed directly on structures, instead of mixed expressions involving sequents,
structures and formulae, as for example in the display calculus [Bel82], another
formalism with some kind of deep inference.

Another important property of the calculus of structures is that derivations
are not trees like in the sequent calculus, but chains of inferences: In the sequent
calculus, due to the multiple premise inference rules, the derivations branch while
going up. The information between two branches in a proof is the meta-level in-
formation, in contrast to object-level information captured by the language of the
logic. The co-existence of meta-level and object-level in the sequent calculus sys-
tems does not have any side-effect for classical logic, because the branching in a
derivation corresponds to classical conjunction. However, in some cases, like linear
logic this branching causes a mismatch between the logical operators of the logic
and the meta level of the proof theoretical system [Gug03]. This mismatch has
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proof theoretical consequences. Furthermore, in an implementation the branch-
ing due to the meta-level requires an additional machinery for the representation
of the meta-level information (see Chapter 3). Because the information about the
derivation, which is represented at the meta-level of the sequent calculus systems, is
represented at the object-level of systems of the calculus of structures, there are no
multiple premise inference rules. Thus, derivations are chains of inferences, rather
than trees. In order to see this on an example consider the proof below, which is
the calculus of structures analogue of the sequent calculus proof on the left-hand
side above.

tt↓
` >

ai↓
` a ∨ ā

ai↓
` ( a ∨ ā ) ∧ ( b ∨ b̄ )

s
` a ∨ ( ā ∧ ( b ∨ b̄ ) )

The freedom provided by deep inference makes it possible to design deductive
systems which are otherwise impossible. However, this great power, as usual, comes
along with a responsibility attached to it. Guglielmi makes the following remark in
[Gug07]:

“The freedom allowed by this formalism (the calculus of struc-
tures) is dangerous. One could use it in a wild way, and lose
every proof theoretical property.”

Thus, it is important to understand and define the methodologies necessary for
being able to benefit from the use of the new possibilities provided by deep inference.
The reasons for this extra care is that deep inference challenges the previously
known proof theoretical techniques. For instance, cut elimination in systems with
deep inference is completely different from that in the sequent calculus: Because of
the absence of a notion of main connective in the systems with deep inference, the
cut elimination technique of the sequent calculus, which depends on the existence
of main connective, cannot be carried over to the calculus of structures. Because of
this, new techniques were developed, i.e., Guglielmi’s splitting technique [Gug07]
(see Chapter 5) and decomposition (see, e.g., [Str03a]). These techniques exploit
the fact that the cut rule in the calculus of structures can be made atomic, and
atomic cuts are much simpler objects than generic cuts (see, e.g., [Brü03a]).

1.2.2. Modularity. The absence of meta-level in the calculus of structures
allows to observe a top down symmetry in the inference rules. This symmetry is
natural, when an inference rule is seen as an implication such that the premise
of the rule implies the conclusion: The contrapositive of an inference rule delivers
another inference rule which is sound. That is, in the calculus of structures, by
flipping a rule up-side down and negating everything, it is possible to obtain a
dual rule. In each system, this results in two groups of inference rules: The down
fragment which is complete, and an up fragment. The down rules are denoted by ↓
whereas up rules are denoted by ↑. This duality is perhaps most spectacular when
the atomic interaction rule (the analogue of the axiom in the sequent calculus) and
the cut rule are observed: The duality of these rules, which is immediate in proof
nets, become observable in the inference rules of the systems of the calculus of
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structures. For instance, for classical logic the atomic interaction rule and the cut
rule are, respectively, of the following form (S denotes the context in which the rule
is applied, tt and ff are the constants for true and false, respectively):

S( tt )
ai↓

S( a ∨ ā )

S( a ∧ ā )
ai↑

S( ff )

The availability of this duality and the decomposition theorems in [Brü03b,

Str03a] bring about a modular behavior which is important for computer science
applications: Because of the availability of the dual rules of a system, many equiva-
lent systems can be obtained just by adding and removing up-rules to a system. For
instance, for a system with 3 up rules, 8 equivalent systems can be obtained: The
powerset of the set of these 3 rules contains 8 sets, thus each of these 8 sets of rules
can be safely combined with the down fragment, resulting in equivalent systems.
This way, a system can be easily tailored according to the needs of the application
domain. Further, the decomposition results presented in [Brü03b, Str03a] point
out the property of being able to separate any given derivation or proof into several
phases, each of which consists of applications of rules coming from mutually disjoint
fragments of a given logical system.

1.2.3. Locality. In the calculus of structures it is possible to design local sys-
tems. A system is local if every inference rule of the system is local in the sense that
at each application of an inference rule a bounded amount of information about the
logical expression is involved. This is important for computer science applications
because the application of a local rule consumes only a bounded amount of com-
putational resources, i.e., memory and time. In the sequent calculus, for instance,
many deductive systems contain inference rules that are not local. The contraction
rule (RC) of the classical logic, and the with (N) and promotion (!) rules of linear
logic are examples to such rules:

` Φ, A, A
RC

` Φ, A

` A, Φ ` B, Φ
N

` A N B, Φ

` A, ?B1, . . . , ?Bn
!

` !A, ?B1, . . . , ?Bn

When the contraction rule is applied bottom-up, the formula A has to be duplicated.
However, there is no bound on the size of this formula. A similar situation occurs
when the rule N is applied bottom up: The context Φ of the formula ANB has to be
copied, however there is no bound on Φ. The situation with the promotion rule is
similar: In a bottom-up application of this rule, every formula in the context has to
be checked to have the form ?B. The amount of computational resources necessary
for an instance of such non-local rules cannot be determined before-hand, in contrast
to local rules. For example, the rule R∧ is a local rule because an application of this
rule involves replacement of connectives (pointers) rather than copying of formula
of unbounded size.

` Φ, A ` Ψ, B
R∧

` Φ, Ψ, A ∧ B

Local systems are obtained by replacing each non-local inference rule with
equivalent local rules. For instance, a local system for classical logic is obtained
by replacing the non-local generic contraction rule with the atomic contraction
rule, the computational resources required by which is bounded by the size of an
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atom. Locality is respected in the systems for classical logic, intuitionistic logic and
linear logic, presented in [Brü03a], [SS05], [Tiu06a], and [Str02], respectively.
Furthermore, the systems for non-commutative logics presented in [Gug07, Gb01]
are also local.

1.2.4. Non-commutativity in the Calculus of Structures. The calculus
of structures was originally conceived in order to introduce system BV which ex-
tends multiplicative linear logic with a self-dual non-commutative operator. As Tiu
showed in [Tiu01, Tiu06b], deep inference is crucial for designing system BV be-
cause any restriction on the depth of the inference rules of system BV would result
in a strictly less expressive logical system.7 Due to the self-dual non-commutative
logical operator, system BV is of particular interest for applications where sequen-
tiality plays an important role. In particular, as Bruscoli showed in [Bru02], the
non-commutative operator of BV captures precisely the sequentiality notion of pro-
cess algebra, e.g., CCS.

In [GS02], Guglielmi and Straßburger introduced a system, called NEL, which
extends system BV with the exponentials of linear logic. System NEL is a conser-
vative extension of system BV. Although it is unknown whether multiplicative ex-
ponential linear logic is decidable or not, in [Str03c, Str03a], Straßburger showed
that system NEL is undecidable. In Chapter 6, I show that the decision problem in
system BV is NP-complete.

In this thesis, I present implementations of the systems of the calculus of struc-
tures, and study the issues, in these systems, related to nondeterminism in proof
search. The non-commutative operator of systems BV and NEL allow to express se-
quential composition of computational entities such as plans, processes, programs,
etc. Further, the parallel composition of such entities can be naturally mapped to
the multiplicative disjunction of these logics. By exploiting this observation and
the expressive power due to Turing-completeness of system NEL, in a logic pro-
gramming setting, I will give the foundations of a common logical language for the
two fields of planning and concurrency. This language should be helpful to bring
these two fields closer so that techniques can be exchanged.

1.3. Planning and Concurrency

Reasoning about action and change, as a branch of artificial intelligence, has
been one of the main-stream fields of computer science since logic had been con-
sidered in [McC59] as a tool for simulating commonsense behavior by computers.
There classical logic was proposed to represent facts about the consequences of
actions in order to perform reasoning on these actions. While this approach has
evolved to what was later called the situation calculus [MH69], many approaches
and debates followed these ideas, addressing different aspects and problems related
to actions and causality (see Section 8.1). Planning, which is motivated by methods
of reasoning about action, focuses on automated exploration of the state space of
these actions: Based on the assumption that all the necessary information about
the world is easily obtained, an agent can use the percepts provided by the envi-
ronment to build a complete and correct model of the current world state. Then,

7If the conjecture on the equality of pomset logic and system BV is true, this result explains
why no sequent calculus system with cut-elimination property for pomset logic could be designed
so far.
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given a goal, it can call a suitable planning algorithm to generate a plan of action,
provided such a plan exists [RN02].

Planning is a quite developed field which is very much motivated by logic,
that is, logic and declarative methods have been central in planning. The main
developments in this field are motivated by efficiency concerns: As a result of the
research effort in this field faster and faster planners, which employ highly optimized
heuristic methods, are being developed (see Section 8.1). However, inspired by
empiric methods, the theoretical insights provided by these approaches usually
relate to the efficient exploration of the search space rather than the true nature
of these problems. As a consequence, while these approaches provide satisfactory
solutions for domains of limited size on which they are tested, they can be rarely
employed in real-world planning domains.

Concurrency theory is another popular field of computer science which has
evolved independently. By means of process algebras [BPS01] concurrency theory
focuses on universally quantified queries on systems where communicating, con-
current processes change the system state. Typical examples for such queries are
deadlock freeness of a system or verification of some security protocol. Such tasks
require a rich arsenal of formal methods, for instance, for proving that two processes
are equivalent up to their “behavior”. Concurrency theory studies techniques which
provide a global view of a concurrent system, so that a structural analysis of such
systems becomes possible.

The fields of planning and concurrency have evolved independently because
they aim at solving tasks that are different in perspective. However, the problems
addressed in these two fields are similar in nature. When processes are viewed
as actions or plans, and vice versa, the difference between these two fields can be
seen as the different quantification of the queries of the problems being addressed:
Planning formalisms focus on finding a plan that solves a given planning problem,
by means of existentially quantified queries: A typical question in planning is “does
there exist a plan which brings the agent from the initial state to the desired goal
state?”. On the other hand, the focus in concurrency theory is on universally
quantified queries, e.g., deadlock freeness, which imposes a global view of all the
executions of the system being examined.

1.3.1. A Common Language for Planning and Concurrency. In con-
currency theory, the universal quantification on the queries imposes a global view
of the concurrent systems being studied. When carried to planning, such a view has
the potential to provide the theoretical insight for a deeper understanding of the
problems being attacked in planning. By studying the specification of a planning
problem, one can observe the global behavior of such a specification, similar to
the specification of a concurrent system, and, for instance, compare different plans
solving the problem. Let us consider a simple planning scenario which is helpful to
demonstrate these ideas: In this scenario there are two tables. On Table 1 there
are four blocks which are stacked on top of each other as shown on the left-hand
side of the Figure 1.1. The only available action takes a block from Table 1 and
puts it on Table 2. The goal of the problem is moving three of the blocks from
Table 1 to Table 2. Because block a is stacked on blocks c and d, blocks c and d
cannot be moved before block a. Similarly, block d cannot be moved before block
b. There are five different sequences of actions which solve this planning problem,
namely the following plans (C denote the sequential composition of actions, and a
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PSfrag replacements

a b

c d

Table 1 Table 2

Figure 1.1. A simple planning problem

the action of moving block a from Table 1 to Table 2, similarly for blocks b, c and
d):

a C c C b b C a C c a C b C c a C b C d b C a C d

Each one of these plans is a typical output of a planning algorithm. Although
they all bring the agent to the desired goal state, the relationship between these
five different plans is difficult to observe. In contrast to such a view of this planning
problem, let us consider a different view, represented by the graph below. In this
graph # is read as a conflict relation in the sense that nodes connected with this
relation cannot co-occur in a plan. The partial order of the nodes determine in
which order these nodes can-occur, that is, a node appearing below another one
must occur strictly after the one above.

PSfrag replacements

a b

c d

• •

• •
#

This graphical representation allows to observe all the actions which can be
executed in the planning scenario above. All of the five plans above can be eas-
ily read from this graph. In fact this is a graphical representation of a model for
concurrency, namely a labelled event structure [SNW96, WN95]. Labelled event
structures (LES) is a behavioral model of concurrency. In a LES the independence
and causality between events is expressed as a partial order, and the nondetermin-
ism is expressed by a conflict relation. In this thesis, I argue that a logical common
language for planning and concurrency, with such a semantics can serve as a bridge
for importing formal techniques from concurrency to planning, for instance, for es-
tablishing a notion of plan equivalence.

A common language for planning and concurrency is also meaningful from the
point of view of concurrency theory. Because of the duality between existential and
universal quantification, concurrency theoretical queries can be treated as planning
problems. For instance, verification of security protocols is a problem domain which
is commonly addressed in concurrency theory and can be easily put as a planning
problem: “Is there a sequence of actions that an intruder can undertake so that
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he can break a security protocol?”. The Dolev-Yao model of security protocols
[DY83] is well suited for such a representation.

1.3.2. Causality, Independence, Nondeterminism. In general, concur-
rency theory deals with analyzing properties of processes in a system where the
processes interact with each other. This interaction can be in the form of a process
consuming the resources which are produced by another process or the synchroniza-
tion of two process that are running in parallel via a hand shake operation. These
two sorts of interaction brings parallel and sequential composition into focus. In
a process algebra parallel and sequential composition are at the same level because
they are equivalently important notions for expressing concurrent processes. How-
ever, in planning the emphasis is on sequential composition. The partial order
planners and graph planners, which mainly focus on improving the performance of
planners, do not provide a satisfactory treatment of parallel behavior within the
borders of logic, because they cannot handle resource conflicts between competing
actions. On the other hand, the treatment of concurrency within the approaches to
reasoning about action, where concurrency is defined over the parametrized time
spans shared by the actions, does not capture the independence and nondetermin-
ism inherent in the system (see Section 8.1).

In fact, finding the right logic with which to specify and reason about plans and
to get a satisfactory semantic treatment of concurrent actions simultaneously is a
challenging task. One of the obstacles to this task is the frame problem [MH69].
Informally, the frame problem occurs when the formal language expresses what
changes, but does not express what stays the same (see Section 8.1). The underlying
logic must be powerful enough to express causality in a simple way without raising
the frame problem. Further, an explicit treatment of resources is crucial in order to
express the independence and nondeterminism in the system. Another ingredient
is being able to express parallel and sequential composition of actions at the same
level. These conditions must be fulfilled without resorting to function symbols, so
that the structure of the problem can be captured at the logical level, rather than
term level, so that logic can be used in an interesting and useful way.

The linear logic approach to planning (see Section 8.2) offers a solution to
some of these challenges. However, although parallel composition of actions can
be naturally mapped to the commutative O operator of linear logic, sequential
composition does not find a natural interpretation. For this reason, for the language
I develop in this thesis, I employ systems BV and NEL, respectively, of the calculus
of structures which extend multiplicative linear logic and multiplicative exponential
linear logic with a non-commutative self-dual logical operator.

1.4. Summary of Results

In this thesis, I address the following interdependent problems, some of which
I have already mentioned above:

(i) implementations of proof theoretical systems with deep inference,
(ii) reducing nondeterminism in proof search with deep inference systems,

(iii) design of a common logical language for planning and concurrency.
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1.4.1. Implementing Deep Inference. In the calculus of structures, the
laws such as associativity and commutativity, which are implicitly imposed on for-
mulae in other formalisms, become explicit by means of equational theories un-
derlying logical systems (see Chapter 2). By establishing a strict correspondence
between the systems of the calculus of structures and term rewriting systems mod-
ulo equational theories, I implement proof search, in the calculus of structures, for
classical logic, linear logic, system BV and system NEL. These implementations
are developed in two independent lines: The first one makes use of the simple
high level language and the term rewriting features of the Maude system, whereas
the second one uses the pattern matching preprocessor TOM, developed in LO-
RIA/INRIA, which is used to integrate term rewriting features into programming
languages such as C, Java, and Caml8.

1.4.2. Reducing Nondeterminism in Proof Search. The deep inference
feature of the calculus of structures brings shorter proofs than any other formalism
supporting analytical proofs [Gug04c]. However, because the inference rules can
be applied in many more ways than, for instance, in the sequent calculus, the
breadth of the search space in proof search increases (see Chapter 5). In this
thesis, I develop a technique which reduces this nondeterminism, and makes these
shorter proofs more immediately accessible. I present this technique on system
BV. By exploiting the common scheme followed by the systems of the calculus
of structures, this technique can be analogously applied to other systems of the
calculus of structures. As an evidence to this, I apply this technique to classical
logic systems in the calculus of structures in order to obtain equivalent systems
where nondeterminism is reduced. Because this technique is strongly related with
a cut elimination argument, it remains perfectly clean from a proof theoretical point
of view. Furthermore, I use this technique as a combinatoric proof theoretical tool
for showing that system BV is NP-complete.

1.4.3. A Common Language for Planning and Concurrency. I present
a common logical language for planning and concurrency. Planning is a quite
developed field which is very much motivated by logic. However, the research in this
field is mainly based on exploiting the expressive power of first order classical logic,
in a way motivated by efficiency concerns. In such a perspective, the languages for
planning lack the theoretical insight, which would serve to understand the nature of
these problems. However concurrency theory, which has similar problems in focus,
with a formal perspective, has the potential to provide the theoretical insight for a
deeper understanding of the problems being attacked in planning.

In this thesis, I establish the basis of a uniform logical language which aims
at bringing planning and concurrency closer. Such a language provides a bridge
between these two fields, so that techniques can be carried both ways. For instance,
the highly developed formal methods of concurrency theory provide the necessary
tools to establish a notion of equivalence of plans. Furthermore, planning tech-
niques can be used for concurrency theoretic queries, for instance, for verification
of security protocols.

In the language that I present, I further elaborate on the linear logic approach to
planning by resorting to system NEL. System NEL is shown to be Turing-complete.

8These implementations are available for download at
http://www.iccl.tu-dresden.de/~ozan/maude cos.html
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Chapter 2

Chapter 3 Chapter 8

Chapter 4 Chapter 5

Chapter 7 Chapter 6

Figure 1.2. The dependencies between the chapters

By employing this system, the sequential composition of actions is represented by
the self-dual non-commutative logical operator. This way, it becomes possible to
express parallel and sequential composition of actions, at the same level, in a purely
logical language. The inference rules of system NEL give the operational semantics
of this language. In linear logic approach to planning, the plans are extracted from
a proof of the specification of the planning problem. In contrast, this language
allows to compute a partial order plan as a premise of a derivation, the conclusion
of which is the specification of the planning problem (see Chapter 8).

In contrast to plans computed by partial order planners in the literature, due
to the explicit treatment of resources, these partial order plans capture the inde-
pendence and causality between actions. I describe a procedure which delivers a
behavioral concurrency semantics of a planning problem specification. This way, I
establish a notion of plan equivalence with respect to canonical representation of
plans as partial orders.

Some of the results presented in this thesis have already appeared elsewhere
[HK04, Kah04a, Kah04b, Kah05, KMR05a, Kah06b, Kah06a, Kah07].
This thesis can be read as shown in Figure 1.2. There, the dashed arrows denote
the weak dependencies which can be ignored by the reader in a hurry.



CHAPTER 2

Proof Theory with Deep Inference: the Calculus

of Structures

In this chapter, I will review the notions and notations of the calculus of struc-
tures. For this purpose, I will first introduce system BV, following [Gug07], which
started the research on the calculus of structures. I will then present a Turing-
complete extension of system BV, called system NEL [GS02]. These two systems
will be of particular importance for the results in Chapter 8 where I introduce a
common language for planning and concurrency. Then, I will give a brief introduc-
tion to the systems in the calculus of structures for linear logic and classical logic.
For an in-depth exposure to the proof theory of these logics, the reader is referred
to [Brü03b] and [Str03a].

The calculus of structures is a proof theoretical formalism which works on
structures. From a syntactic point of view, structures can be seen as equivalence
classes of formulae: The laws such as associativity and commutativity, which are
usually implicitly imposed on formulae, become explicit on structures by means of
an underlying equational system in a logical system of the calculus of structures.
In fact, the intuition behind structures can be observed best in their graphical
representation, called relation webs, where the mutual logical relations between
atoms of a structure are represented by the arcs of a graph. Informally, relation
webs are graphs that can be seen as canonical representations of equivalence classes
of formulae. Because relation webs are not yet fully developed for other logics than
system BV, I will postpone the discussion on the relation webs to Chapter 5, where
they will play an important role in proving properties of system BV.

Like formulae, structures are built from atoms. The negation of a structure
is denoted by the bar ·̄ . In contrast to common infix notation used for binary
connectives, as in formulae, structures are written in out-fix notation. For exam-
ple, talking about classical logic, the structure [(a, b̄, c), (d, e)] corresponds to the
formula (a∧ b̄∧ c) ∨ (d ∧ e). This notation, does not only provide a more algebraic
reading of the logical expressions, but also provides a uniform syntax for all the
logics, which are studied in the calculus of structures. For instance, when we are
working in linear logic, the structure above corresponds to the linear logic formula
(a � b̄ � c) O (d � e). This way, the common behavior in different logics can be bet-
ter observed, for instance, by means of inference rules which are common to these
systems. A typical example is the so called switch rule (see, e.g., Definition 2.17),
which is common to all the systems, in the calculus of structures, for all the logics.
However, in each system this rule deals with different notions of conjunction and
disjunction. The out-fix notation also provides an easier reading of the derivations
of the calculus of structures, which are not trees as in most deductive formalisms,
but chains of inferences (see, e.g., Subsection 2.1.3).

17
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id
` A, Ā

` A, Φ ` B, Ψ
�

` A � B, Φ, Ψ

` A, B, Φ
O
` A O B, Φ

` Φ
⊥
` ⊥, Φ

1
` 1

Figure 2.1. MLL in the sequent calculus

2.1. System BV

System BV [Gug07] is an extension of multiplicative linear logic (MLL, see
Figure 2.1), with the rules mix (mix) and nullary mix (mix0, see Figure 2.2), and
a self-dual non-commutative logical operator, called seq. (For the formal relation
between MLL and system BV, see Subsection 2.1.3).

The calculus of structures was originally conceived to introduce system BV in
order to capture the sequential composition of process algebras by means of a self-
dual, non-commutative logical operator. In fact, Bruscoli showed, in [Bru02], that
there is a strict correspondence between system BV and a fragment of the process
algebra CCS (see, e.g., [Mil89]).

2.1.1. Structures. The definition below presents the notion of structure for
system BV. The structures for other logics, in the following, are defined similarly,
however with slight differences with respect to their different languages.

Definition 2.1. There are countably many positive atoms and countably many
negative atoms. Atoms are denoted by a, b, c, . . . BV structures are generated by

R ::= ◦ | a | [ R , R ] | ( R , R ) | 〈R ; R 〉 | R

where ◦, the unit, is not an atom. [ R , R ] is called a par structure, ( R , R ) is
called a copar structure, and 〈R ; R 〉 is called a seq structure. R is the negation of
the structure R. Structures are denoted by P, Q, R, S, T, . . .. BV structures are con-
sidered equivalent modulo the relation ≈, which is the smallest congruence relation
induced by the equational system shown in Figure 2.3.

Remark 2.2. Similar to BV structures, structures for other systems are often
considered equivalent modulo a relation ≈, which is the smallest congruence relation
induced by a set of equations. Such a smallest congruence relation always exists
because the intersection of two congruence relations, induced by the same equational
theory, is also a congruence relation. Because the relation ≈ is a congruence relation
the axioms for reflexivity, symmetry, transitivity, and congruence (context closure)
are implicitly included in the equational systems underlying systems of the calculus
of structures (see Subsection 3.1).

` Φ ` Ψ
mix

` Φ, Ψ
mix0

`

Figure 2.2. The rules mix and nullary mix
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Associativity

[R, [T, U ] ] ≈ [ [R, T ], U ]

(R, (T, U)) ≈ ((R, T ), U)

〈R; 〈T ; U〉〉 ≈ 〈〈R; T 〉; U〉

Commutativity

[R, T ] ≈ [T, R]

(R, T ) ≈ (T, R)

Unit

[◦, R] ≈ R (◦, R) ≈ R

〈◦; R〉 ≈ R 〈R; ◦〉 ≈ R

Negation

[R,T ] ≈ (R, T ) ◦ ≈ ◦

(R,T ) ≈ [R, T ] R ≈ R

〈R;T 〉 ≈ 〈R; T 〉

Figure 2.3. The equational system underlying BV structures

Definition 2.3. A structure context, denoted by S{ }, is a structure with
one occurence of { }, the empty context or hole. A hole does not appear in the
scope of a negation, that is, it does not appear under a negation symbol. S{R}
denotes the structure obtained by filling the hole in S{ } with R. A structure R is
a substructure of S{R} and S{ } is its context.

Notation 2.4. We drop the context braces if no ambiguity is possible: For
instance S [R, T ] stands for S{[R, T ]}.

Definition 2.5. A BV structure, or a structure context, is in negation normal
form when the only negated structures appearing in it are atoms; it is in (unit)
normal form when it is in negation normal form and no unit ◦ appears in it. If
structures R and T are such that R 6= ◦ 6= T , then the structure 〈R; T 〉 is a proper
seq, the structure [R, T ] is a proper par and the structure (R, T ) is a proper copar.
The BV structures whose normal forms do not contain seq structures are called flat.

As it can be seen in Figure 2.3, negation obeys the usual De Morgan laws for
par and copar, it switches them. The operator seq is self-dual, that is, 〈S1 ; S2 〉 ≈
〈S1 ; S2 〉.

All BV structures can be equivalently considered in normal form, because nega-
tion can always be pushed inwards to atoms by using the equations for negation
and units can be removed by using the equations for unit. Thus, every BV structure
can only be equivalent either to the unit, or to an atom, or, mutually exclusively,
to a proper seq, or a proper par, or a proper copar.

Notation 2.6. When denoting structures, I will often use a structure which
is in normal form in order to express all the structures that belong to the same
equivalence class that is given by the underlying equational system, e.g., for system
BV ≈ in Figure 2.3. Further, when no ambiguity is possible, I will often use n-ary
operators as abbreviations for vectors of structures built by binary operators. For
instance, the structure [ [ [a, b], c], d] will be denoted by [a, b, c, d].

Example 2.7. Structures [a, ◦, b, (ā, [b, d])] and [a, b, (ā, b̄, d̄)] are equivalent,
and the latter is in normal form. Let S{ } = [a, b, (c, 〈ā; { }; c̄〉)] and R = (b, d̄).
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Then S{R} = [a, b, (c, 〈ā; (b, d̄); c̄〉)]. The structure 〈◦; [a, b]〉 is a proper par, since
[a, b] is a structure in normal form.

Definition 2.8. The size of a structure or a structure context is the number
of atoms appearing in it.

2.1.2. Rules and Derivations. In this subsection, I will review the notions
and notations of the derivations in the calculus of structures and the inference rules
of system BV. The definitions of derivations are common to other systems in the
calculus of structures that are discussed in this thesis.

Definition 2.9. In the calculus of structures, an inference rule is a scheme of
the kind

T
ρ

R
,

where ρ is the name of the rule, T is its premise and U is its conclusion. An
inference rule is called an axiom if its premise is empty, i.e., the rule is of the
shape

ρ
R

.

Remark 2.10. A typical deep inference rule has the shape

S{T}
ρ

S{R}
.

A deep inference rule of this form specifies the logical implication T ⇒ R inside a
generic context S{ }, which is the logical implication being modeled in the system.
For system BV this is the linear implication −◦ (see Subsection 2.1.3).

Definition 2.11. An instance of an inference rule of the form

T
ρ

R

is the inference rule ρ where the structure schemes R and T are replaced with
structures that respect their scheme. When premise and conclusion in an instance
of an inference rule are equivalent, that instance is trivial, otherwise it is non-
trivial.

Definition 2.12. In an inference rule, following the scheme

S{T}
ρ

S{R}
,

the substructure R is called the redex and T the contractum of the rule’s instance.

Example 2.13. Consider the following trivial instance of the switch rule which
is applied inside the structure context ({ }, c):

( [a, b] , c)
≈

( [a, b], ◦, c)
s
( [(a, ◦), b] , c)

≈
( [a, b] , c)
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In the instance of the switch rule above, the structure [(a, ◦), b] is the redex and the
structure ([a, b], ◦)is the contractum.

Definition 2.14. A (formal) system S is a set of inference rules.

Definition 2.15. A derivation ∆ in a calculus of structures system is either
a structure or a finite chain of instances of inference rules in the system:

R
ρ

R′

ρ′
...

ρ′′
R′′

The top-most structure in a derivation, if present, is called the premise of the
derivation, and the bottom-most structure is called its conclusion. A derivation ∆
with premise T conclusion R, and whose inference rules are in S will be written
as

T

R
S∆ .

A proof Π of a structure R in the calculus of structures is a derivation whose
topmost inference rule is an axiom and the conclusion is the structure R. It will be
denoted by

R

SΠ .

The length of a derivation is the number of instances of inference rules appearing
in it.

Definition 2.16. A rule ρ is admissible for a system S if ρ /∈ S and for

every proof
R

S∪{ρ}Π
there is a proof

R

SΠ′

.

Definition 2.17. The system {◦↓, ai↓, s, q↓}, shown in Figure 2.4, is denoted
by BV and called basic system V. The rules of the system are called unit (◦↓),
atomic interaction (ai↓), switch (s), and seq (q↓). The system {◦↓, ai↓, s} is called
flat system BV, and denoted by FBV.

Definition 2.18. The following rule is called cut and is denoted by ai↑:

S(a, ā)
ai↑

S{◦}

Theorem 2.19. The cut rule is admissible for system BV.

The proof of the above theorem can be found in [Gug07]. However, in Chapter
5, I will prove a similar statement for a system equivalent to system BV.

2.1.3. Relation with the Sequent Calculus. The calculus of structures is
a generalization of the sequent calculus. In the calculus of structures, it is possible
to design inference rules which correspond to the inference rules of the sequent
calculus. However, the deep inference feature of the calculus of structures makes
it possible to design deductive systems which are not designable in the sequent



22 2. PROOF THEORY WITH DEEP INFERENCE: THE CALCULUS OF STRUCTURES

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s

S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Figure 2.4. System BV

calculus. As Tiu showed in [Tiu01, Tiu06b], system BV cannot be designed in
any standard sequent calculus, because a notion of deep rewriting is necessary in
order to get all the provable structures of system BV by means of a deductive
system. Below, we will see the relation between system BV and the system MLL of
the sequent calculus. The discussions on the relation between the other systems of
the calculus of structures, for linear logic and classical logic in the following, and
the sequent calculus systems follow the ideas in this subsection.

Inference rules of the sequent calculus can be applied only at the main con-
nective of formulae, i.e., at the connective at the root position when formulae are
seen as terms. In contrast, the deep inference feature of the calculus of structures
allows the inference rules to access substructures at arbitrary depths inside nested
structures. While deep inference plays a crucial role for system BV, it provides
systems with a richer proof theory for linear logic and classical logic. In Section 2.3
and Section 2.4, respectively, I will review the calculus of structures presentations
of linear logic [Str03a] and classical logic [Brü03b].

From the point of view of the sequent calculus, structures can be seen as expres-
sions intermediate between formulae and sequents which unify these two entities.
In other words, in the calculus of structures, the notions of formula and sequent
of the sequent calculus merge into the notion of structure. When we consider BV

structures, there is a straight-forward correspondence between flat structures and
formulae of multiplicative linear logic (MLL) [Gir87].

Definition 2.20. Formulae are denoted by A, B, C, . . . The multiplicative lin-
ear logic (MLL) formulae are generated by

A ::= 1 | ⊥ | a | A O A | A � A | A .

The binary connectives O and � are called par and times. Ā is the negation of A.
Brackets are used to disambiguate expressions when they are necessary. The units
⊥ and 1, and the connectives O and � are duals of each other, and they obey the
De Morgan laws:

1̄ = ⊥ ⊥̄ = 1 A O B = Ā � B̄ A � B = Ā O B̄

Definition 2.21. Sequents, denoted by Γ, are expressions of the form

` A1, . . . , Ah ,

where h ≥ 0. The comma between the formulae A1, . . . , Ah stands for multiset
union. Multisets of formulae are denoted by Φ and Ψ.

Definition 2.22. The system shown in Figure 2.1 is called multiplicative linear
logic or system MLL.
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The sequent calculus system for MLL is sometimes extended with the rules mix

and mix0 in Figure 2.2 (see, e.g., [Ret93, FR94, Bel97]).

Definition 2.23. The system MLLx is the system resulting from extending the
system MLL in Figure 2.1 with the rules mix and mix0 in Figure 2.2.

There is a strict correspondence between system MLLx and system FBV: These
two systems prove the syntactic variations of the same logical expressions. However,
as we have seen above, the notion of a proof in the sequent calculus is different from
the notion of a proof in the calculus of structures. In the calculus of structures,
there are only single premise inference rules, thus proofs are chains of instances of
inference rules. In contrast, due to multiple premise inference rules of the sequent
calculus, which cause branching, the sequent calculus proofs take a tree shape. As
we have seen in Chapter 1, because the application of an inference rule is not limited
to main connective in the calculus of structures, there are more proofs of a provable
logical expression than there is in the sequent calculus.

Definition 2.24. A sequent calculus derivation in a sequent calculus system
S is a tree that is represented with

Γ1 · · · Γh

Γ

where h ≥ 0, the sequents Γ1, . . . , Γh are called premises, Γ is the conclusion, and a
finite number of instances of the inference rules in system S are applied. A sequent
calculus derivation with no premise is a sequent calculus proof.

To see the correspondence between the flat BV structures and MLL formulae
formally, let us have a look at the following definition that I borrow from [Gug07].

Definition 2.25. The function · v transforms the formulae of MLL, which do
not contain the constants 1 and ⊥ of linear logic into flat structures according to
the following inductive definition:

av = a , A O Bv = [Av , Bv] , A � Bv = (Av , Bv) .

The domain of · v is extended to sequents as follows:

` A1, . . . , Ah v = [A1v , . . . , Ahv]

Example 2.26. Consider the MLL sequent ` ((a � b) O ā , b̄ . By employing
the function · v, we obtain the flat BV structure [(a, b), ā, b̄].

When the deductive system MLL is extended with the rules mix and mix0, some
formulae which are not provable in MLL, become provable in MLLx.

Example 2.27. The formula a O ā O b O b̄ is not provable in MLL, however
in MLLx it is provable:

Ax
` a , ā

O
` a O ā

Ax
` b , b̄

O
` b O b̄

mix
` a O ā , b O b̄

O
` a O ā O b O b̄
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In linear logic, (linear) implication is defined as A −◦ B = Ā O B. In MLLx it
holds that 1 ≡ ⊥, that is, the implications ⊥−◦ 1 and 1−◦⊥ are provable. Because
of this, one can safely map the constants 1 and ⊥ to a single unit, for instance
to ◦, as in system BV. Theorem below and the Proposition thereafter state that
systems FBV and MLLx prove the syntactic variations of the same formulae, and
that system BV is a conservative extension of system FBV. The proofs of these
results and more detailed discussion of these ideas can be found in [Gug07].

Theorem 2.28. For any multiplicative linear logic formulae A which does not

contain any constants 1 and ⊥, there is a proof

` A

in MLLx if and only if there

is a proof
` Av

FBVΠ
.

Definition 2.29. A system S is a conservative extension of a system S ′, if
any provable structure of S , involving symbols of S only, is provable in S ′.

Proposition 2.30. System BV is a conservative extension of system FBV, that
is, if a flat structure R is provable in BV, then it is also provable in FBV.

Another feature that distinguishes the calculus of structures from the sequent
calculus is the presence of an explicit top-down symmetry in the derivations: In the
calculus of structures, by flipping a sound derivation upside-down and negating it,
one obtains a derivation which is also sound.

This symmetry in the calculus of structures derivations is due to the logical
duality between the implications T ⇒ R and R̄ ⇒ T̄ , which is well known under
the name contrapositive. For the case of system BV, this implication is the linear
implication. Because the inference rules model implications in the logic, in the
calculus of structures rules come in pairs of dual rules: A down-version

S{T}
ρ↓

S{R}
,

and an up-version which is obtained by expressing the contrapositive of the impli-
cation of the down rule as an inference rule, that is,

S{R}
ρ↑

S{T}
.

For instance, the cut rule (see Definition 2.18) is the dual of the atomic interaction
rule (see Definition 2.17).

Because of the syntactic restrictions of the sequent calculus, this kind of duality
cannot be observed directly in the sequent calculus, without further proof theoret-
ical analysis of the inference rules. For instance, let us consider the identity rule
and the cut rule:

id
` A, Ā

` A, Φ ` Ā, Ψ
cut

` Φ, Ψ

It is easy to see that these two rules are not syntactic duals of each other, although
their duality can be observed by further proof theoretical analysis, e.g., by means
of proof nets [Gir87].
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PSfrag replacements

MLL (NP-complete, [Kan91, LW94])

+ mix

+mix0

FBV (NP-complete, Chapter 6)

+ seq: self-dual, non-commutative operator

BV (NP-complete, Chapter 6)

+ exponentials !, ?

+ exponentials !, ?

MELL

+ mix

+mix0

+ seq: self-dual,
non-commutative
operator

NEL (undecidable,

[Str03c])

Figure 2.5. The relationship between MLL, FBV, BV, MELL and NEL

In a calculus of structures system, all the rules which belong to the up-fragment
of the system are admissible: The cut elimination argument modularly generalizes
to the whole up-fragment, and this way it becomes possible to eliminate all the up
rules (see, e.g., [Brü03a, Str02]). In this thesis, I consider in general the down
rules, which provide sound and complete systems.

2.2. System NEL

System NEL was introduced by Guglielmi and Straßburger in [GS02]. System
NEL is a conservative extension of system BV with the exponentials of linear logic.
In other words, system NEL is an extension of multiplicative exponential linear
logic (see Section 2.3) (MELL) with the rules mix, mix0, and the self-dual non-
commutative logical operator seq. The exponentials (! and ?) of linear logic serve
to attain controlled contraction and weakening in system NEL. Although it is
unknown whether multiplicative exponential linear logic is decidable or not, in
[Str03c], Straßburger showed that system NEL is undecidable. In Chapter 6, I
will show that system BV is NP-complete. Figure 2.5 summarizes the relationship
between MLL, FBV, BV, MELL and NEL.

The structures of NEL are generated by a grammar which extends that of BV

with the exponentials of linear logic:

Definition 2.31. Atoms and structures of system NEL are denoted as those of
system BV. NEL structures are generated by

R ::= ◦ | a | [ R , R ] | ( R , R ) | 〈R ; R 〉 | ?R | !R | R

where, in addition to the structures of system BV, ?R is called a why not structure,
and !R is called an of course structure. NEL structures are considered equivalent
modulo the relation ≈, which is the smallest congruence relation induced by the
equational system shown in Figure 2.6. A NEL structure, or a structure context, is
in negation normal form when the only negated structures appearing in it are atoms;
it is in (unit) normal form when it is in negation normal form, no unit ◦ appears
in it, and no exponentials !, ? can be equivalently eliminated.

All NEL structures can be equivalently considered in normal form, because
negation can always be pushed inwards to atoms by using the equalities for negation,
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Associativity

[R, [T, U ] ] ≈ [ [R, T ], U ]

(R, (T, U)) ≈ ((R, T ), U)

〈R; 〈T ;U〉〉 ≈ 〈〈R;T 〉; U〉

Exponentials

??R ≈ ?R ? ◦ ≈ ◦

!!R ≈ !R ! ◦ ≈ ◦

Commutativity

[R,T ] ≈ [T, R]

(R,T ) ≈ (T, R)

Units

[◦, R] ≈ R

(◦, R) ≈ R

〈◦; R〉 ≈ R

〈R; ◦〉 ≈ R

Negation

◦̄ ≈ ◦

[R, T ] ≈ (R, T )

(R, T ) ≈ [R, T ]

〈R; T 〉 ≈ 〈R; T 〉

?R ≈ ! R

!R ≈ ? R

R ≈ R

Figure 2.6. The equational system underlying NEL structures

and units and redundant exponentials can always be removed by using the equations
for units and exponentials.

Similar to the correspondence between BV structures and MLL formulae, there
is a straight-forward correspondence between structures not involving seq and MELL

formulae. For example ! [(?a, b), ā, ! b̄] corresponds to ! ( (?a � b) O āO ! b̄), and vice
versa. For a detailed discussion on the proof theory of NEL and the precise relation
between NEL and MELL, the reader is referred to [GS02, Str03a].

Definition 2.32. The system in Figure 2.7 is called non-commutative expo-
nential linear logic, or system NEL. The rules of the system are unit (◦↓), atomic
interaction (ai↓), switch (s), seq (q↓), promotion (p↓), weakening (w↓), and
absorption (b↓).

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s

S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

S{![R, T ]}
p↓

S [!R, ?T ]

S{◦}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

Figure 2.7. System NEL

2.3. Linear Logic in the Calculus of Structures

In this section, I will review the calculus of structures presentation of linear
logic, i.e., system LS, following [Str03a].

Definition 2.33. In the language of system LS, there are countably many
positive atoms and negative atoms, which are denoted by a, b, c, . . ., and there are
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four selected atoms ⊥, 1 , 0, and > that are called bottom, one, zero, and top,
respectively. LS structures are generated by

R ::= ⊥ | 1 | 0 | > | a | [ R , R ] | ( R , R ) | [• R , R ]• | (• R , R )• | ! R | ? R | R

where [R, R] is called a par structure, (R, R) is called a copar (times) structure,
[•R, R]• is called a plus structure, (•R, R)• is called a with structure, !R is called an
of course structure, and ?R is called a why not structure. R is the negation of the
structure R. The atoms ⊥, 1 , 0 and > are the units for par, times, plus, and with
structures, respectively. LS structures are considered equivalent modulo the relation
≈, which is the smallest congruence relation induced by the equational system shown
in Figure 2.8. An LS structure, or a structure context, is in negation normal form
when the only negated structures appearing in it are atoms; it is in (unit) normal
form when it is in negation normal form, and no units and exponentials can be
equivalently removed.

Remark 2.34. In [Str03a], Straßburger defines units as selected atoms. This
results in simplifications in the design of the system LS and proofs of the results
on this system. In this thesis, I use the system LS in [Str03a], thus I use the
convention that units are atoms in system LS.

All LS structures can be equivalently considered in negation normal form, be-
cause negation can always be pushed inwards to atoms by using the equations for
negation. Furthermore, by using the equations for unit on a structure in negation
normal form, the unit normal formal form of a structure can always be obtained.

Associativity

[R, [T, U ] ] ≈ [ [R, T ], U ]

(R, (T, U)) ≈ ((R, T ), U)

[•R, [•T, U ]•]• ≈ [•[•R, T ]•, U ]•

(•R, (•T, U)•)•≈ (•(•R, T )•, U)•

Units

[⊥, R] ≈ R

[•0, R]• ≈ R

[•⊥,⊥]• ≈ ⊥

(1, R) ≈ R

(•>, R)•≈ R

(•1, 1)• ≈ 1

Commutativity

[R, T ] ≈ [T, R]

(R, T ) ≈ (T, R)

[•R, T ]• ≈ (T, R)

(•R, T )•≈ (T, R)

Exponentials

??R ≈ ?R

!!R ≈ !R

?⊥ ≈ ⊥

!1 ≈ 1

Negation

[R, T ] ≈ (R̄, T̄ )

(R, T ) ≈ [R̄, T̄ ]

[•R, T ]• ≈ (•R̄, T̄ )•

(•R, T )• ≈ [•R̄, T̄ ]•

?R ≈ !R̄

!R ≈ ?R̄
¯̄R ≈ R

1̄ ≈ ⊥ ⊥̄ ≈ 1

>̄ ≈ 0 0̄ ≈ >

Figure 2.8. The equational system underlying LS structures

We are now ready to give the calculus of structures presentation of linear logic:

Definition 2.35. The system {1↓, ai↓, s, t↓, c↓, d↓, w↓, b↓, p↓}, shown in Figure
2.9, is called linear logic in the calculus of structures, or system LS. The rules of
the system are called one (1↓), atomic interaction (ai↓), switch (s), promotion
(p↓), weakening (w↓), absorption (b↓), thinning (t↓), contraction (c↓), and
additive (d↓).
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Definition 2.36. The fragment of system LS which consists of the rules 1↓, ai↓,
and s is called multiplicative linear logic in the calculus of structures, or system S.

Definition 2.37. The rules p↓, w↓, and b↓ are called the exponential rules.
The fragment of system LS which consists of system S together with the exponential
rules is called multiplicative exponential linear logic in the calculus of structures,
or system ELS.

Definition 2.38. The rules t↓, w↓, and d↓ are called the additive rules. The
fragment of system LS which consists of system S together with the additive rules
is called multiplicative additive linear logic in the calculus of structures, or system
ALS.

1↓
1

S{1}
ai↓

S [a, ā]

S([R, U ], T )
s

S [(R, T ), U ]

}

System S

S{![R, T ]}
p↓

S [!R, ?T ]

S{⊥}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

}

Exponential rules

S{0}
t↓

S{R}

S [•R,R ]•
c↓

S{R}

S(• [R, U ], [T, V ])•
d↓

S [(•R, T )•, [•U, V ]•]

}

Additive rules

Figure 2.9. System LS

Let me now review the language of LL following [Gir87]. The language of LL

extends that of MLL:

Definition 2.39. The linear logic (LL) formulae are generated by

A ::= 1 | ⊥ | 0 | > | a | A O A | A � A | A � A | A N A | ? A | ! A | A .

The binary connectives O, �, �, and N are called par, times, plus, and with,
respectively. Ā is the negation of A. ? and ! are modalities, and they are called
of-course and why-not, respectively. Brackets are used to disambiguate expressions
when they are necessary. The units ⊥ and 1, 0 and >, the connectives O and �, �
and N, and modalities ? and ! are duals of each other, and they obey the De Morgan
laws:

1̄ = ⊥ ⊥̄ = 1 A O B = Ā � B̄ A � B = Ā O B̄

0̄ = > >̄ = 0 A � B = Ā N B̄ A N B = Ā � B̄

! A = ? Ā ? A = ! Ā

In order to see that system LS is complete for linear logic, let us have a look at
the following definition that I borrow from [Str03a].
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Definition 2.40. The function · s transforms the linear logic formulae into
LS structures according to the following inductive definition:

⊥s
1s
0s
>s

=

=

=

=

⊥

1

0

>

,

,

,

,

A O Bs
A � Bs
A � Bs
A N Bs

=

=

=

=

[As, Bs]

(As, Bs)

[•As, Bs]
•

(•As, Bs)
•

,

,

,

,

as
? As
! As
Ās

=

=

=

=

a

? As
! As
As

,

,

,

.

The domain of · s is extended to sequents as follows:

`s = ⊥ and

` A1, . . . , Ahs = [A1s, . . . , Ahs] , for h ≥ 0 .

Definition 2.41. The system LL, i.e., linear logic in the one-sided sequent
calculus is shown in Figure 2.10.

Theorem 2.42. [Gir87] (Cut Elimination) Every proof Π of a sequent ` Φ in
system LL can be transformed into a cut-free proof Π′, i.e., a proof in system LL

that does not contain an instance of the rule cut.

id
` A, Ā

` A, Φ ` Ā, Ψ
cut

` Φ, Ψ

` A, Φ ` B, Ψ
�
` A � B, Φ, Ψ

` A, B, Φ
O
` A O B, Φ

` Φ
⊥
` ⊥, Φ

1
` 1

` A, Φ ` B, Φ
N
` A N B, Φ

` A, Φ
�1
` A � B, Φ

` B, Φ
�2
` A � B, Φ

>
` >, Φ

` A, Φ
?d
` ?A, Φ

` ?A, ?A, Φ
?c

` ?A, Φ

` Φ
?w
` ?A, Φ

` A, ?B1, . . . , ?Bn
!
` !A, ?B1, . . . , ?Bn

Figure 2.10. System LL in the sequent calculus

Theorem 2.43. For a linear logic formulae A, there is a proof

` A

in LL if

and only if there is a proof
` As

LSΠ
.

The proof of this theorem and more detailed discussion of the proof theory of
system LS can be found in [Str03a]. However, in Subsection 4.3.3, I will prove a
similar statement for a system which is obtained from system LS by removing the
equations for unit from the equational system underlying system LS.
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Associativity

[R, [T, U ] ] ≈ [ [R, T ], U ]

(R, (T, U)) ≈ ((R, T ), U)

Units

(ff, ff) ≈ ff

[ff, R] ≈ ff

[tt, tt] ≈ tt

(tt, R) ≈ tt

Commutativity

[R, T ] ≈ [T, R]

(R, T ) ≈ (T, R)

Negation

[R, T ] ≈ (R, T )

(R, T ) ≈ [R, T ]

R ≈ R

tt ≈ ff

ff ≈ tt

Figure 2.11. The equational system underlying KSg structures

2.4. Classical Logic in the Calculus of Structures

In this section, I will given an overview of a calculus of structures presentation
of classical logic, i.e., system KSg, following [Brü03b].

Definition 2.44. In the language of system KSg, there are countably many
positive atoms and negative atoms which are denoted by a, b, c,. . .KSg structures
are generated by

R ::= ff | tt | a | [ R , R ] | ( R , R ) | R

where ff and tt are the units false and true, respectively. [R, R] is a disjunction
and (R, R) is a conjunction. R is the negation of the structure R. KSg structures
are considered equivalent modulo the relation ≈ which is the smallest congruence
relation induced by the equational system shown in Figure 2.11. A KSg structure,
or a structure context, is in negation normal form when the only negated structures
appearing in it are atoms; it is in (unit) normal form when it is in negation normal
form, and no units can be equivalently removed.

All KSg structures can be equivalently considered in negation normal form,
because negation can always be pushed inwards to atoms by using the equations
for negation. Furthermore, by using the equations for unit on a structure in negation
normal form, the unit normal formal form of a structure can always be obtained.

Definition 2.45. The system shown in Figure 2.12, is called classical logic in
the calculus of structures, or system KSg. The rules of the system are called axiom
(tt↓), atomic interaction (ai↓), switch (s), contraction (c↓), and weakening (w↓).

Definition 2.46. The classical logic formulae are generated by

A ::= tt | ff | a | A ∧ A | A ∨ A | A .

The binary connectives ∧ and ∨ are called conjunction and disjunction, respectively.
Ā is the negation of A. Brackets are used to disambiguate expressions when they
are necessary. The units tt and ff, and the connectives ∧ and ∨ are duals of each
other, and they obey the De Morgan laws:

t̄t = ff f̄f = tt A ∧ B = Ā ∨ B̄ A ∨ B = Ā ∧ B̄
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tt↓
tt

S{tt}
ai↓

S [a, ā]

S([R, U ], T )
s

S [(R, T ), U ]

S{ff}
w↓

S{R}

S [R, R]
c↓

S{R}

Figure 2.12. System KSg

The following definition, which I borrow from [Brü03b], demonstrates the
relationship between classical logic formulae and KSg structures:

Definition 2.47. The function · c transforms the classical logic formulae into
KSg structures according to the following inductive definition:

>c
⊥c

=

=

tt

ff

,

,

A ∧Bc
A ∨Bc

=

=

[Ac, Bc]

(Ac, Bc)

,

,

ac
Āc

=

=

a

Ac

,

.

The domain of · c is extended to sequents as follows:

`c = ff and

` A1, . . . , Ahc = [A1c, . . . , Ahc] , for h ≥ 0 .

>
` >

` A, Φ ` B, Ψ
R∧

` Φ, Ψ, A ∧ B

` Φ, A,A
RC

` Φ, A

Ax
` A, A

` Φ, A, B
R∨

` Φ, A ∨ B

` Φ
RW

` Φ, A

Figure 2.13. GS1p: Sequent calculus system for classical logic

Now let us see a one-sided sequent calculus system for classical logic which
is very similar to system KSg. In [Brü03b], Brünler shows that proofs in this
system, which is also known as Gentzen-Schütte system [TS96], can be translated
into proofs in system KSg, and vice versa. Thus, system KSg is sound and complete
for classical propositional logic.

Definition 2.48. The sequent calculus system shown in Figure 2.13 is called
system GS1p.

Theorem 2.49. For a classical logic formulae A, there is a proof

` A

in

system GS1p if and only if there is a proof
` Ac

KSgΠ
.

The proof of this theorem and more detailed discussion of the proof theory of
system KSg can be found in [Brü03b].
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2.5. Other Systems in the Calculus of Structures

In this chapter, we have seen a brief overview of some systems of the calculus
of structures, namely the systems BV, NEL, LS and KSg. An important observation
on these systems is that all these systems follow a scheme in which two of the three
rules of system BV, namely atomic interaction (ai↓) and switch (s), are common
to all the systems. For instance, these two rules give the multiplicative fragment
of linear logic, whereas system KSg is obtained by adding the contraction and
weakening rules to these two rules. Furthermore, the third rule in system BV,
which is responsible for the non-commutative context management, is also common
to system NEL.

Apart from the systems that I discussed in this chapter, there are other sys-
tems in the calculus of structures, which address different computational and proof
theoretical properties, also for other logics. In [BT01], Brünnler and Tiu intro-
duce a local system for classical logic. Brünnler gives an atomic cut-elimination
proof for this system in [Brü03a]. In [Tiu06a], Tiu presents a local system in
the calculus of structures for intuitionistic logic. Straßburger presents a system, in
[Str02], for linear logic where all the rules are local. Hein and Stewart [HS05], and
Stewart and Stouppa [SS05] present systems for a class of modal logics. All these
systems follow a common scheme described in [Gug02]. A number of publications,
on these logics, and others, also on topics related to deep inference, are available
at the calculus of structures web-site1.

1http://alessio.guglielmi.name/res/cos/



CHAPTER 3

Deep Inference as Term Rewriting

In the sequent calculus, because of the two-premise inference rules, the deriva-
tions are tree-shaped. For instance, let us consider the following sequent calculus
rules, which are responsible for context management in the one-sided sequent cal-
culus systems for classical logic and linear logic, respectively:

` A, Φ ` B, Ψ
∧
` A ∧ B, Φ, Ψ

` A, Φ ` B, Ψ
�
` A � B, Φ, Ψ

During the application of such rules in a bottom-up proof construction episode
the derivations branch and, this way, take a tree shape. In contrast to object
level, which is given by the logical connectives, the empty space between the two
branches (and the commas in the sequents) in such derivations belong to the so
called meta level of the proof theoretical system. For some logics, there is a strict
correspondence between the meta level branching and the object level of the deduc-
tive system. For instance, in the systems for classical logic in the sequent calculus,
the branching corresponds to conjunction. On the other hand for some other logics,
such as linear logic, there is a mismatch between the meta level and the object level
of the deductive system in the sequent calculus. This mismatch is due to the fact
that the meta level branching in the proof theoretical system cannot be mapped to
a unique logical operator of these logics. For instance, in linear logic for some rules
the branching corresponds to the multiplicative conjunction, and in some others it
corresponds to the additive conjunction. For more information on this mismatch
see [Gug03].

The branching in the sequent calculus derivations plays a crucial role in proof
construction: While going up in the derivation, the branching allows to partition
the formula being proved into smaller formulae, and this way allows to access the
subformulae for further applications of the inference rules. Because these inference
rules can be applied only at the main connective, this partitioning is crucial for
reaching the subformulae while constructing the proofs.

Often such inference rules are implemented in Prolog as bottom-up proof search
instructions. For instance, the rule ∧ above can be implemented in Prolog as follows:

prove(F):-

match(F,[A /\ B, M, N]),

prove([A,M]),

prove([B,N]).

In the sequent calculus, the laws such as associativity and commutativity are
implicitly imposed on the sequents and formulae. Thus, in an implementation of a

33
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sequent calculus system these laws should be expressed explicitly. In an implemen-
tation following the scheme above, the predicate match would then implement the
matching of the sequents and formulae under associativity and commutativity.

Because of the branching in the derivations and the applicability of the in-
ference rules only at the main connective, it is not possible to give an immediate
computational interpretation of the sequent calculus systems as term rewriting sys-
tems. In several approaches that consider sequent calculus from a computation as
proof search point of view, the meta-level, which causes branching is expressed by
introducing new operators: In [Dep00, Dep02], Deplagne introduces the associa-
tive commutative operator •, which turns the double-premise inference rules into
single premise inference rules. For instance, above ∧ rule takes the shape

` A, Φ • ` B, Ψ
∧
` A ∧ B, Φ, Ψ

.

This way, Deplagne views the sequent calculus systems as term rewriting systems,
which can be implemented in the language ELAN [BKK+98, KK04] by resorting
to associative commutative term rewriting features of this language. However, in
this approach the application of the term rewriting rules, which correspond to the
inference rules, is restricted: Because the sequent calculus inference rules can be
applied only at the main connective, these rewriting rules can be applied only at
the root position of the term-tree that represents the formula being proved.

A similar approach was considered, in [MOM96], by resorting to rewriting logic
[Mes92] and its implementation language Maude [CDE+02]: There, Mart́ı-Olliet
and Meseguer give an encoding of the sequent calculus presentation of linear logic in
rewriting logic. For this purpose, they introduce an operator called configuration:
This operator maps the meta level branching in the sequent calculus proofs to
a syntactic expression in rewriting logic [Mes92]. By employing this operator,
they encode the inference rules of the sequent calculus as top-down rewrite rules
in rewriting logic. For instance, the rule � above becomes the following rewriting
rule:

rl (|- A,M) (|- B,N)

=> --- -------------- Tensor

|- A * B, M, N

The authors provide a correctness proof of their encoding, however their approach
was considered at a higher level, but not as an implementation of an executable
tool.1

One of the reasons for this is their choice of top-down view of the inference
rules, rather than bottom-up view, which corresponds to computation as proof
search view of the inference rules. However, this is not a restriction because these
rewriting rules can be similarly represented as bottom-up proof search rules. In
[VMO03], Verdejo and Mart́ı-Oliet argue along these lines for obtaining executable
versions of the ideas presented in [MOM96]. Although in some cases it is quite
easy, in others this is not the case.

One of the difficulties of implementing the inference rules of the sequent calculus
presentation of linear logic as term rewriting rules is due to the following promotion

1Maude was not available as a running system when [MOM96] was published.



3. DEEP INFERENCE AS TERM REWRITING 35

rule:
` A, ?B1, . . . , ?Bn

!
` !A, ?B1, . . . , ?Bn

Expressing this rule as a straight-forward term rewriting rule is not possible because
this rule requires global knowledge of the context of !A, that is, the application of
this rule requires each formula in the context of !A to be checked to have the form
?B for all the ?B1, . . . , ?Bn. However, there is no bound on n in this rule.

In order to get over this problem, in [MOM96], Mart́ı-Oliet and Meseguer
express this rule as the so called storage rule:

rl

|- ?M, A

=> --- ------

|- ?M, !A

In this rule, M is a multiset of formulae and A is a formula. The operator ? is
extended to multisets by means of axioms

? null = null

? (M,N) = (? M, ? N)

and the rules are applied modulo these axioms among others.
In the calculus of structures, because what is meta level in the sequent calculus

is represented at the object level of the deductive systems, proofs are chains of
inferences rather than trees. For instance, the role played by the above ∧ and �
rules is captured by two consequent applications of the switch rule:

([A, M ], [B, N ], [R, T ])
s
( [([A, M ], B), N ] , [R, T ])

s
([ (A, B), M , N ], [R, T ])

However, in contrast to the inference rules of the sequent calculus, which can be
applied only at the main connective, the inference rules of the calculus of structures
can be applied at any depth inside a structure as in term rewriting: For instance,
in the above derivation, the inference rules are applied inside the context

( { } , [R, T ]) .

Furthermore, in the calculus of structures, the promotion rule is replaced with the
following rule which does not require a global view of the structures:

S{![R, T ]}
p↓

S [!R, ?T ]

These observations suggests a correspondence between the term rewriting sys-
tems and the deductive systems of the calculus of structures. In the following,
exploiting this observation, I will present a procedure that turns derivations in the
calculus of structures into rewritings in a term rewriting system. Because the struc-
tures of a deductive system of the calculus of structures are considered equivalent
modulo an equational theory, the term rewriting relation that I employ is modulo
equational theories. I will present this procedure on system BV, and then generalize
it to other systems of the calculus of structures.

In this thesis, I will consider the systems from a bottom-up (analytical) point
of view, such that the conclusion is the starting point of a derivation and inference
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rules are used to reach the desired premises. However, the top-down point of view
of the derivations can be analogously considered.

3.1. Term Rewriting: Basic Definitions

In this section, I collect basic definitions for terms, positions, replacements,
substitutions, equations and rewrite rules as can be found in, e.g., [BN98] or
[Pla93]. The reader familiar with these notions may skip this section.

Definition 3.1. A signature Σ is a set of function symbols, where each f ∈ Σ
is associated with a non-negative integer n, the arity of f . For n ≥ 0, we denote
the set of all n-ary elements of Σ by Σ(n). The elements of Σ(0) are called constant
symbols.

Example 3.2. Consider the signature which I will use to denote addition on
non-negative integers: Σ = {e, i, f}, where e has arity 0, i is unary, and f is binary.
Talking about the set of non-negative integers, e denotes the smallest non-negative
integer, and i denotes the successor function. The function symbol f denotes addi-
tion on this set.

Definition 3.3. Given a signature Σ and a set V of variables with Σ∩V = ∅,
the set T (Σ,V) of all Σ-terms over V is inductively defined as

• V ⊆ T (Σ,V) (i.e., every variable is a term),
• for all n ≥ 0, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ,V), we have

f(t1, . . . , tn) ∈ T (Σ,V) (i.e., application of function symbols to terms
yields terms).

Example 3.4. For the signature Σ = {e, i, f} above, f(e, f(x, i(x))) is a Σ-
term that contains the variable x, whereas f(e) is not a Σ-term because f is binary
function symbol.

Definition 3.5. Let Σ be a signature, V be a set of variables, and s ∈ T (Σ,V).

(1) The set of positions pos(s) of a term s is inductively defined as follows:
• If s = X ∈ V, then pos(s) = {Λ}.
• If s = f(s1, . . . , sn), then pos(s) = {Λ} ∪

⋃n
i=1{ iγ | γ ∈ pos(si) }.

The position Λ is called the root position of the term s, and the function
or variable symbol at this position is called the root symbol.

(2) For γ ∈ pos(s), the sub-term of s at position γ, denoted by s|γ, is induc-
tively defined as follows:
• s|Λ = s.
• f(s1, . . . , sn)|iγ = si|γ.

(3) For γ ∈ pos(s), the term obtained from s by replacing the sub-term at
position γ by t, denoted by s|t|γ , is inductively defined as follows:
• s|t|Λ = t.
• f(s1, . . . , sn)|t|iγ = f(s1, . . . , si|t|γ , . . . , sn).

Example 3.6. For the term s = f(e, f(x, i(x))), pos(s) = {Λ, 1, 2, 21, 22, 221},
s|22 = i(x), s|e|2 = f(e, e).

Definition 3.7. Let Σ be a signature, and V be a countably infinite set of
variables. A substitution σ is a mapping from the set V of variables to the set
T (Σ,V) of Σ-terms, which is equal to the identity except for finitely many variables.
Thus, σ can be represented by {X 7→ σ(X) | σ(X) 6= X}. ε denotes the empty



3.1. TERM REWRITING: BASIC DEFINITIONS 37

substitution. The set of variables that σ does not map to themselves is called
the domain of σ: Dom(σ) = {x ∈ V |σ(x) 6= x}. The range of σ is Ran(σ) =
{σ(x) |x ∈ Dom(σ)}. The instance of a term s with respect to σ, denoted by σ(s)
or sσ, is the term obtained by simultaneously replacing each occurrence of variables
from Dom(σ) in s by the corresponding term in Ran(σ).

Example 3.8. Let s = f(e, x) and t = f(y, f(x, y)), and let σ = {x 7→ i(y), y 7→
e}. Then σ(s) = f(e, i(y)) and σ(t) = f(e, f(i(y), e)).

Definition 3.9. Let Σ be a signature, and V be a countably infinite set of
variables. An equation is an expression of the form s ≈ t, where s and t are Σ-
terms. An equational system is a set of equations. We implicitly assume that the
equational axioms, i.e., the axioms for reflexivity, symmetry, transitivity, and sub-
stitutivity are added to each equational system. Let ≈E be the smallest congruence
relation induced by an equational system E.

As mentioned in Chapter 2, a smallest congruence relation induced by an equa-
tional system always exists because the intersection of two congruence relations,
induced by the same equational system, is a congruence relation.

Example 3.10. Consider the equational system

E = { f(x, y) ≈ f(y, x), f(x, f(y, z)) ≈ f(f(x, y), z)} ,

which denotes the commutativity and associativity of f .

Definition 3.11. A rewrite rule is an expression of the form l → r, where l is
a non-variable term and r is a term. A term rewriting system is a set of rewrite
rules. A redex is an instance of a left-hand side of a rewrite rule. Given terms
s, t and a term rewriting system R, s rewrites to t with respect to R, denoted
by s →R(ρ,γ,σ) t if there is a position γ ∈ pos(s) and a substitution σ such that
s|γ = σ(l) and t = s|σ(r)|γ , where ρ is the rewrite rule being applied. In this case,
we say s|γ matches l. We drop the subscript (ρ, γ, σ) when no ambiguity is possible.
Contracting a redex means replacing it by the corresponding instance of the right-

hand side of the rule.
n
→ denotes the n-fold composition of →:

0
→ is the identity

relation. Where n ≥ 0, s
n+1
→ t is defined as, for some t′, s

n
→ t′ → t.

∗
→ denotes

the reflexive transitive closure of →. For a term s and term rewriting system R, s
is in normal form with respect to R, if there is no term t such that s →R t. Two

terms s and t are joinable if there is a term u such that s
∗
→ u

∗
← t.

Example 3.12. Let R be the term rewriting system with the rules

f(x, e)→ x and f(x, i(y))→ i(f(x, y)) .

The term s = f(z, i(e)) rewrites to i(f(z, e)) with respect to R because, for σ =
{x 7→ z, y 7→ e}, we have s|σ( i(f(x, y)) ) |Λ = i(f(z, e)).

Definition 3.13. Given terms s, t, a term rewriting system R and an equa-
tional system E, s rewrites to t with respect to R and E, denoted by s→R/E(ρ,γ,σ) t
if there are terms s′, t′, a rewrite rule ρ = l→ r, a position γ ∈ pos(s′) and a substi-
tution σ such that s ≈E s′, s′|γ = σ(l), t′ = s′|σ(r)|γ and t′ ≈E t. For an equational
system E, the term rewriting system R modulo E will indicate the term rewriting
system R such that the rules of R are applied with respect to rewrite relation R/E.
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We can rephrase the definition of the rewrite relation R/E above in other words
as follows:

s→R/E(ρ,γ,σ) t if and only if (∃s′, t′) s ≈E s′ ∧ s′ →R(ρ,γ,σ) t′ ∧ t′ ≈E t .

Example 3.14. Let R be the term rewriting system in Example 3.12 and E

be the equational system in Example 3.10. Then we have f(i(e), i(i(e))) →R/E

i(f(i(i(e)), e)) because

f(i(e), i(i(e))) ≈E f(i(i(e)), i(e))→R i(f(i(i(e)), e)) ≈E i(f(i(i(e)), e)) .

The rewrite relation R, E, introduced in [PS81], is another rewriting relation
for rewriting modulo equality. However, this relation is weaker than the relation
R/E, and it is not feasible for the purpose of this chapter (see Section 3.7).

Definition 3.15. A term rewriting system R is terminating if for any term t0
there is no infinite descending chain t0 →R t1 →R · · · . It is confluent if, for any

term t, t2
∗
← t

∗
→ t1 implies that there is a term t3 such that t2

∗
→ t3

∗
← t1.

3.2. Replacing Equivalence Classes with Equality Steps

In the calculus of structures, the structures are considered equivalent modulo
an equational system. Because of this, the inference rules are generally considered
to be applied to equivalence classes of structures. However, such a point of view of
the structures does not provide a specification of an explicit operational definition
of the application of the inference rules. In this section, in a first step for an explicit
operational definition of a derivation and, in particular, for an operational definition
of the application of an inference rule, I will make the role played by the syntactic
equations in a derivation explicit. For this purpose, I will separate the notion of
a structure from the equivalence class defined by the syntactic equations of the
structures: Each derivation step between two equivalence classes will be split into
three steps: An equality step leading to a new element of the first equivalence class,
then an application of an inference rule to this element, and then another equality
step leading to an element of the second equivalence class. Hence, in this chapter,
from this point on, a structure as a syntactic object will denote an element of an
equivalence class of structures, but not the equivalence class itself.

Definition 3.16. For system S ∈ {BV, NEL, LS, KSg}, let ≈ be the smallest
congruence relation on S structures induced by the equations underlying system
S . A structure R is a derivation from R to R in system S . If ∆ is a derivation
from structure R to structure T , T ≈ T ′, there is an instance of an inference rule
ρ with conclusion T ′ and premise Q′, and Q′ ≈ Q then

Q
≈

Q′

ρ
T ′

≈
T

R

∆
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is a derivation from R to Q in system S . The notion of a proof is analogously
redefined: If ∆ is a derivation from R to T and T ≈ ◦, then

◦↓
◦

≈
T

R

∆

is a proof of R.

Example 3.17. Consider the proof in BV on the left-hand side below, which
is replaced with the proof on the right-hand side, where the structure expressions
do not represent equivalence classes of structures, but members of the equivalence
class:

◦↓
◦

ai↓
[c, c̄]

ai↓
[(c, [b̄, b]), c̄]

s
[ [b, (c, b̄)], c̄ ]

ai↓
[〈 [ā, a] ; [b, (b̄, c)]〉, c̄]

q↓
[〈ā; b〉, 〈a; (b̄, c)〉, c̄]

;

◦↓
◦

≈
◦

ai↓
[c, c̄]

≈
[(◦, c), c̄]

ai↓
[( [b, b̄] , c), c̄]

≈
[( [b̄, b] , c), c̄]

s
[ [(b̄, c), b] , c̄]

≈
[〈◦; [b, (b̄, c)]〉, c̄]

ai↓
[〈 [a, ā] ; [b, (b̄, c)]〉, c̄]

≈
[〈 [ā, a] ; [b, (b̄, c)]〉, c̄]

q↓
[ [〈ā; b〉, 〈a; (b̄, c)〉] , c̄]

≈ .
[〈ā; b〉, [〈a; (b̄, c)〉, c̄] ]

In the above proofs, not all the structures are in normal form. As before, at an
application of an inference rules, the holes at which inference rules are applied are
not under the scope of negation.

Because ≈ is the smallest congruence relation induced by the equational system
shown in Figure 2.3, each derivation and each proof as defined in Chapter 2 can be
transformed into a derivation and a proof as defined in this section, respectively.
Thus the role of the equational theory underlying derivations is clarified from the
point of view of an operational definition of the inferences. Similar ideas have been
considered also in [Brü03b].

3.3. Replacing Structures with Terms

In this section, I will replace the notion of a structure with the notion of a
term. This way, I will consider variables over terms, thus formalizing the concept
of structures with variable occurrences.

Definition 3.18. Let ΣBV be the signature given by

{ ◦, , [ , ], ( , ), 〈 ; 〉 } ∪ {a | a is an atom} .
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Then, BV structures as defined in Section 2.1 are ΣBV-terms over the empty set of
variables, i.e., ground ΣBV-terms. On the other hand, by considering a non-empty
set V of variables, we obtain ΣBV-terms over V. The notions of ΣNEL-terms, ΣLS-
terms, and ΣKSg-terms are defined analogously with respect to following signatures:

ΣNEL = { ◦, , [ , ], ( , ), 〈 ; 〉, ? , ! } ∪ {a | a is an atom} ;

ΣLS = {⊥, 1, 0, >, , [ , ], ( , ), [• , ]•, (• , )•, ? , ! } ∪ {a | a is an atom} ;

ΣKSg = { tt, ff, , [ , ], ( , ) } ∪ {a | a is an atom} .

From now on, for a system S in the calculus of structures, I will use the notions
S structure and ΣS -term synonymously.

3.4. Replacing Contexts with Positions

In this section, I will replace the notion of a structure context with the no-
tion of a position. This will provide a precise operational specification of which
substructure or sub-term is being replaced in a derivation step.

As structures are terms the notions introduced in Section 3.1 can be applied.

Example 3.19. Let s = [[(b̄, c), b], c̄] and t = ([b̄, b], c) then

pos(s) = {Λ, 1, 11, 111, 1111, 112, 12, 2, 21}

and
s|t|1 = [([b̄, b], c), c̄].

Thus, the notion of positions, sub-terms and the replacement of a sub-term by
another one at a particular position take over the role of a structure context.

3.5. Orienting the Equations for Negation

The definition of negation normal form of structures corresponds to a standard
definition on formulae in the literature. From an operational point of view, con-
sidering the negation normal form of a formula is advantageous: Given that each
application of an inference rule yields again a formula in negation normal form, the
syntactic equivalences concerning negation can be removed from the underlying
theory.

An inspection of the systems BV, NEL, LS, and KSg shows that in a bottom-up
application of an inference rule no new negation signs are introduced: The only
inference rule which involves negation in these systems is the atomic interaction
rule. In a bottom-up application of this rule the negated atoms get annihilated.2

Furthermore, holes in a structure do not appear in the scope of a negation sign.
Thus, the property that negated structures appear only in atoms is preserved by
the application of the inference rules.

This observation points out the possibility of orienting the equations for nega-
tion as rewrite rules from left to right in order to get the negation normal form at
the very beginning of a bottom-up construction of a derivation. Because these rules

2In this thesis, I consider the inference rules from a bottom-up point of view. However, if the
atomic interaction rule is considered from a top-down point of view, because the negation is on
atoms, but not on generic structures, restricting ourselves to structures in negation normal form
would not cause any problems.
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do not introduce any new negation signs, neither when they are applied bottom-
up nor top-down, the negation normal form of the structures is preserved by the
application of the inference rules through out the construction of the derivation.

Definition 3.20. The term rewriting system RBV
Neg , obtained by orienting the

equations for negation in Figure 2.3 from left to right, is defined as follows:

RBV
Neg =







[R, T ] → (R̄, T̄ )

〈R; T 〉 → 〈R̄; T̄ 〉

◦̄ → ◦

(R, T ) → [R̄, T̄ ]

¯̄R → R

Definition 3.21. The term rewriting system RNEL
Neg , obtained by orienting the

equations for negation in Figure 2.6 from left to right, is defined as follows:

RNEL
Neg = RBV

Neg ∪







?R → !R̄

!R → ?R̄

Definition 3.22. The term rewriting system RLS
Neg , obtained by orienting the

equations for negation in Figure 2.8 from left to right, is defined as follows:

RLS
Neg =







[R, T ] → (R̄, T̄ )

(R, T ) → [R̄, T̄ ]

?R → !R̄

1̄ → ⊥

⊥̄ → 1

¯̄R → R

[•R, T ]• → (•R̄, T̄ )•

(•R, T )• → [•R̄, T̄ ]•

!R → ?R̄

>̄ → 0

0̄ → >

Definition 3.23. The term rewriting system R
KSg
Neg , obtained by orienting the

equations for negation in Figure 2.11 from left to right, is defined as follows:

R
KSg
Neg =







[R, T ] → (R̄, T̄ )

(R, T ) → [R̄, T̄ ]

¯̄R → R

t̄t → ff

f̄f → tt

Proposition 3.24. Term rewriting systems RBV
Neg, RNEL

Neg, RLS
Neg, and R

KSg
Neg are

(i) terminating;
(ii) confluent.

(iii) Let s be a ΣBV-term (ΣNEL-term, ΣLS-term, ΣKSg-term, respectively). The

normal form of s with respect to RBV
Neg (RNEL

Neg, RLS
Neg, R

KSg
Neg, respectively,)

is in negation normal form.

Proof. (i) It suffices to take a lexicographic path order as stated in [BN98]:

• for RBV
Neg , take

>lpo [ , ] >lpo ( , ) >lpo 〈 ; 〉 >lpo ◦ ;

• for RNEL
Neg , take

>lpo ? >lpo ! >lpo [ , ] >lpo ( , ) >lpo 〈 ; 〉 >lpo ◦ ;
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• for RLS
Neg , take

>lpo ? >lpo ! >lpo [ , ] >lpo ( , ) >lpo

[• , ]• >lpo (• , )• >lpo ⊥ >lpo 1 >lpo > >lpo 0 ;

• for R
KSg
Neg , take >lpo [ , ] >lpo ( , ) >lpo tt >lpo ff .

(ii) For S ∈ {BV , NEL , LS , KSg } because RS
Neg is terminating, the result

follows from the analysis of the critical pairs: The proof for other systems being
similar, let us see the case for S = NEL: For two rewriting rules l1 → r1 and
l2 → r2 which have mutually distinct variables, let γ ∈ pos(l1) such that l1|γ is not
a variable. If l1|γ and l2 are unifiable with a most general unifier σ, then the pair
(σr1 , σl1|σr2|γ) determines a critical pair. The only rule that has a non-variable
sub-term of the left-hand-side which is unifiable with the left-hand-side of another
rule is the rule ¯̄R→ R. We have the critical pairs ( [R, T ], (R̄, T̄ ) ), ( (R, T ), [R̄, T̄ ] ),

( 〈R; T 〉, 〈R̄; T̄ 〉 ), ( ? R, ! R̄ ), ( ! R, ? R̄ ), and ( ◦, ◦̄ ) which are joinable.
(iii) For S ∈ {BV , NEL , LS , KSg }, s being in negation normal form and

applicability of a rewrite rule of RS
Neg are contradictory. �

Remark 3.25. In the systems of the calculus of structures, which are discussed
in this thesis (and also in others), the inference rules do not introduce any new
negation symbols on generic structures. With the above proposition, it is possible
to disregard the equations for negation in the systems of the calculus of structures
by considering the structures that are in negation normal form. In the rest of the
thesis, by assuming that the negation normal form of the structures are obtained
by employing the above term rewriting systems, I will disregard the equations for
negation. However, I will often generalize the notion of negation normal form to
other normal forms by extending the above term rewriting systems by other rewrite
rules.

3.6. Replacing Inference Rules with Rewrite Rules

In this section, I will define term rewriting systems that correspond to the
bottom-up view of the inference rules of the systems of the calculus of structures.
For this purpose, I will first define the term rewriting system RBV which corresponds
to system BV, and then analogously extend this definition to other systems.

Definition 3.26. Each inference rule occurring in BV as shown in Figure 2.4
except ◦↓ is turned into a rewrite rule as shown in Figure 3.1 by dropping the context
S. We consider ai↓ to be a schema for all atoms a.

Definition 3.27. Let EBV be the equational system obtained by removing the
equations for negation from the equations in Figure 2.3.

By employing the rewrite relation R/E of Definition 3.13, we can now compute
rewrite sequences as follows:
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Example 3.28. The following rewrite sequence corresponds precisely to the
proof given in Example 3.17.

[〈ā; b〉, [〈a; (b̄, c)〉, c̄] ]

≈EBV [ [〈ā; b〉, 〈a; (b̄, c)〉] , c̄]

→RBV(q↓,1,{R7→ā, R′ 7→b, T 7→a, T ′ 7→(b̄,c)}) [〈 [ā, a] ; [b, (b̄, c)]〉, c̄]

≈EBV [〈 [a, ā] ; [b, (b̄, c)]〉, c̄]

→RBV(ai↓,11, ε) [〈◦; [b, (b̄, c)]〉, c̄]

≈EBV [ [(b̄, c), b] , c̄]

→RBV(s,1,{R7→b̄, T 7→c, U 7→b}) [( [b̄, b] , c), c̄]

≈EBV [( [b, b̄] , c), c̄]

→RBV(ai↓,11, ε) [ (◦, c), c̄]

≈EBV [c, c̄]

→RBV(ai↓,Λ, ε) ◦

[a, ā] → ◦ ai↓

[(R, T ), U ] → ([R, U ], T ) s

[〈R; T 〉, 〈U ; V 〉] → 〈[R, U ]; [T, V ]〉 q↓

Figure 3.1. The rewrite system RBV corresponding to BV

Because the systems BV, NEL, LS, and KSg share a common scheme with
respect to the ideas above, we can apply the above ideas to these other systems:

Definition 3.29. Each inference rule occurring in NEL as shown in Figure 2.7
except ◦↓ is turned into a rewrite rule as shown in Figure 3.2 by dropping the context
S. We consider ai↓ to be a schema for all atoms a.

Definition 3.30. Let ENEL be the equational system obtained by removing the
equations for negation from the equations in Figure 2.6.

[a, ā] → ◦ ai↓

[(R, T ), U ] → ([R, U ], T ) s

[〈R; T 〉, 〈U ; V 〉] → 〈[R, U ]; [T, V ]〉 q↓

[?R, !T ] → ![R, T ] p↓

?R → ◦ w↓

?R → [?R, R] b↓

Figure 3.2. The rewrite system RNEL corresponding to NEL

Definition 3.31. Each inference rule occurring in LS as shown in Figure 2.9
except 1↓ is turned into a rewrite rule as shown in Figure 3.3 by dropping the context
S. We consider ai↓ to be a schema for all atoms a.
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Definition 3.32. Let ELS be the equational system obtained by removing the
equations for negation from the equations in Figure 2.8.

[a, ā] → 1 ai↓

[(R, T ), U ] → ([R, U ], T ) s

[?R, !T ] → ![R, T ] p↓

?R → ⊥ w↓

?R → [?R, R] b↓

R → 0 t↓

R → [•R, R]• c↓

[(•R, T )•, [•U, V ]•] → (• [R, U ], [T, V ])• d↓

Figure 3.3. The rewrite system RLS corresponding to LS

Definition 3.33. Each inference rule occurring in KSg as shown in Figure 2.12
except tt↓ is turned into a rewrite rule as shown in Figure 3.4 by dropping the context
S. We consider the rule ai↓ to be a schema for all atoms a.

Definition 3.34. Let EKSg be the equational system obtained by removing the
equations for negation from the equations in Figure 2.11.

[a, ā] → tt ai↓

[(R, T ), U ] → ([R, U ], T ) s

R → ff w↓

R → [R, R] c↓

Figure 3.4. The rewrite system RKSg corresponding to KSg

Proposition 3.35. For S ∈ {BV, NEL, LS, KSg}, let s and t be ΣS -terms or
structures which are in negation normal form.

(1) There is a derivation in S from s to t having length n if and only if there

exists a rewriting s
n
→RS /ES t.

(2) There is a proof of s in S having length n if and only if there exists a
rewriting

• s
n−1
→ RBV/EBV ◦ if S = BV.

• s
n−1
→ RNEL/ENEL ◦ if S = NEL.

• s
n−1
→ RLS/ELS 1 if S = LS.

• s
n−1
→ RKSg/EKSg tt if S = KSg.

Proof. The proof of (1) is by induction on the length of the derivation in S

and the number of rewrite steps in RS /ES , respectively, for the if part and the only
if part, respectively: For the base case, observe that there is a derivation in S with
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length 0, that is there is a ΣS -term or a S structure s if and only if s
0
→RS /ES s.

For the inductive case, single out the top most rule instance ρ, with the premise t
and conclusion t′, in the derivation from s to t. For the derivation from s to t′ with

length n, by the induction hypothesis, there is a rewriting s
n
→RS /ES t′, construct a

rewriting s
n
→RS /ES t′→RS /ES t with length n+1. For the only if direction, single

out the last rewiriting t′ →RS /ES t in s
n+1
→ RS /ES t′, and construct a derivation

from s to t with length n + 1 analogously. (2) follows immediately from (1) with
the following observation: The top-most rule instance in proofs in system BV (NEL,
LS, KSg, respectively) is an axiom, thus from a proof with length n we can obtain
a derivation with length n− 1 with the premise ◦ (◦, 1, tt,respectively). �

It is important to observe that in the rewritings generated by this proposition
correspond one-to-one to the inference steps in derivations of the corresponding
systems.

3.7. Discussion

The main purpose of this chapter was to bring the (rather obvious) relationship
between systems of the calculus of structures and term rewriting systems to formal
grounds. Establishing this connection does not only allow to observe the inference
rules operationally, but also prepares the ground for applications where proof theo-
retical techniques of the calculus of structures and term rewriting techniques can be
applied harmoniously. This result also shows that the techniques of term rewriting
can assist the proof theoretical developments on deep inference.

To summarize, in this chapter, we have seen that the structures of the calculus
of structures can be expressed as terms over a signature of function symbols de-
noting logical connectives and atoms, and the derivations and proofs in the proof
theoretical systems of the calculus of structures can be expressed as rewritings of
term rewriting systems modulo equality. These results can be analogously general-
ized to other systems of the calculus of structures, since all these systems follow a
common scheme which is exploited in this chapter.

Besides the deep inference rules which find a natural interpretation as term
rewriting rules, in the calculus of structures it is also possible to design deductive
systems with inference rules that resemble the rules of the sequent calculus. Let us
call such inference rules, that can be applied only at the root position, i.e., position
Λ, shallow (non-deep) rules. Such shallow rules can be expressed as term rewriting
rules by introducing a new function symbol that plays the role of turnstile of the
sequents. This is similar to the approaches for expressing sequent calculus rules
as term rewriting rules, e.g., in [MOM96, Dep00]. As an example, consider the
shallow version of the s rule:

([R, T ], U)
s′

[(R, U), T ]

This rule is a shallow rule because there is no context given in this rules. Such a
rule corresponds to a rewrite rule which can only be applied at the root position.
We can impose this restriction by introducing a unary function symbol, e.g., “` ”,
which will be the outer most function symbol of a structure. Then the above rule
can be put as the following rewrite rule:

` [(R, T ), U ] → ` ([R, U ], T ) s′
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This way, the inference rules of the calculus of structures can be implemented
as non-deep (shallow) inference rules which resemble the sequent calculus inference
rules.

For rewriting modulo equational theories, an alternative to rewrite relation R/E

is the rewrite relation R, E which was introduced in [PS81]. Following [BN98], this
relation is defined as follows: s →R,E (ρ,γ,σ) t if there is a rewrite rule ρ = l → r, a
position γ ∈ pos(s′) and a substitution σ such that s|γ ≈E σ(l) and t = s|σ(r)|γ .

In rewriting with respect to rewrite relation R, E, each rewriting step involves
matching modulo ≈E, which is weaker than →R/E. From the point of view of the
calculus of structures systems, this rewrite relation is not feasible. For example,
consider the following rewriting step with respect to rewrite relation R/E where
R = { [(R, T ), U ] → ([R, U ], T ) } and E = EBV:

[ [(a, b), c], d] ≈E [ [(a, b), d], c] →R [([a, d], b), c] ≈E [([a, d], b), c]

This rewriting step corresponds to a bottom-up application of the switch rule in
system BV, however such a rewriting is not possible with respect to rewrite relation
R, E because there is no position γ and substitution σ such that [ [(a, b), c], d]|γ ≈E

σ [(R, T ), U ] and [([a, d], b), c]| = [[(a, b), c], d]|σ ([R, U ], T ) |γ .



CHAPTER 4

Implementing Deep Inference in Maude

The language Maude [CDE+02, CDE+03] allows implementing term rewrit-
ing systems modulo equational theories due to its very fast matching algorithm
that supports different combinations of associative commutative theories, also in
the presence of units. In the previous chapter we have seen that we can consider the
inference rules of the calculus of structures systems as rewrite rules corresponding
to bottom-up applications of the inference rules. In the following, by exploiting
this, I will present proof construction implementations of systems BV, NEL, LS,
and KSg in Maude.

For this purpose, I will present systems equivalent to the above systems, where
the role played by equations for exponentials (in systems NEL and LS) and units are
made explicit with respect to the application of the inference rules of these systems:
For the systems, NEL and LS, which admit equations for exponentials, because these
equations cannot be expressed explicitly in a Maude implementation, I will convert
these equations to inference rules. This way, also some redundant applications of
these equations will be controlled.

Although the equations for units can be easily expressed in Maude, these equa-
tions often cause redundant matchings of the inference rules where the premise and
the conclusion of the instance of the inference rules are equivalent structures, i.e.,
these instances are trivial instances. By redesigning the inference rules of these sys-
tems, I will make the role played by the equations for units explicit. This will result
in equivalent systems where equations for exponentials (in systems with exponen-
tials) and equations for units are redundant. By removing the equations for units
from these systems, the trivial instances of the inference rules will be prevented
without losing completeness.

4.1. The Maude Language

Maude [CDE+02, CDE+03] is a high level language and a high-performance
system which is developed as a supporting tool for executable specifications and
declarative programming in rewriting logic [Mes92].1 Because rewriting logic con-
tains a rich equational logic, namely membership equational logic [Mes98], Maude
supports equational specification and programming. This makes it possible to ex-
press different operators modulo equational theories for associativity, commutativ-
ity and also unit, possibly different for each operator. In this section, I will give
a brief introduction to language Maude. For a complete treatment the reader is
referred to the Maude manual [CDE+05], and to [MOM02] where many papers
on rewriting logic and the language Maude are referenced.

1Maude can be obtained at http://maude.cs.uiuc.edu/.

47
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In the language Maude, the data and the state of a system are formally spec-
ified as algebraic data types by means of an equational specification. The data
types are defined by means of the keyword sort and subtype relations between
types by means of the keyword subsort. The operations (the function symbols
of a signature) are defined by means of the keyword op, by giving the types of
their arguments and the type of the resulting term. Operators may have operator
attributes which denote the associativity (assoc), commutativity (comm), idempo-
tency (idem) and identity, with the corresponding term for the identity element,
id: <Term>.

In Maude the basic units of specification and programming are called modules.
There are two kinds of modules: functional modules and system modules.

4.1.1. Functional Modules. From a programming point of view, a func-
tional module is an equational style functional program with user-definable syntax
in which a number of sorts, their elements, and functions on those sorts are defined.
Each functional module has a name, which is a Maude identifier. Identifiers are the
basic syntactic elements, used to name modules and sorts, and to form operator
names. A functional module is declared in Maude using the keywords

fmod <ModuleName> is <DeclarationsAndStatements> endfm

As an example for a functional module let us consider the following module.
This module implements the introductory example from Section 3.1 which defines
natural numbers with an addition operator.

fmod NATURAL-NUMBERS-ADDITION is

sort Nat .

op e : -> Nat .

op i : Nat -> Nat .

op f : Nat Nat -> Nat [assoc comm] .

vars X Y : Nat .

eq f(X, e) = X .

eq f(X, i(Y)) = i(f(X,Y)) .

endfm

In the above module, the keyword eq is used to name term rewriting rules of a
terminating and confluent term rewriting system. After loading the above module,
we can compute the normal form of terms with respect to this functional module
as follows:

Maude> reduce f(e, i(i(e))) .

reduce in NATURAL-NUMBERS-ADDITION : f(e, i(i(e))) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Nat: i(i(e))

4.1.2. System Modules. From a programming point of view, a system mod-
ule is a declarative style concurrent program with user-definable syntax. From a
specification point of view, it is a rewrite theory. Again, each system module has
a name, which is a Maude identifier. A system module is declared in Maude using
the keywords

mod <ModuleName> is <DeclarationsAndStatements> endm
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where <DeclarationsAndStatements> corresponds to all the declarations of sub-
module importations, sorts, subsorts, operators, variables, equations, rules, and so
on. A module can import, or include, the definitions of another module by means
of the keyword inc (short for including). A rewrite rule is defined by the keyword
rl. In general, the (rewrite) rules specify the dynamic behavior of a distributed
system. For example, the following system module defines the nondeterministic
choice of a natural number from a multiset of natural numbers.

mod NONDETERMINISTIC-NATURAL_NUMBER is

inc NATURAL-NUMBERS-ADDITION .

sort Multiset .

subsort Nat < Multiset .

op empty : -> Multiset .

op _,_ : Multiset Multiset -> Multiset [assoc comm id: empty] .

var X : Nat .

var M : Multiset .

rl [choice] : X,M => X .

endm

Maude’s mechanism for interleaving rules and equations then computes (the
transitive closure of) the rewrite relation R/E. As an example, consider the following
query where I employ the search command of Maude which implements breadth-
first search. Below, we compute all the possible choices for a natural number from
a multiset of natural numbers:

Maude> search i(e),e,i(i(e)),e =>* X .

search in NONDETERMINISTIC-NATURAL_NUMBER : i(e),e,e,i(i(e)) =>* X .

Solution 1 (state 1)

states: 2 rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

X --> e

Solution 2 (state 8)

states: 9 rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

X --> i(e)

Solution 3 (state 10)

states: 11 rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

X --> i(i(e))

No more solutions.

states: 11 rewrites: 81 in 10ms cpu (10ms real)

(8100 rewrites/second)

4.2. Deep Inference in Maude

In the following, I will exploit the above features, and the built-in very fast
matching algorithm of Maude to implement the term rewriting systems that cor-
respond to the systems of the calculus of structures. Besides its very simple high
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level language, another important feature that makes Maude an appropriate plat-
form for implementing systems of the calculus of structures is the availability of
the search function since the 2.0 release of Maude [CDE+03]. This function imple-
ments breadth-first search which provides a complete search strategy for derivations
and proofs. In the following, I will exploit these features for implementing systems
of the calculus of structures in this language.

4.2.1. System BV in Maude. In this subsection we will see a Maude system
module which implements system BV. This module presumes that the BV struc-
tures are in negation normal form. To get the negation normal form of a ΣBV-term,
one can employ the functional module below which implements the term rewriting
system RBV

Neg in Definition 3.20. The function symbol ¯ for negation is represented

by the operator -_. The binary function symbols [ , ], ( , ), and 〈 ; 〉, respectively,
are represented by the operators [_,_], {_,_} and <_;_>, respectively.

fmod BV-NNF is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

op <_;_> : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - o = o .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - < R ; T > = < - R ; - T > .

eq - - R = R .

endfm

By employing the reduce command of Maude, one can then compute the nega-
tion normal form of a BV structure:

Maude> reduce - < [ a , - b ] ; - { c , - < d ; - o > } > .

reduce in BV-NNF : - < [a,- b] ; - {c,- < d ; - o >} > .

rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

result Structure: < {- a,b} ; {c,< - d ; o >} >

The Maude system module below implements the system RBV modulo EBV.
The equations for associativity, commutativity and unit are expressed as operator
attributes “assoc”, “comm” and “id : o”.

mod BV is

sorts Atom Unit Structure .

subsort Atom < Structure .
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subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ].

op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .

rl [ai-down] : [ A , - A ] => o .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [q-down] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

endm

We can then use the search command of Maude, which implements breadth-
first search. For instance, we can search for a proof of the structure

[c̄, 〈a; (c, b̄)〉, 〈ā; b〉]

as follows:

Maude> search [- c,[< a ; {c,- b} >,< - a ; b >]] =>* o .

search in BV : [- c,[< a ; {c,- b} >,< - a ; b >]] =>* o .

Solution 1 (state 2229)

states: 2230 rewrites: 196866 in 980ms cpu (1010ms real)

(200883 rewrites/second)

empty substitution

No more solutions.

states: 2438 rewrites: 306179 in 1540ms cpu (1590ms real)

(198817 rewrites/second)

It is also possible to search for derivations. For instance, we can search for a
derivation of the following form:

[〈a; b̄〉, 〈ā; b〉]

[c̄, 〈a; (c, b̄)〉, 〈ā; b〉]
BV

Maude> search [- c,[< a ; {c,- b} >,< - a ; b >]] =>*

[ < a ; - b > , < - a ; b > ] .

search in BV : [- c,[< a ; {c,- b} >,< - a ; b >]] =>*

[< a ; - b >,< - a ; b >] .

Solution 1 (state 676)

states: 677 rewrites: 27969 in 130ms cpu (140ms real)

(215146 rewrites/second)

empty substitution
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No more solutions.

states: 2438 rewrites: 306179 in 1520ms cpu (1590ms real)

(201433 rewrites/second)

After a successful search, we can display the derivation (proof) steps by using
the command “show path <state_number_displayed> .”:

Maude> show path 676 .

state 0, Structure: [- c,[< a ; {c,- b} >,< - a ; b >]]

===[ rl [< R ; T >,< U ; V >] => < [R,U] ; [V,T] > [label q-down] .

]===>

state 30, Structure: [< a ; [- c,{c,- b}] >,< - a ; b >]

===[ rl [U,{R,T}] => {T,[R,U]} [label switch] . ]===>

state 198, Structure: [< a ; {- b,[c,- c]} >,< - a ; b >]

===[ rl [A,- A] => o [label ai-down] . ]===>

state 676, Structure: [< a ; - b >,< - a ; b >]

The above information displayed corresponds to the derivation

[〈a; b̄〉, 〈ā; b〉]
ai↓

[〈a; ( [c, c̄] , b̄)〉, 〈ā; b〉]
s

[〈a; [c̄, (c, b̄)]〉, 〈ā; b〉]
q↓

[ c̄, 〈a; (c, b̄)〉, 〈ā; b〉]

.

It is also possible to display all the immediate instances of the rules applied to
a structure by using the Maude command “search <term> =>1 R .”.

Maude> search [< a ; - b >,< - a ; b >] =>1 R .

search in BV : [< a ; - b >,< - a ; b >] =>1 R .

Solution 1 (state 1)

states: 2 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

R --> {< a ; - b >,< - a ; b >}

Solution 2 (state 2)

states: 3 rewrites: 11 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < - a ; [b,< a ; - b >] >

Solution 3 (state 3)

states: 4 rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < - a ; < b ; < a ; - b > > >

Solution 4 (state 4)

states: 5 rewrites: 13 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < a ; [- b,< - a ; b >] >

Solution 5 (state 5)

states: 6 rewrites: 14 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < [a,- a] ; [b,- b] >

Solution 6 (state 6)
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states: 7 rewrites: 15 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < [a,< - a ; b >] ; - b >

Solution 7 (state 7)

states: 8 rewrites: 16 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < a ; < - b ; < - a ; b > > >

Solution 8 (state 8)

states: 9 rewrites: 17 in 0ms cpu (0ms real) (~ rewrites/second)

R --> < [- a,< a ; - b >] ; b >

No more solutions.

states: 9 rewrites: 89 in 0ms cpu (0ms real) (~ rewrites/second)

4.2.2. System NEL in Maude. In the equational system ENEL, given in
Definition 3.30, besides equations for associativity, commutativity and unit, which
can be expressed as operator attributes in Maude, there are also equations for
exponentials. These equations cannot be represented in the equational system
underlying a Maude implementation of system NEL because operator attributes
of Maude are allowed only for binary operators and the exponentials are unary
operators. In order to get an implementation of system NEL in Maude, the role
played by these equations must be captured by the inference rules. For this purpose,
in the following, I will split these equations into two groups of rewrite rules: One for
the left-to-right, and one for the right-to-left application of these equations. Then,
I will employ the former one of these two groups at the beginning of a derivation
together with the term rewriting system RNEL

Neg in order to obtain a normal form,
which generalizes the notion of negation normal form. I will then redesign the
system NEL such that this normal form will be preserved by the inference rules.
This way, the equations for exponentials will become redundant in the derivations,
thus they will be safely removed from the underlying equational system.

Definition 4.1. We say that a NEL structure is in exponential normal form
if it is in negation normal form, and no exponentials can be equivalently removed.

Definition 4.2. The term rewriting system RNEL
Exp is defined as follows:

RNEL
Exp = RNEL

Neg ∪







? ?R → ?R

! !R → !R

? ◦ → ◦

! ◦ → ◦

Proposition 4.3. The term rewriting system RNEL
Exp is (i) terminating and (ii)

confluent. (iii) Let s be a ΣNEL-term. The normal form of s with respect to RNEL
Exp

is in exponential normal form.

Proof. Similar to the proof of Proposition 3.24: (i) Take the lexicographic
path order for NEL structures given in the proof of Proposition 3.24. (ii) Proof by
analysis of the critical pairs: In addition to the critical pairs given in Proposition
3.24, we have ( ! ? R, ? R ), ( ? ! R, ! R ), ( ! ◦̄, ◦̄ ), and ( ? ◦̄, ◦̄ ), which are joinable. (iii)
s being in exponential normal form and applicability of a rewrite rule of RNEL

Exp are
contradictory. �



54 4. IMPLEMENTING DEEP INFERENCE IN MAUDE

The exponential normal form of a NEL structure can be computed by employing
the functional Maude module below, which implements the term rewriting system
RNEL

Exp. Because system NEL is a conservative extension of system BV with the ex-
ponentials of linear logic, in the modules for system NEL, the operator declarations
are obtained by extending those for system BV with the operator declarations for
the of course and why not structures. The function symbols ? and ! , respectively,
are represented by the operators ?_ and !_, respectively.

fmod NEL-EXP is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Structure -> Structure .

op ?_ : Structure -> Structure .

op !_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

op <_;_> : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - o = o .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - < R ; T > = < - R ; - T > .

eq - - R = R .

eq - ? R = ! - R .

eq - ! R = ? - R .

eq ? ? R = ? R .

eq ! ! R = ! R .

eq ? o = o .

eq ! o = o .

endfm

By employing the above module, we can compute the exponential normal form
of a NEL structure as demonstrated in the following example:

Maude> red - [ { - a , ! ! < ? ? ? b ; - c > } , - ! < a ; b > ] .

reduce in NEL-EXP : - [{- a,! ! < ? ? ? b ; - c >},- ! < a ; b >] .

rewrites: 16 in 0ms cpu (0ms real) (~ rewrites/second)

result Structure: {[a,? < ! - b ; c >],! < a ; b >}

I will now redefine the equational system ENEL and system NEL such that
the equations for exponentials will be removed from ENEL without damaging the
completeness of the resulting system for the derivations of system NEL.
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Definition 4.4. Let ENELe be the equational system obtained by removing the
equations for exponentials from the equational system ENEL.

Definition 4.5. The system in Figure 4.1 is called system NELe. In addition
to the inference rules that are common with system NEL, the rules of this system
are called why not (?↓), of course (!↓), why not unit (?u↓), and of course unit
(!u↓). Inference rules of system NELe are applied on NEL structures, which are
considered equivalent modulo the equational system ENELe.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s
S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

S{![R, T ]}
p↓

S [!R, ?T ]

S{◦}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

S{? ?R}
?↓

S{? R}

S{! !R}
!↓

S{! R}

S{◦}
?u↓

S{? ◦}

S{◦}
!u↓

S{! ◦}

Figure 4.1. System NELe

Definition 4.6. A rule ρ is derivable for a system S if for every instance

T
ρ

R
there is a derivation

T

R
S .

Definition 4.7. Two systems S and S ′ are strongly equivalent if for every

derivation
T

R
S there is a derivation

T

R
S

′ , and vice versa.

Proposition 4.8. System NEL and system NELe are strongly equivalent.

Proof. It is immediate that the rules of system NELe are derivable for system
NEL, thus derivations in NELe can be rewritten as derivations in NEL. For the
other direction, observe that every derivation in NEL can be equivalently written
as a derivation ∆ in NEL where all the structures are in exponential normal form.
With induction on the length of ∆, construct the derivation ∆′ in NELe: For the
instances of the inference rules which do not require the application of the equations
for exponentials in derivation ∆, take the same rule instance in NELe to construct
∆′. Otherwise, the following cases exhaust the other possibilities with respect to
application of equations for exponentials:

• If rule p↓ is the last rule applied in ∆ such that

S{![ T, ? R ]}
p↓

S [ ! T, ? ? R ]
≈

S [ ! T, ? R ]

then take

S{![ T, ? R ]}
p↓

S [ ! T, ? ? R ]
?↓ .

S [ ! T, ? R ]
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• If rule p↓ is the last rule applied in ∆ such that

S{![ ! T, R ]}
p↓

S [ ! ! T, ? R ]
≈

S [ ! T, ? R ]

then take

S{![ ! T, R ]}
p↓

S [ ! ! T, ? R ]
!↓ .

S [ ! T, ? R ]

• If rule b↓ is the last rule applied in ∆ such that

S [ ? R, ? R ]
≈

S [ ? ? R, ? R ]
b↓

S{? ? R}
≈

S{? R}

then take

S [ ? R, ? R ]
?u↓

S [ ? ◦, ? R, ? R ]
w↓

S [ ? ? R, ? R, ? R ]
b↓

S [ ? ? R, ? R ]
b↓

S{? ? R}
?↓ .

S{? R}

• If rule ai↓ is the last rule applied in ∆, we have the following situation.
The other cases being analogous, the case for !? is as follows: (There are
seven modalities in linear logic, that is, empty modality, !, ?, !?, ?!, !?! and
?!?.)

S{◦}
≈

S{! ◦}
≈

S{! ? ◦}
ai↓

S{! ? [a, ā]}

then take

S{◦}
!u↓

S{! ◦}
?u↓

S{! ? ◦}
ai↓ .

S{! ? [a, ā]}

• If rule w↓ is the last rule applied in ∆, we have a situation analogous to
the case for the rule ai↓ above.

�

Remark 4.9. In system NELe, the rule ?u↓ is a redundant rule because every
instance of this rule is an instance of the rule w↓.

The following module implements system NELe:

mod NELe is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ] .

op ?_ : Structure -> Structure [ prec 60 ] .

op !_ : Structure -> Structure [ prec 60 ] .

op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .
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rl [ai-down] : [ A , - A ] => o .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [q-down] : [< R ; T >,< U ; V >] => < [R,U] ; [T,V] > .

rl [promotion] : [ ! R , ? T ] => ! [ R , T ] .

rl [weakening] : ? R => o .

rl [absorption] : ? R => [ ? R , R ] .

rl [why-not] : ? R => ? ? R .

rl [of-course] : ! R => ! ! R .

rl [wn-unit] : ? o => o .

rl [oc-unit] : ! o => o .

endm

It is important to note that system NEL is undecidable [Str03c]. Also because
of the rule [absorption], it is not plausible to use this module for proof search
without introducing a strategy which takes the application of this rule under control.
However we can state the following proposition which follows immediately from
Proposition 4.8.

Proposition 4.10. Let =>* denote the transitive, reflexive closure of the tran-
sition relation defined by the Maude module NELe. For NEL structures R and T ,

there is a derivation
T

R
NEL if and only if R′ =>* T ′ where R′ and T ′ are exponential

normal forms of the structures R and T .

4.2.3. System LS in Maude. In the equational system ELS, given in Defi-
nition 3.32, besides the equations for associativity, commutativity, and unit, there
are also equations for exponentials. The equations for associativity, commutativ-
ity, and units can be expressed as operator attributes in Maude. However, as in
the case for system NEL, the equations for the exponentials cannot be expressed
as operator attributes in a Maude implementation of system LS, because operator
attributes are allowed on binary operators in Maude. In order to get an implemen-
tation of system LS in Maude, the role played by these equations must be captured
by the inference rules of the deductive system. For this purpose, in the following
I will apply the methods, which I used on system NEL in the previous subsection,
analogously on system LS.

Definition 4.11. We say that a LS structure is in exponential normal form if
it is in negation normal form, and no exponentials can be equivalently removed.

Definition 4.12. The term rewriting system RLS
Exp is defined as follows:

RLS
Exp = RLS

Neg ∪







? ?R → ?R

! !R → !R

?⊥ → ⊥

! 1 → 1
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Proposition 4.13. The term rewriting system RLS
Exp is (i) terminating and (ii)

confluent. (iii) Let s be a ΣLS-term. The normal form of s with respect to RLS
Exp is

in exponential normal form.

Proof. Similar to the proof of Proposition 3.24: (i) Take the lexicographic
path order for LS structures given in the proof of Proposition 3.24. (ii) Proof by
analysis of the critical pairs: In addition to the critical pairs resulting from term
rewriting system RLS

Neg , we have ( ! ? R, ? R ), ( ? ! R, ! R ), ( ! ⊥̄, ⊥̄ ), and ( ? 1̄, 1̄ ) that

are joinable. (iii) s being in exponential normal form and applicability of a rewrite
rule of RLS

Exp are contradictory. �

The exponential normal form of an LS structure can be computed by employing
the functional Maude module below, which implements the term rewriting system
RLS

Exp. In the module below, the function symbol ¯ for negation is represented by the
operator -_. The unary function symbols ? and ! , respectively, are represented
by the operators ?_ and !_, respectively. The binary function symbols [ , ], ( , ),
[• ; ]• and (• ; )•, respectively, are represented by the operators [_,_], {_,_} [|_;_|]
and {|_;_|}, respectively.

fmod LS-EXP is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op 1 : -> Unit .

op bot : -> Unit .

op 0 : -> Unit .

op top : -> Unit .

op -_ : Structure -> Structure .

op ?_ : Structure -> Structure .

op !_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

op [|_,_|] : Structure Structure -> Structure .

op {|_,_|} : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - bot = 1 .

eq - 1 = bot .

eq - top = 0 .

eq - 0 = top .

eq - [ R , T ] = { - R , - T } .
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eq - { R , T } = [ - R , - T ] .

eq - [| R , T |] = {| - R , - T |} .

eq - {| R , T |} = [| - R , - T |] .

eq - - R = R .

eq - ? R = ! - R .

eq - ! R = ? - R .

eq ? ? R = ? R .

eq ! ! R = ! R .

eq ? bot = bot .

eq ! 1 = 1 .

endfm

Similar to the module NEL-EXP, the module LS-EXP can be used to compute
the exponential normal form of a LS structure:

Maude> red - { ? ? [| - a , b |] , ! - ! {| - a , b |} } .

reduce in LS-EXP : - {? ? [| - a,b |],! - ! {| - a,b |}} .

rewrites: 12 in 0ms cpu (0ms real) (~ rewrites/second)

result Structure: [! {| a,- b |},? ! {| - a,b |}]

I will now redefine the equational system ELS and system LS such that the
equations for exponentials will be removed from ELS without damaging the com-
pleteness of the resulting systems for provable structures of system LS.

Definition 4.14. Let ELSe be the equational system obtained by removing the
equations for exponentials from the equational system ELS.

Definition 4.15. The system in Figure 4.2 is called system LSe. In addition
to the inference rules that are common with system LS, the rules of this system are
called why not (?↓), of course (!↓), why not unit (?u↓) and of course unit (!u↓).
Inference rules of system LSe are applied on LS structures, which are considered
equivalent modulo the equational system ELSe.

Proposition 4.16. System LS and system LSe are strongly equivalent.

Proof. Analogous to the proof of Proposition 4.8: It is immediate that the
rules of system LSe are derivable for system LS, thus derivations in LSe can be
rewritten as derivations in LS. For the other direction, observe that every derivation
in LS can be equivalently written as a derivation ∆ in LS where all the structures
are in exponential normal form. With induction on the length of ∆, construct the
derivation ∆′ in LSe: For the instances of the inference rules which do not require
the application of the equations for exponentials in derivation ∆, take the same
rule instance in LSe to construct ∆′. If the rule p↓ is the last rule applied in ∆, we
have the same situation as in the Proof of Proposition 4.8. Otherwise:
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1↓
1

S{1}
ai↓

S [a, ā]

S([R, T ], U)
s
S [(R, U), T ]

S{![R, T ]}
p↓

S [!R, ?T ]

S{⊥}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

S{0}
t↓

S{R}

S [• R, R ]•
c↓

S{R}

S(• [R, U ], [T, V ])•
d↓

S [(•R, T )•, [•U, V ]•]

S{? ?R}
?↓

S{? R}

S{! !R}
!↓

S{! R}

S{⊥}
?u↓

S{?⊥}

S{1}
!u↓

S{! 1}

Figure 4.2. System LSe

• If rule b↓ is the last rule applied in ∆ such that

S [ ? R, ? R ]
≈

S [ ? ? R, ? R ]
b↓

S{? ? R}
≈

S{? R}

then take

S [ ? R, ? R ]
?u↓

S [ ?⊥, ? R, ? R ]
w↓

S [ ? ? R, ? R, ? R ]
b↓

S [ ? ? R, ? R ]
b↓

S{? ? R}
?↓ .

S{? R}

• If rule ai↓ is the last rule applied in ∆, we have the following situation.

S{1}
≈

S{! 1}
ai↓

S{! [a, ā]}

then take

S{1}
!u↓

S{! 1}
ai↓ .

S{! [a, ā]}

�

Remark 4.17. In system LSe, the rule ?u↓ is a redundant rule because every
instance of this rule is an instance of the rule w↓.

The following module implements system LSe :

mod LSe is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op 1 : -> Unit .

op bot : -> Unit .

op 0 : -> Unit .

op top : -> Unit .
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op -_ : Atom -> Atom [ prec 50 ] .

op ?_ : Structure -> Structure [ prec 60 ] .

op !_ : Structure -> Structure [ prec 60 ] .

op [_,_] : Structure Structure -> Structure [assoc comm id: bot] .

op {_,_} : Structure Structure -> Structure [assoc comm id: 1] .

op [|_,_|] : Structure Structure -> Structure [assoc comm id: 0] .

op {|_,_|} : Structure Structure -> Structure [assoc comm id: top] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure . var A : Atom .

rl [atomic-int.] : [ A , - A ] => 1 .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [additive] : [ {| R , T |} , [| U , V |] ]

=> {| [ R , U ] , [ T , V ] |} .

rl [thinning] : R => 0 .

rl [contraction] : R => [| R , R |] .

rl [promotion] : [ ! R , ? T ] => ! [ R , T ] .

rl [weakening] : ? R => bot .

rl [absorption] : ? R => [ ? R , R ] .

rl [of-course] : ? R => ? ? R .

rl [why-not] : ! R => ! ! R .

rl [?-unit] : ? bot => bot .

rl [!-unit] : ! 1 => 1 .

rl [one-with-l] : {| 1 , 1 |} => 1 .

rl [one-with-r] : 1 => {| 1 , 1 |} .

rl [bot-with-l] : [| bot , bot |] => bot .

rl [bot-with-r] : bot => [| bot , bot |] .

endm

The equations of system ELSe include the equations (•1, 1)•≈ 1 and [•⊥,⊥]• ≈ ⊥.
These equations cannot be captured by the operator attributes for units in a Maude
implementation, because Maude operator attributes do not allow such a usage.
Thus, in order to implement system LSe as a Maude module, the role played by
these equations must be simulated by means of Maude rules. The last four rules in
the above module serve this purpose.

As it is the case for system NEL, linear logic is known to be undecidable
[LMSS90]. Also for this module some strategy, that takes the rules [absorption]
and [contraction] under control, is necessary for proof search applications. How-
ever, we can state the following proposition which follows immediately from Propo-
sition 4.16.

Proposition 4.18. Let =>* denote the transitive, reflexive closure of the tran-
sition relation defined by the Maude module LSe. For LS structures R and T , there
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is a derivation
T

R
LS if and only if R′ =>* T ′ where R′ and T ′ are exponential

normal forms of the structures R and T .

4.2.4. System KSg in Maude. To get the negation normal form of a ΣKSg-
term, one can employ the functional module below, which implements the term

rewriting system R
KSg
Neg in Definition 3.23.

fmod KSg-NNF is

sorts Unit Atom Structure .

subsort Unit < Structure .

subsort Atom < Structure .

op tt : -> Unit .

op ff : -> Unit .

op -_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - tt = ff .

eq - ff = tt .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - - R = R .

endfm

This module can be used analogously as the module BV-NNF to obtain the
negation normal forms of the KSg structures.

The Maude system module below implements the system RKSg modulo EKSg.

mod KSg is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op tt : -> Unit .

op ff : -> Unit .

op -_ : Atom -> Atom [ prec 50 ].

op [_,_] : Structure Structure -> Structure [assoc comm id: ff] .

op {_,_} : Structure Structure -> Structure [assoc comm id: tt] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .

rl [atomic-int.] : [ A , - A ] => tt .
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rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [weakening] : R => ff .

rl [contraction] : R => [ R , R ] .

rl [tt-dis] : tt => [ tt , tt ] .

rl [ff-con] : ff => { ff , ff } .

endm

In the above module, the last two rules are added to the module in order to
model the right to left application of the equations [tt, tt] ≈ tt and (ff, ff) ≈ ff in
arbitrary KSg derivations.

Remark 4.19. In an implementation of system KSg in Maude, one might con-
sider to add the inference rules

S{tt}

S [tt, tt]
and

S{ff}

S(ff, ff)

to capture the role played by the equations in the equational system EKSg, because
the equations corresponding to these rules are not captured by the operator attributes
for unit in a Maude implementation. However, it can be easily observed that both
of these rules are instances of the rule w↓:

S{tt}
≈

S [tt, ff ]
w↓

S [tt, tt]

S{ff}
w↓

S(ff, ff)

Although classical logic is decidable (coNP-complete), due to the [contraction]
rule, which copies arbitrary structures in a proof search episode, it is not plausi-
ble to use the above module for proof search purposes. In Subsection 4.3.4, I will
present a contraction-free system for classical logic in the calculus of structures
which can be used for proof search purposes. However, we can state the following
proposition which follows immediately from Remark 4.19 and Proposition 3.35.

Proposition 4.20. Let =>* denote the transitive, reflexive closure of the tran-
sition relation defined by the Maude module KSg. For KSg structures R and T ,

there is a derivation
T

R

KSg if and only if R′ =>* T ′ where R′ and T ′ are negation

normal forms of the structures R and T .

4.3. Removing the Equations for Unit

In the above implementations the structures must be matched modulo an equa-
tional system, which consists of equations for associativity, commutativity, and
units for different logical operators. In the modules that I presented in the previous
sections, these equational systems are expressed as operator attributes. However,
at a closer inspection of the inference rules of these systems, it is easy to see that
the equations for the units often cause trivial instances of the inference rules. For
instance, consider the following instances of the switch rule in the systems BV, LS
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and KSg, respectively:

[R, T ]
≈

([R, T ], ◦)
s

[(R, ◦), T ]
≈

[R, T ]

[R, T ]
≈

([R, T ], 1)
s

[(R, 1), T ]
≈

[R, T ]

[R, T ]
≈

([R, T ], tt)
s

[(R, tt), T ]
≈

[R, T ]

(R, T )
≈

([R, ◦], T )
s

[(R, T ), ◦]
≈

(R, T )

(R, T )
≈

([R,⊥], T )
s

[(R, T ),⊥]
≈

(R, T )

(R, T )
≈

([R, ff ], T )
s

[(R, T ), ff ]
≈

(R, T )

One can observe a similar behavior in the seq rule of systems BV and NEL:

〈R; T 〉
≈
〈[R, ◦]; [◦, T ]〉

q↓
[〈R; ◦〉, 〈◦; T 〉]

≈
〈R; T 〉

[R, T ]
≈
〈[R, T ]; [◦, ◦]〉

q↓
[〈R; ◦〉, 〈T ; ◦〉]

≈
[R, T ]

In a proof search episode, such trivial instances of the inference rules cause re-
dundant branchings in the search space. In the following, I will present systems
equivalent to the above mentioned systems, where the rule applications with respect
to the equations for the units are made explicit by redesigning the inference rules
of these systems. This way, the equations for units will be safely removed from the
underlying equational system without damaging the completeness of these systems.
I will then demonstrate, on Maude modules, that indeed the resulting systems per-
form much better in automated proof search.

4.3.1. Equations for Unit in System BV. At a first step for removing
the equations for the unit from the underlying equational theory of system BV,
we extend the term rewriting system RBV

Neg to obtain unit normal forms of the
structures.

Definition 4.21. Let EBVu be the equational system obtained by removing the
equations for the unit from the equational system EBV.

Definition 4.22. The term rewriting system RBV
Unit is defined as follows:

RBV
Unit = RBV

Neg ∪







[ R , ◦ ] → R

( R , ◦ ) → R

〈R ; ◦ 〉 → R

[ ◦ , R ] → R

( ◦ , R ) → R

〈 ◦ ; R 〉 → R

Proposition 4.23. The term rewriting system RBV
Unit is (i) terminating and

(ii) confluent. (iii) Let s be a ΣBV-term. The normal form of s with respect to
RBV

Unit is in unit normal form.

Proof. Similar to the proof of Proposition 3.24: (i) Take the lexicographic
path order for BV structures given in the proof of Proposition 3.24. (ii) Proof by
analysis of the critical pairs: In addition to the critical pairs resulting from term
rewriting system RBV

Neg , we have ( (R̄, ◦̄), R̄ ), ( R̄, (R̄, ◦̄) ), ( [R̄, ◦̄], R̄ ), ( R̄, [R̄, ◦̄] ),
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( 〈R̄; ◦̄〉, R̄ ), and ( R̄, 〈R̄; ◦̄〉 ) that are joinable. (iii) s being in unit normal form
and applicability of a rewrite rule of RBV

Unit are contradictory.
�

The following functional Maude module implements the term rewriting system
RBV

Unit.

fmod BV-UNF is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

op <_;_> : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - o = o .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - < R ; T > = < - R ; - T > .

eq - - R = R .

eq [ R , o ] = R . eq [ o , R ] = R .

eq { R , o } = R . eq { o , R } = R .

eq < R ; o > = R . eq < o ; R > = R .

endfm

Definition 4.24. The system shown in Figure 4.3 is called system BVn. The
rules of this system are called unit (◦↓), atomic interaction (ai↓), switch 1 (s1),
switch 2 (s2), seq 1 (q1↓), seq 2 (q2↓), seq 3 (q3↓), seq 4 (q4↓), unit 1 (u1↓),
unit 2 (u2↓), unit 3 (u3↓), and unit 4 (u4↓). Inference rules of system BVn are

applied on BV structures, which are considered equivalent modulo the equational
system EBVu.

One can observe the similarity between the switch rule and seq rule, in partic-
ular the rules q3↓ and q4↓. In fact, Retoré gives rules similar to the rules q1↓, q2↓,
q3↓, q4↓, for the Pomset Logic in [Ret97], which is conjectured to be equivalent to
BV in [Str03a]. Although Retoré does not provide a cut elimination proof for his
system, cut elimination for the systems, where the rule q↓ is replaced with these
rules, follows from Theorem 2.19 and the results that I will present in this section.

Lemma 4.25. The rules q1↓ , q2↓ , q3↓, and q4↓ are derivable for {q↓} . The
rules s1 and s2 are derivable for {s} .

Proof. We do the following case analysis:

• For the rule q1↓ take the rule q↓.
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◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s1

S [(R, T ), U ]

S(R, T )
s2

S [R, T ]

S〈[R, U ]; [T, V ]〉
q1↓

S [〈R; T 〉, 〈U ; V 〉]

S〈R; T 〉
q2↓

S [R, T ]

S〈[R, U ]; T 〉
q3↓

S [〈R; T 〉, U ]

S〈R; [T, U ]〉
q4↓

S [〈R; T 〉, U ]

S{R}
u1↓

S [R, ◦]

S{R}
u2↓

S(R, ◦)

S{R}
u3↓

S〈R; ◦〉

S{R}
u4↓

S〈◦; R〉

Figure 4.3. System BVn

• For the rule q2↓, q3↓, q4↓, respectively, take the following derivations,
respectively:

〈R; T 〉
≈
〈[R, ◦]; [◦, T ]〉

q↓
[〈R; ◦〉, 〈◦; T 〉]

≈
[R, T ]

〈[R, U ]; T 〉
≈
〈[R, U ]; [T, ◦]〉

q↓
[〈R; T 〉, 〈U ; ◦〉]

≈
[〈R; T 〉, U ]

〈R; [T, U ]〉
≈
〈[R, ◦]; [T, U ]〉

q↓
[〈R; T 〉, 〈◦; U〉]

≈
[〈R; T 〉, U ]

• For the rule s1 take the rule s.
• For the rule s2 take the following derivation:

(R, T )
≈

([◦, T ], R)
s

[(◦, R), T ]
≈ .

[R, T ] �

Proposition 4.26. Every BV structure in negation normal form can be trans-
formed to a structure in unit normal form by applying the rules {u1↓, u2↓, u3↓, u4↓}
in Figure 4.3 bottom-up.

Proof. Because the bottom-up application of the rules {u1↓, u2↓, u3↓, u4↓} to
a BV structure corresponds to the application of the rewriting rules in RBV

Unit \R
BV
Neg

in Definition 4.22, the result follows immediately from Proposition 4.23. �

Lemma 4.27. For every derivation
W

Q
BV∆ there exists a derivation

W ′

Q
BVn∆′

where W ′ is a unit normal form of the structure W .

Proof. Observe that every derivation ∆ in BV can be equivalently written as
a derivation ∆ where all the structures are in unit normal form. From Proposition
4.26 we get a normal form Q′ of Q while going up in a derivation. With induction
on the length of ∆ we will construct the derivation

W ′

Q′
BVn∆′ .
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• If ∆ is ◦↓
◦

then take ∆′ = ∆ .

• If, for an atom a,
S{◦}

ai↓
S [a, ā]

is the last rule applied in ∆, then by

Proposition 4.26 and by the induction hypothesis there is a derivation

W ′

P
BVn where P is a normal form of S{◦}. The following cases exhaust

the possibilities For some structure T and a struture context S ′{ }:

– If S{ } = S′ [T, { }] then take the derivation

S′{T}
u1↓

S′ [ T , ◦ ]
ai↓ .

S′ [T , [a, ā] ]

– If S{ } = S′(T, { }) then take the derivation

S′{T}
u2↓

S′( T , ◦ )
ai↓ .

S′(T , [a, ā])

– If S{ } = S′〈T ; { }〉 then take the derivation

S′{T}
u3↓

S′〈T ; ◦ 〉
ai↓ .

S′〈T ; [a, ā]〉

– If S{ } = S′〈{ }; T 〉 then take the following derivation.

S′{T}
u4↓

S′〈 ◦ ; T 〉
ai↓ .

S′〈[a, ā]; T 〉

• If
P

s
Q

is the last rule applied in ∆ where Q = S [(R, T ), U ] for some

context S and structures R, T and U , then by induction hypothesis there

is a derivation
W ′

P
BVn . We do case analysis with respect to the unit. The

following cases exhaust the possibilities:

– If R 6= ◦, T 6= ◦, and U 6= ◦ , then apply the rule s1 to Q′.

– If R = ◦, T 6= ◦, and U 6= ◦ , then Q′ = S′ [T, U ] where S′ is a normal
form of context S. Apply the rule s2 to Q′.

– Other 6 cases, where T = ◦ or U = ◦, are trivial instances of the s

rule. Take P = Q′ .
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• If
P

q↓
Q

is the last rule applied in ∆ where Q = S [〈R; T 〉, 〈U ; V 〉] for

some context S and structures R, T , U and V , then by induction hypoth-

esis there is a derivation
W ′

P
BVn . We do case analysis with respect to the

unit. The following cases exhaust the possibilities:

– If R 6= ◦, T 6= ◦, U 6= ◦, and V 6= ◦, then apply the rule q1↓ to Q′.

– If R = ◦, T 6= ◦, U 6= ◦, and V 6= ◦, then Q′ = S′ [T, 〈U ; V 〉] where
S′ is a normal form of context S. Apply the rule q4↓ to Q′.

– If R 6= ◦, T = ◦, U 6= ◦, and V 6= ◦, then Q′ = S′ [R, 〈U ; V 〉] where
S′ is a normal form of context S. Apply the rule q3↓ to Q′.

– If R 6= ◦, T 6= ◦, U = ◦, and V 6= ◦, then Q′ = S′ [ [R; T ], V ] where
S′ is a normal form of context S. Apply the rule q4↓ to Q′.

– If R 6= ◦, T 6= ◦, U 6= ◦, and V = ◦, then Q′ = S′ [〈R; T 〉, U ] where
S′ is a normal form of context S. Apply the rule q3↓ to Q′.

– If R 6= ◦, T = ◦, U = ◦, and V 6= ◦, then Q′ = S′ [R, V ] where S′ is
a normal form of context S. Apply the rule q2↓ to Q′.

– If R = ◦, T 6= ◦, U 6= ◦, and V = ◦, then Q′ = S′ [T, U ] where S′ is
a normal form of context S. Apply the rule q2↓ to Q′.

– The 4 cases where R = ◦, and T = ◦ are trivial instances of the q↓
rule. Take P = Q′ .

– The 2 cases where R = ◦, T 6= ◦, and U = ◦ are trivial instances of
the q↓ rule. Take P = Q′ .

– The 3 cases where R = ◦, V =6= ◦, and either T 6= ◦, and U 6= ◦, or
T 6= ◦, and U = ◦, or T = ◦, and U 6= ◦ are trivial instances of the
q↓ rule. Take P = Q′ .

�

Theorem 4.28. System BV and system BVn are strongly equivalent.

Proof. From Lemma 4.25 it follows that the derivations in BVn are also deriva-
tions in BV. Derivations in BV are translated to derivations in BVn by Lemma
4.27. �

Corollary 4.29. The systems { q↓ } and { q1↓, q2↓, q3↓, q4↓ } are equivalent.

Proof. The result follows immediately from Lemma 4.25 and the cases for the
rule q↓ of the proof of Lemma 4.27. �
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The below Maude system module implements system BVn:

mod BVn is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ].

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op <_;_> : Structure Structure -> Structure [assoc] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .

rl [ai] : [ A , - A ] => o .

rl [switch-1] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [switch-2] : [ R , T ] => { R, T } .

rl [seq-1] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

rl [seq-2] : [ R , T ] => < R ; T > .

rl [seq-3] : [ < R ; T > , U ] => < [ R , U ] ; T > .

rl [seq-4] : [ < R ; T > , U ] => < R ; [ T , U ] > .

rl [unit-1] : [ R , o ] => R .

rl [unit-2] : { R , o } => R .

rl [unit-3] : < R ; o > => R .

rl [unit-4] : < o ; R > => R .

endm

Remark 4.30. From the point of view of bottom-up proof search, rule s2 is a
redundant rule because the structures in a copar structure cannot interact with each
other with a bottom-up application of an inference rule.2 Hence, this rule does not
play any role from the point of view of provability of BV structures because an appli-
cation of this rule disables the interaction between two structures in a proof search
episode. However, in order to preserve completeness for arbitrary derivations, I
included this rule in system BVn.

By resorting to the observations that are made while proving Lemma 4.27, we
will now see that it is possible to remove the unit ◦ completely from the language
of BV structures:

Definition 4.31. The system in Figure 4.4 is called system BVu, or unit-free
system BV. In addition to the inference rules that are common with system BVn,
the rules of this system are called axiom (ax), atomic interaction 1 (ai1↓), atomic

2In Chapter 5, I will present a system equivalent to system BV, where the nondeterminism
in proof search is reduced by imposing a simple restriction on the application of the switch rule.
This system, called BVsl, allows to see this observation explicitly.
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interaction 2 (ai2↓), atomic interaction 3 (ai3↓), and atomic interaction 4 (ai4↓).
Inference rules of system BVu are applied on BV structures, which are considered
equivalent modulo the equational system EBVu.

The inference rules ai1↓, ai2↓, ai3↓, and ai4↓ of system BVu are obtained by
merging each of the rules u1↓, u2↓, u3↓, and u4↓ in Figure 4.3 with the rule ai↓.

ax
[a, ā]

S([R, W ], T )
s1

S [(R, T ), W ]

S{R}
ai1↓

S [R, [a, ā] ]

S{R}
ai2↓

S(R, [a, ā])

S{R}
ai3↓

S〈R; [a, ā]〉

S{R}
ai4↓

S〈[a, ā]; R〉

S〈[R, U ]; [T, V ]〉
q1↓

S [〈R; T 〉, 〈U ; V 〉]

S〈R; T 〉
q2↓

S [R, T ]

S〈[R, W ]; T 〉
q3↓

S [〈R; T 〉, W ]

S〈R; [T, W ]〉
q4↓

S [〈R; T 〉, W ]

Figure 4.4. System BVu

Definition 4.32. Two systems S and S ′ are (weakly) equivalent if for every

proof
R

S
there is a proof

R

S
′

, and vice versa.

Corollary 4.33. System BV and system BVu ∪ {◦↓} are equivalent.

Proof. The rules ai1↓, ai2↓, ai3↓, ai4↓, and ax are derivable for system BVn.
Other rules being similar, let us see this for the rules ai1↓, and ax:

S{R}
u1↓

S [R, ◦]
ai↓

S [R, [a, ā] ]

◦↓
◦

ai↓
[a, ā]

The other direction follows from the proof of Lemma 4.27 and Remark 4.30. �

The following Maude system module implements system BVn:

mod BVu is

sorts Atom Structure .

subsort Atom < Structure .

op -_ : Atom -> Atom [ prec 50 ].

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op <_;_> : Structure Structure -> Structure [assoc] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .
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rl [ai-1] : [ R , [ A , - A ] ] => R .

rl [ai-2] : { R , [ A , - A ] } => R .

rl [ai-3] : < R ; [ A , - A ] > => R .

rl [ai-4] : < [ A , - A ] ; R > => R .

rl [switch-1] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [seq-1] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

rl [seq-2] : [ R , T ] => < R ; T > .

rl [seq-3] : [ < R ; T > , U ] => < [ R , U ] ; T > .

rl [seq-4] : [ < R ; T > , U ] => < R ; [ T , U ] > .

endm

Similar to the other modules presented so far for system BV, this module can
be used for proof search. However, because the axiom scheme of this system is
different than the other systems the search queries in Maude are slightly different:

Maude> search [- c,[< a ; {c,- b} >,< - a ; b >]] =>* [A,- A] .

search in BVu : [- c,[< a ; {c,- b} >,< - a ; b >]] =>* [A,- A] .

Solution 1 (state 521)

states: 522 rewrites: 1416 in 10ms cpu (10ms real)

(141600 rewrites/second)

A --> b

Solution 2 (state 544)

states: 545 rewrites: 1448 in 10ms cpu (10ms real)

(144800 rewrites/second)

A --> c

Solution 3 (state 984)

states: 985 rewrites: 2961 in 30ms cpu (30ms real)

(98700 rewrites/second)

A --> a

No more solutions.

states: 1243 rewrites: 4691 in 50ms cpu (50ms real)

(93820 rewrites/second)

I will now give a comparison of the systems BV, BVn and BVu with respect to
the implementations of these systems. The tables below show the cpu time spent
and the number of rewrites taken while proving the respective BV structures in
modules for systems BV, BVn and BVu. All the experiments below are performed
on an Intel Pentium 1400 MHz Processor.

Consider the following structure that I took from [Bru02], which corresponds
to a process expression in a process algebra, called PABV, which is a fragment of
the process algebra CCS [Mil89]. This example is particularly interesting, because
there is a strict correspondence between the process algebra PABV and system BV.

[a, 〈a; [c, ā]〉, 〈ā; c̄〉]
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The following table provides a performance comparison in search for a proof of this
structure in systems BV, BVn and BVu:

finds a proof search terminates

System in # millisec. after # rewrites in # millisec. after # rewrites

BV 1370 281669 5530 1100629

BVn 500 59734 560 65273

BVu 0 581 140 15244

When we search for a proof of a similar query which involves also copar struc-
tures we get the following results:

[c̄, 〈a; (c, b̄)〉, 〈ā; b̄〉]

finds a proof search terminates

System in # millisec. after # rewrites in # millisec. after # rewrites

BV 950 196866 1490 306179

BVn 120 12610 120 12720

BVu 10 1416 60 4691

Table 4.1 gives a representative performance comparison of these systems on
the below proof search queries:

(1) [〈a; [b, c]〉, 〈[ā, b̄]; c̄〉]
(2) [a, b, (ā, c̄), (b̄, c)]
(3) [〈([d, d̄], 〈a; b〉); c〉, 〈ā; (〈b̄; c̄〉, [e, ē])〉]
(4) [〈a; (b, [d, c])〉, 〈ā; [ b̄, 〈d̄; c̄〉]〉]
(5) [〈(b, c); [d, e]〉, 〈[ b̄, c̄]; (d̄, ē)〉]
(6) [d, 〈(d̄, 〈a; b〉); c〉, 〈ā; (〈b̄; c̄〉, [e, ē])〉]
(7) [〈a; [b, c]〉, d, (d̄, 〈[ā, b̄]; c̄〉)]
(8) [ā, (a, 〈d; b̄〉), (b, c), 〈d̄; c̄〉]
(9) [ā, 〈a; d; b̄〉, 〈b; c〉, 〈d̄; c̄〉]

(10) [a, 〈b; d〉, 〈b̄; c〉, (ā, c̄, d̄)]

In the results of the experiments, it is important to observe that, besides the
increase in the speed of the search, number of rewrites performed differs drastically
between the runs of the same search query in modules for systems BV, BVn and
BVu. Moving from system BV to system BVn gets rid of the trivial instances of
the inference rules. The increase in the performance while moving from BVn to
BVu is due to the merging of the instances of the atomic interaction and unit rules,
and also due to the absence of the instances of the switch 2 rule. The following
proposition helps to understand this better.
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finds a proof search terminates

Query System in # millisec. after # rewrites in # millisec. after # rewrites

BV 2880 579948 3150 631564

1. BVn 260 30101 260 30125

BVu 80 7034 90 7929

BV 9180 1627703 16480 2919393

2. BVn 1250 134404 1280 135955

BVu 150 14684 670 57617

BV 22410 3957563 55280 9133453

3. BVn 3280 295044 3290 295660

BVu 330 27252 780 57956

BV 47050 7746694 91990 14284074

4. BVn 6540 605455 6570 607034

BVu 390 36549 1370 117427

BV 25820 4790935 36100 6709682

5. BVn 2790 291791 2800 292229

BVu 460 43304 1060 86880

BV 227590 31623834 505330 58853999

6. BVn 24590 1975556 24600 1976657

BVu 3270 258313 6140 447774

BV 421620 48377830 559550 61766550

7. BVn 37020 2874128 37030 2874710

BVu 4420 382911 7280 605438

BV 525170 55377537 1054080 96078554

8. BVn 60890 3695443 61040 3703525

BVu 6200 469793 19060 1248859

BV – – – –

9. BVn 151870 9183688 151950 9187017

BVu 9520 855145 18370 1568647

BV – – – –

10. BVn 308150 9418863 308660 9429282

BVu 17660 1187905 70680 3129460

Table 4.1. Representative performance comparison of proof
search in the implementations of the systems BV, BVn and BVu

Proposition 4.34. Let R 6= ◦ be a BV structure in normal form with n number
of positive atoms. If R has a proof in BVn with length k, then R has a proof in BVu

with length k − n.

Proof. By induction on the number of positive atoms in R: The base case is
proved because R 6= ◦. Returning to the inductive case observe that while going up
in the proof of R in BVn, each positive atom must be annihilated with its negation by
an application of the rule ai↓ and then the resulting structure must be transformed
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to a normal form by equivalently removing the unit ◦ with an application of one
of the rules u1↓, u2↓, u3↓ and u4↓ . In BVn these two steps are replaced by a single
application of one of the rules ai1↓, ai2↓, ai3↓ and ai4↓ . �

4.3.2. Equations for Unit in System NEL. In this subsection, I will carry
the previous ideas on system BV to system NEL in order to remove the equations
for the unit from the equational system underlying system NEL.

Definition 4.35. The term rewriting system RNEL
Unit is defined as follows:

RNEL
Unit = RNEL

Exp ∪







[ R , ◦ ] → R

( R , ◦ ) → R

〈R ; ◦ 〉 → R

[ ◦ , R ] → R

( ◦ , R ) → R

〈 ◦ ; R 〉 → R

Proposition 4.36. The term rewriting system RNEL
Unit is (i) terminating and

(ii) confluent. (iii) Let s be a ΣNEL-term. The normal form of s with respect to
RNEL

Unit is in unit normal form.

Proof. Analogous to the proof of Proposition 4.23. �

The following functional Maude module implements the term rewriting system
RNEL

Unit.

fmod NEL-UNF is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Structure -> Structure .

op ?_ : Structure -> Structure .

op !_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure .

op {_,_} : Structure Structure -> Structure .

op <_;_> : Structure Structure -> Structure .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - o = o .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - < R ; T > = < - R ; - T > .

eq - - R = R .

eq - ? R = ! - R .

eq - ! R = ? - R .

eq ? ? R = ? R .

eq ! ! R = ! R .

eq ? o = o .
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◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s1

S [(R, T ), U ]

S(R, T )
s2

S [R, T ]

S〈[R, U ]; [T, V ]〉
q1↓

S [〈R; T 〉, 〈U ; V 〉]

S〈R; T 〉
q2↓

S [R, T ]

S〈[R, U ]; T 〉
q3↓

S [〈R; T 〉, U ]

S〈R; [T, U ]〉
q4↓

S [〈R; T 〉, U ]

S{![R, T ]}
p↓

S [!R, ?T ]

S{! R}
ep↓

S{?R}

S{◦}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

S{R}
u1↓

S [R, ◦]

S{R}
u2↓

S(R, ◦)

S{R}
u3↓

S〈R; ◦〉

S{R}
u4↓

S〈◦; R〉

S{? ?R}
?↓

S{? R}

S{! !R}
!↓

S{! R}

S{◦}
?u↓

S{? ◦}

S{◦}
!u↓

S{! ◦}

Figure 4.5. System NELn

eq ! o = o .

eq [ R , o ] = R . eq [ o , R ] = R .

eq { R , o } = R . eq { o , R } = R .

eq < R ; o > = R . eq < o ; R > = R .

endfm

Definition 4.37. Let ENELu be the equational system obtained by removing
the equations for the unit from the equational system ENELe.

Definition 4.38. The system shown in Figure 4.5 is called system NELn. The
rules of this system are called unit (◦↓), atomic interaction (ai↓), switch 1 (s1),
switch 2 (s2), seq 1 (q1↓), seq 2 (q2↓), seq 3 (q3↓), seq 4 (q4↓), promotion(p↓),
exponential promotion(ep↓), weakening(w↓), absorption(b↓), unit 1 (u1↓), unit

2 (u2↓), unit 3 (u3↓), unit 4 (u4↓), why not (?↓), of course (!↓), why not unit
(?u↓), and of course unit (!u↓). Inference rules of system NELn are applied on NEL

structures, which are considered equivalent modulo the equational system ENELu.

Proposition 4.39. Every NEL structure in exponential normal form can be
transformed to a structure in unit normal form by applying the rules {u1↓, u2↓, u3↓,
u4↓} in Figure 4.5 bottom-up.

Proof. Similar to the proof of Proposition 4.26, the result follows immediately
from Proposition 4.36. �

Theorem 4.40. System NEL and system NELn are strongly equivalent.

Proof. It is immediate that all the inference rules of system NELn are deriv-
able for system NEL. For the proof of the other direction, from Proposition 4.8, we
have that every derivation in NEL can be rewritten as a derivation ∆ in NELe. Let
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∆ be the derivation
W

Q
NELe∆ . From Proposition 4.39, we get a unit normal form

of Q while going up in a derivation. With induction on the length of ∆, we will
construct a derivation

W ′

Q′
NELn∆′

where W ′ is a unit normal form of W : The base case and the cases for the inference
rules ai↓, s and q↓ are same as in Lemma 4.27.

• If
P

p↓
Q

is the last rule applied in ∆ where Q = S [!R, ? T ] for a context S

and structures R and T , then by induction hypothesis there is a derivation

W

P
NELn . The following cases exhaust the possibilities:

– If R 6= ◦ and T 6= ◦ , then take the same instance of p↓ as in ∆.

– If R = ◦ and T 6= ◦ , then Q = S ′ [ ? T ] where S′ is a normal form of
context S. Then P = S′{ ! T}. Apply the rule ep↓ to Q.

– Other 2 cases, where R 6= ◦ and T = ◦ , or R = ◦ and T = ◦ , are
trivial instances of the p↓ rule. Take P = Q .

• If
P

ρ
Q

is the last rule applied in ∆ where ρ ∈ {w↓, b↓, ?↓, !↓} such that

Q = S′{ ? R} or Q = S′{ ! R} , and R = ◦, then these instances are trivial
instances of the rule ρ. Take P = Q . Otherwise, apply the rule ρ as in ∆.

�

The Maude system module below implements system NELn.

mod NELn is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ] .

op ?_ : Structure -> Structure [ prec 60 ] .

op !_ : Structure -> Structure [ prec 60 ] .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op <_;_> : Structure Structure -> Structure [assoc] .

ops a b c d e f g h i j : -> Atom .

var R T U V : Structure .

var A : Atom .
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rl [ai] : [ A , - A ] => o .

rl [switch-1] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [switch-2] : [ R , T ] => { R, T } .

rl [seq-1] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

rl [seq-2] : [ R , T ] => < R ; T > .

rl [seq-3] : [ < R ; T > , U ] => < [ R , U ] ; T > .

rl [seq-4] : [ < R ; T > , U ] => < R ; [ T , U ] > .

rl [promotion] : [ ! R , ? T ] => ! [ R , T ] .

rl [e-promotion] : ? R => ! R .

rl [weakening] : ? R => o .

rl [absorption] : ? R => [ ? R , R ] .

rl [unit-1] : [ R , o ] => R .

rl [unit-2] : { R , o } => R .

rl [unit-3] : < R ; o > => R .

rl [unit-4] : < o ; R > => R .

rl [why-not] : ? R => ? ? R .

rl [of-course] : ! R => ! ! R .

rl [wn-unit] : ? o => o .

rl [oc-unit] : ! o => o .

endm

Analogous to system BV, the equations for the unit in system NEL can be also
equivalently removed from the language of this logic. In order to do this, the infer-
ence rules with the unit in the premise should be placed in all the possible contexts,
including the modalities. It is well known that linear logic has 7 modalities, that
is, empty modality, !, ?, !?, ?!, ?!? and !?!. Thus, by introducing new inference
rules also for each of these modalities, an equivalent system to system NELn can be
designed.

4.3.3. Equations for Units in System LS. In this subsection I will present
a system, called system LSn, which is equivalent to system LS. The equations for
units are redundant for system LSn while proving provable LS structures, thus they
will be removed from the underlying equational system:

Definition 4.41. Let ELSu be the equational system obtained by removing the
equations for units from the equational system ELSe.

Definition 4.42. The term rewriting system RLS
Unit is defined as follows:

RLS
Unit = RLS

Exp ∪







[⊥, R] → R

(1, R) → R

[•⊥,⊥]• → ⊥

[•0, R]• → R

(•>, R)• → R

(•1, 1)• → 1
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Proposition 4.43. The term rewriting system is RLS
Unit modulo ELSu is (i)

terminating and (ii) confluent. (iii) Let s be a ΣLS-term. The normal form of s
with respect to RLS

Unit/ELSu is in unit normal form.

Proof. Observe that the system ELSu consists of equations for associativ-
ity and commutativity for the binary function symbols. Thus a ΣLS-term can be
considered in canonical form which is defined by a total lexical order

⊥ < 1 < 0 < > < a (where a denotes any atom)

such that the units ⊥, 1, 0, and > appear always on the left of the atoms and the
same units appear next to each other as the arguments of the same binary function
symbol in a ΣLS-term. The rest of the proof is same as Proposition 3.24. �

The following functional Maude module implements the term rewriting system
RLS

Unit/ELSu.

fmod LS-UNF is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op 1 : -> Unit .

op bot : -> Unit .

op 0 : -> Unit .

op top : -> Unit .

op -_ : Structure -> Structure .

op ?_ : Structure -> Structure .

op !_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op [|_,_|] : Structure Structure -> Structure [assoc comm] .

op {|_,_|} : Structure Structure -> Structure [assoc comm] .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - bot = 1 .

eq - 1 = bot .

eq - top = 0 .

eq - 0 = top .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - [| R , T |] = {| - R , - T |} .

eq - {| R , T |} = [| - R , - T |] .

eq - - R = R .

eq [ R , bot ] = R .

eq { R , 1 } = R .
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eq [| R , 0 |] = R.

eq {| R , top |} = R.

eq [| bot , bot |] = bot .

eq {| 1 , 1 |} = 1 .

eq - ? R = ! - R .

eq - ! R = ? - R .

eq ? ? R = ? R .

eq ! ! R = ! R .

eq ? bot = bot .

eq ! 1 = bot .

endfm

Definition 4.44. The system shown in Figure 4.6 is called system LSn. In
addition to the inference rules that are common with system LSe, the rules of this
system are called unit 1 (u1↓), unit 2 (u2↓), unit 3 (u3↓), unit 4 (u4↓), unit
5 (u3↓), and unit 6 (u4↓). The inference rules of system LSn are applied on LS

structures which are considered equivalent modulo the equational system ELSu.

1↓
1

S{1}
ai↓

S [a, ā]

S([R, U ], T )
s
S [(R, T ), U ]

S{0}
t↓

S{R}

S [•R, R]•
c↓

S{R}

S(• [R, U ], [T, V ])•
d↓

S [(•R, T )•, [•U, V ]•]

S{⊥}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

S{![R, T ]}
p↓

S [!R, ?T ]

S{R}
u1↓

S(1, R)

S{R}
u2↓

S [⊥, R]

S{R}
u3↓

S [• 0, R ]•

S{R}
u4↓

S(•>, R)•

S{1}
u5↓

S(•1, 1)•

S{⊥}
u6↓

S [•⊥,⊥]•

S{⊥}
?u↓

S{?⊥}

S{1}
!u↓

S{! 1}

S{? ? R}
?↓

S{?R}

Figure 4.6. System LSn

I will now show that system LSn is complete for linear logic. For this purpose,
I am going to employ the sequent calculus presentation of linear logic.
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Proposition 4.45. Every LS structure in exponential normal form can be
transformed to a structure in unit normal form by applying the rules {u1↓, u2↓, u3↓,
u4↓, u5↓, u6↓} in Figure 4.6 bottom-up.

Proof. Follows immediately from Proposition 4.43. �

The following proposition and the theorem thereafter are restricted versions of
similar results in [Str03a] which I carry from system LS to LSn.

Proposition 4.46. Let R be an LS structure in unit normal form. The rule
S{1}

i↓
S [R, R̄]

is derivable in the system {ai↓, s, d↓, p↓, u1↓, u5↓, !u↓} where the underly-

ing equational system is ELSu.

Proof. For a given application of i↓ by structural induction on R, we will
construct an equivalent derivation that contains only the instances of the above
rules.

• R is an atom: Then the given instance of i↓ is an instance of ai↓.
• if R = [P, Q], then apply the induction hypothesis to

S{1}
i↓

S [Q, Q̄]
u1↓

S(1, [Q, Q̄])
i↓

S([P, P̄ ], [Q, Q̄])
s
S [P, (P̄ , [Q, Q̄])]

s .
S [P, Q, (P̄ , Q̄)]

• if R = (P, Q), then it is similar to the previous case.
• if R = [•P, Q]•, then apply the induction hypothesis to

S{1}
u5↓

S(•1, 1)•
i↓

S(•1, [Q, Q̄])•
i↓

S(• [P, P̄ ], [Q, Q̄])•
d↓ .

S [ [•P, Q]•, (•P̄ , Q̄)•]

• if R = (•P, Q)•, then it is similar to the previous case.
• if R =? P , then apply the induction hypothesis to

S{1}
!u↓

S{! 1}
i↓

S{! [P, P̄ ]}
p↓ .

S [? P, ! P̄ ]

• if R =! P , then it is similar to the previous case.

�

Theorem 4.47. Let ` Φ be a sequent and ` Φs be the LS structure, obtained
from ` Φ by the translation function · s . If ` Φ is cut-free provable in LL, then
the structure ` Φs is provable in LSn.
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Proof. Let Π be a proof of ` Φ in LL. By structural induction on Π, we will
construct a proof Πs of ` Φs in system LSn.

• If Π is id
` A, A⊥

for some formula A, then let Πs be the proof obtained

via Proposition 4.46 from

1↓
1

i↓ .
[As, As]

• If
` A, B, Φ

O
` A O B, Φ

is the last rule applied in Π, then let Πs be the proof of

[As, Bs, Φs] that exists by induction hypothesis.

• If
` A, Φ ` B, Ψ

�
` A � B, Φ, Ψ

is the last rule applied in Π, then there are by

induction hypothesis two derivations
1

[As, Φs]
LSn∆1 and

1

[Bs, Ψs]
LSn∆2 . Let Πs be

the proof

1↓
1

[As, Φs]u1↓
([As, Φs], 1)

([As, Φs], [Bs, Ψs])s
[([As, Φs], Bs), Ψs]s .
[(As, Bs), Φs, Ψs]

LSn∆1

LSn∆2

• If
` Φ

⊥
` ⊥, Φ

is the last rule applied in Π. Then Πs is the proof

Φsu2↓
[⊥, Φs]

LSnΠ′

where Π′ exists by induction hypothesis.

• If Π is 1
` 1

, then let Πs be 1↓
1

.
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• If
` A, Φ ` B, Φ

N
` A N B, Φ

is the last rule applied in Π, then there are by induc-

tion hypothesis two derivations
1

[As, Φs]
LSn∆1 and

1

[Bs, Ψs]
LSn∆2 . Let Πs be the

proof

1↓
1

u5↓
(•1, 1)•

(• [As, Φs], 1)•

(• [As, Φs], [Bs, Φs])
•

d↓
[(•As, Bs)

•, [•Φs, Φs]
•]

c↓ .
[(•As, Bs)

•, Φs]

LSn∆1

LSn∆2

• If
` A, Φ

�1
` A � B, Φ

is the last rule applied in Π, then Πs be the proof

[As, Φs]u3↓
[ [•As, 0]•, Φs]t↓

[ [•As, Bs]
•, Φs]

LSnΠ′

where Π′ exists by induction hypothesis.

• The case for the rule
` B, Φ

�2
` A � B, Φ

is similar.

• If Π is >
` >, Φ

, then let Πs be the proof

1↓
1

ai↓
[>, 0]

t↓ .
[>, Φs]
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• If
` A, Φ

?d
` ?A, Φ

is the last rule applied in Π, then let Πs be the proof

[As, Φs]w↓
[?As, As, Φs]b↓

[?As, Φs]

LSnΠ′

where Π′ exists by induction hypothesis.

• If
` ?A, ?A, Φ

?c
` ?A, Φ

is the last rule applied in Π, then let Πs be the proof

[?As, ?As, Φs]w↓
[??As, ?As, ?As, Φs]b↓

[??As, ?As, Φs]b↓
[??As, Φs]?↓
[?As, Φs]

LSnΠ′

where Π′ exists by induction hypothesis.

• If
` Φ

?w
` ?A, Φ

is the last rule applied in Π, then let Πs be the proof

Φsu2↓
[⊥, Φs]w↓

[?As, Φs]

LSnΠ′

where Π′ exists by induction hypothesis.

• If
` A, ?B1, . . . , ?Bn

!
` !A, ?B1, . . . , ?Bn

is the last rule applied in Π, then there exists by

induction hypothesis a derivation
1

[As, ?B1s, . . . , ?Bns]
LSn∆1 . Now let Πs be
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the proof

1↓
1

!u↓
!1

![As, ?B1s, ?B2s, . . . , ?Bns]p↓
[![As, ?B1s, . . . , ?Bn−1s], ??Bns]?↓

...
?↓

[![As, ?B1s], ?B2s, . . . , ?Bns]p↓
[!As, ??B1s, ?B2s, . . . , ?Bns]?↓ .
[!As, ?B1s, ?B2s, . . . , ?Bns]

LSn∆1

�

Corollary 4.48. Systems LS and LSn are equivalent.

Proof. It is immediate that the rules of system LSn are derivable for system
LS. Result follows from Proposition 4.45 and Theorem 4.47. �

The Maude system module below implements system LSn.

mod LSn is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op 1 : -> Unit .

op bot : -> Unit .

op 0 : -> Unit .

op top : -> Unit .

op -_ : Atom -> Atom [ prec 50 ] .

op ?_ : Structure -> Structure [ prec 60 ] .

op !_ : Structure -> Structure [ prec 60 ] .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op [|_,_|] : Structure Structure -> Structure [assoc comm] .

op {|_,_|} : Structure Structure -> Structure [assoc comm] .

ops a b c d e f g h l : -> Atom .

var R T U V : Structure .

var A : Atom .

rl [ai-down] : [ A , - A ] => 1 .

rl [switch] : [ { R , T } , U ] => { [ R , U ] , T } .
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rl [additive] : [ {| R , T |} , [| U , V |] ]

=> {| [ R , U ] , [ T , V ] |} .

rl [thinning] : R => 0 .

rl [contraction] : R => [| R , R |] .

rl [promotion] : [ ! R , ? T ] => ! [ R , T ] .

rl [weakening] : ? R => bot .

rl [absorption]: ? R => [ ? R , R ] .

rl [unit-1] : { 1 , R } => R .

rl [unit-2] : [ bot , R ] => R .

rl [unit-3] : [| 0 , R |] => R .

rl [unit-4] : {| top , R |} => R .

rl [unit-5] : {| 1 , 1 |} => 1 .

rl [unit-6] : [| bot , bot |] => bot .

rl [?-unit] : ? bot => bot .

rl [!-unit] : ! 1 => 1 .

rl [why-not] : ? R => ? ? R .

rl [ai-unit] : [ top , 0 ] => 1 .

endm

4.3.4. Equations for Units in System KSg. In this subsection, I will present
a system equivalent to system KSg, for which the equations for units become redun-
dant. I will then present a system for classical logic in the calculus of structures,
where the underlying equational system can be completely removed.

Definition 4.49. Let EKSgu be the equational system obtained by removing
the equations for units from the equational system EKSg.

Definition 4.50. The term rewriting system R
KSg
Unit is defined as follows:

R
KSg
Unit = R

KSg
Neg ∪

{

[ff, R] → R

(tt, R) → R

[tt, tt] → tt

(ff, ff) → ff

Proposition 4.51. The term rewriting system is R
KSg
Unit modulo EKSg is (i)

terminating and (ii) confluent. (iii) Let s be a ΣKSg-term. The normal form of s

with respect to R
KSg
Unit/EKSg is in unit normal form.

Proof. Observe that the system EKSgu consists of equations for associativity
and commutativity for the binary function symbols for conjunction and disjunction.
Thus a ΣKSg-term can be considered in canonical form which is defined by a total
lexical order

ff < tt < a (where a denotes any atom)

such that the units ff, and tt appear always on the left-hand-side of the atoms and
the same units appear next to each other as the arguments of the same binary
function symbol in a ΣKSg-term. The rest of the proof is same as Proposition
3.24. �
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fmod KSg-UNF is

sorts Unit Atom Structure .

subsort Unit < Structure .

subsort Atom < Structure .

op tt : -> Unit .

op ff : -> Unit .

op -_ : Structure -> Structure .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

ops a b c d e f g h i j : -> Atom .

var R T U : Structure .

eq - tt = ff .

eq - ff = tt .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - - R = R .

eq [ ff , R ] = R .

eq { tt , R } = R .

eq [ tt , tt ] = tt .

eq { ff , ff } = ff .

endfm

Definition 4.52. The system shown in Figure 4.7 is called system KSgn. In
addition to the inference rules that are common with system KSg, the rules of this
system are called unit 1 unit 1 (u1↓), and unit 2 (u2↓). The inference rules of
system KSgn are applied on KSg structures which are considered equivalent modulo
the equational system EKSgu.

Proposition 4.53. Systems KSg and KSgn are equivalent.

Proof. Observe that the rules of system KSgn are derivable for system KSg.
The other direction of the proof is similar to the semantic cut elimination for system

tt↓
tt

S{tt}
ai↓

S [a, ā]

S([R, U ], T )
s
S [(R, T ), U ]

S{ff}
w↓

S{R}

S [R, R]
c↓

S{R}

S{R}
u1↓

S [R, ff ]

S{R}
u2↓

S(R, tt)

Figure 4.7. System KSgn
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KSg in [Brü03b]: the invertible rule

S([R, U ], [T, U ])
d

S [(R, T ), U ]

is derivable for the rules s and c↓:

S([R, U ], [T, U ])
s
S [([R, U ], T ), U ]

s
S [(R, T ), U, U ]

c↓
S [(R, T ), U ]

Apply this rule exhaustively to obtain the conjunctive normal form of the structure.
The rest of the proof is as in the proof of Theorem 4.56. �

In fact, by exploiting the contraction and weakening rules, it is possible to
design a system for classical logic in the calculus of structures where the equational
theory underlying structures becomes redundant. Below I will give such a system
which resembles sequent calculus system G3 given in [TS96].

Definition 4.54. The system shown in Figure 4.8 is called system DKSg. The
rules of the system are called axiom (tt↓), atomic interaction (ai↓), distributivity
left (dl), distributivity right (dr), unit 1 left (u1l↓), unit 1 right (u1r↓), unit 2
left (u2l↓), and unit 2 right (u2r↓).

The inference rules of the system DKSg are applied on the KSg structures.
However, this system does not require an underlying equational theory for the KSg

structures. In the following, I will show that system DKSg is complete for classical
logic, in a way similar to the semantic cut elimination proof for system KSg in
[Brü03b].

Lemma 4.55. For a structure R there exists a derivation
R′

R

{dl,dr} such that R′

is in conjunctive normal form.

Proof. With structural induction on R.

• If R = a then R is in conjunctive normal form.

tt↓
tt

S{tt}
ai↓

S [a, ā]

S([U, R], [U, T ])
dl

S [U, (R, T )]

S([R, U ], [T, U ])
dr

S [(R, T ), U ]

S{ff}
w↓

S{R}

S{R}
u1l↓

S [ff, R]

S{R}
u1r↓

S [R, ff ]

S{R}
u2l↓

S(tt, R)

S{R}
u2r↓

S(R, tt)

Figure 4.8. System DKSg
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• If R = (R1, R2) then with the induction hypothesis, there are derivations

R′
1

R1

{dl,dr}∆1 and
R′

2

R2

{dl,dr}∆2 where R′
1 and R′

2 are in conjunctive normal

form. It follows that there is a derivation

(R′
1, R

′
2)

(R′
1, R2)

(R1, R2)

{dl,dr}∆1

{dl,dr}∆2

where (R′
1, R

′
2) is in conjunctive normal form.

• If R = [R1, R2 ] then with the induction hypothesis, there are derivations

R′
1

R1

{dl,dr}∆1 and
R′

2

R2

{dl,dr}∆2 where R′
1 and R′

2 are in conjunctive normal

form.

Let R′
1 = (S1, S2) , and R′

2 = (T1, T2) where S1, S2, T1, T2 are in
conjunctive normal form. Consider the following derivation.

(([S1, T1 ], [S2, T1 ]), ([S1, T2 ], [S2, T2 ]))
dr

(([S1, T1 ], [S2, T1 ]), [(S1, S2), T2 ] )
dr

( [(S1, S2), T1 ] , [(S1, S2), T2 ])
dl .

[(S1, S2), (T1, T2)]

By applying the rules dl; dr; dr to each conjunct [Si, Tj ] as many times as
possible, we get the derivations

R′
3

[S1, T1 ]

{dl,dr}∆3 ,

R′
4

[S2, T1 ]

{dl,dr}∆3 ,

R′
5

[S1, T2 ]

{dl,dr}∆3 ,

R′
6

[S2, T2 ]

{dl,dr}∆3

where R′
3, R′

4, R′
5, R′

6 are in conjunctive normal form.

�

Theorem 4.56. A structure R has a proof in KSg if and only if there are
structures T ′ and T ′′ and a proof in DKSg such that

T ′′

{ai↓,u2l↓,u2r↓}

T ′
{w↓,u1l↓,u1r↓}

R
{dl,dr}

.

Proof. Observe that the rules of system DKSg, including dl and dr are deriv-
able for system KSg, as it can be seen in the proof of Proposition 4.53. For the
proof of the other direction, from Lemma 4.55 it follows that there is a structure
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T ′ which is in conjunctive normal form. The rules dl and dr are invertible rules, so
T ′ is also provable in KSg. Because T ′ is in conjunctive normal form, constructed
by binary connectives, T ′ must be of the form

T ′ = Q{Rk}

where Rk is a disjunction of atoms. For T ′ to be provable in KSg, each such Ri

must be of one of the following forms

[P1{a}, P2{ā}]

where P1{ } and P2{ } are nested disjunctions with a hole. Obviously for every
such disjunction, there is a derivation

[a, ā]

[P1{a}, P2{ā}]

{w↓,u1l↓,u1r↓}∆k

which leads to T ′′. Applying the rule ai↓, and then u2l↓ and u2r↓ to each disjunction
in T ′′ we get a proof. �

Similar to the systems which are discussed in the previous sections, system
DKSg can be implemented in Maude. However, the decomposition of the proofs in
this system, given in Theorem 4.56, can be used as a proof strategy while proving
structures. This can be achieved in system DKSg because of the availability of
normal forms (for instance conjunctive normal form) at the end of each phase of
the proof. I employ the meta-level features of the language Maude, which allows
to represent such a decomposition as meta-data in the presence of normal forms.
Below I will give an implementation of this system in Maude. Instead of explor-
ing the search space, by using the search function which implements breadth-first
search, to find a proof of the given structure, in this implementation proofs are de-
terministically computed by following the above strategy. This implementation also
demonstrates how meta-level features of language Maude can be used to implement
a given strategy. Although the associative commutative equational theory is redun-
dant for system DKSg, I prefer to use associativity and commutativity because this
allows me to accomplish the implementation by only employing the reduce func-
tion without employing the search function. This way, instead of searching for a
proof, it became possible to compute the proof deterministically.

fmod DKS-Signature is

inc META-LEVEL .

sort Atom .

sort Structure .

subsort Atom < Structure .

ops a b c d e f g h i j k l m n p q r : -> Atom .

ops tt : -> Atom .

ops ff : -> Atom .

op -_ : Structure -> Structure [ prec 50 ] .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .
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*** a dummy element for the meta-level ’kind’ management

op dummy : -> [Structure] .

endfm

fmod DKS-NNF is

inc DKS-Signature .

var R T U : Structure .

eq - tt = ff .

eq - ff = tt .

eq - [ R , T ] = { - R , - T } .

eq - { R , T } = [ - R , - T ] .

eq - - R = R .

endfm

fmod DKS-distribute is

inc DKS-Signature .

var R T U : Structure .

eq [ U , { R , T } ] = { [U,R] , [U,T] } .

endfm

fmod DKS-interaction is

inc DKS-Signature .

var A : Atom .

eq [ A , - A ] = tt .

endfm

fmod DKS-weakening is

inc DKS-Signature .

var R : Structure .

eq [ tt , R ] = tt .

eq { tt , R } = R .

endfm

fmod DKS-Strat is

inc DKS-Signature .

inc DKS-NNF .

inc DKS-distribute .

inc DKS-interaction .

inc DKS-weakening .
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op prove_ : Structure -> Structure .

var R : Structure .

eq prove R =

downTerm(

getTerm(

metaReduce([’DKS-weakening],

getTerm(

metaReduce([’DKS-interaction],

getTerm(

metaReduce([’DKS-distribute],

getTerm(metaReduce([’DKS-NNF], upTerm( R ))))))))), dummy) .

endfm

The language Maude does not allow the passing of a value computed by a
module to another one in a straightforward way as it is usually the case in func-
tional or logic programming languages. The way around this problem is to use
the META-LEVEL module, which provides the means to meta-represent modules and
terms so that modules and values that they compute can be treated as syntactic ob-
jects inside another module. This is due to the reflective features of rewriting logic
[Cla00]: “a reflective logic is a logic in which important aspects of its meta-theory
can be represented at the object level in a consistent way, so that the object-level
representation correctly simulates the relevant meta-theoretic aspects.” In other
words, a reflective logic is a logic which can be faithfully interpreted in itself (see,
e.g., [CDE+99, Cla00, CM96]). Maude implements these reflective features of
rewriting logic by means of the built-in META-LEVEL module.

In the implementation above, the different phases of the proof, where different
sets of inference rules are used, are represented by functional modules which are
called by the operator prove of the functional module DKS-Strat. Seen procedu-
rally, by means of the operation upTerm, this operator first converts the object level
representation of the input query term to a Maude meta-level representation of the
same term with respect to the module DKS-Signature. Then the meta-level term
corresponding to the negation normal form of the input term is computed by means
of the operation metaReduce which takes the meta-representation of the functional
module DKS-NNF as argument. Then the computed meta-level terms are passed sim-
ilarly to the meta-level representations of the functional modules DKS-distribute,
DKS-interaction and DKS-weakening, respectively, which reduce these meta-level
terms with respect to their rules.

In the language Maude it is possible to define a notion of (implicit) error
supersorts called kinds, which are represented as sort names in square brackets.
In the module DKS-Signature above, the operator dummy belongs to such a kind
Structure, which is an argument of the meta-level function downTerm. The oper-
ation downTerm, which allows moving from meta-level to object level, then delivers
the computed term. If the input structure is a provable KSg structure, this term is
the unit tt.

Furthermore, as the reader might realize, in the implementation above, the
modules DKS-interaction and DKS-weakening are called in the reversed order
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with respect to the order given in Theorem 4.56. This is because these rules are
applied on disjunctions in a conjunctive normal form: By exploiting the associative
commutative equational system, an atom and its dual can be annihilated in a
disjunction. Following this, the rule weakening can be applied to the rest of the
atoms in the disjunction. This allows to compute the desired term deterministically
without performing a search.

Remark 4.57. It is well known that cut-free sequent calculus does not poly-
nomially simulate3 (see, e.g., [BP98]) popular proof procedures such as resolution.
However, by recomposing the inference rules of system KSgn, it is also possible to
model different proof procedures while protecting the applicability of the inference
rules at any depth inside a structure. For instance the rule

S [(R, a, . . . , a), (T, ā, . . . , ā), (R, T )]
res

S [(R, a, . . . , a), (T, ā, . . . , ā)]
,

which is derivable in KSg, is the (proof) resolution rule (see, e.g., [Bus98]). The
dual (contrapositive) rule of this rule is the refutation resolution rule.

4.4. Discussion

In this chapter, we have seen implementations of the systems of the calculus of
structures in Maude. The language Maude supports implementing term rewriting
systems modulo different combinations of associative commutative equational sys-
tems, also in the presence of units. Maude has a simple high level language, and a
built-in search function, which implements breadth-first search. These features of
Maude make it an appropriate language for implementing the systems of the calcu-
lus of structures. The syntax of these systems and their inference rules can be easily
expressed in Maude and a complete search strategy can be effectively employed.
This way, it becomes possible to observe a one-to-one correspondence between the
proof theoretical systems and the Maude modules that implement these systems,
and to consider these systems as executable, computation as proof construction
tools for these logics. Furthermore, despite being rather complex, meta-level fea-
tures of Maude are useful for implementing different search strategies, especially
when intermediate normal forms during proof search are available.

As we have seen in this chapter, equational systems of the systems NEL and LS

require special treatment in Maude: The equational systems of NEL and LS include
equations for the exponentials, which cannot be expressed as Maude operator at-
tributes, unlike those for associativity, commutativity, and units. In the equivalent
systems that I presented in this chapter, the equations for exponentials become
redundant, thus these resulting systems can be implemented in Maude.

The equations for units often cause redundant matchings of the inference rules,
resulting in trivial instances of the inference rules: The premise and the conclusion
of these rule instances are equivalent structures. In order to avoid such instances, in
an automated rule application of an inference rule, I presented equivalent systems,
where the role played by the equations for units is made explicit in the inference
rules. The resulting systems do not only get rid of the trivial instances of the
inference rules, but also provide shorter proofs, and this way provide a better
performance in proof search.

3A proof system U polynomially simulates a proof system V if both U and V prove the same
language and proofs in V can be converted to into proofs in V in polynomial time.
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In this chapter, I discussed the systems BV, NEL, LS, and KSg, considering
only their down-fragments. However, these methods can be analogously applied to
the other systems of the calculus of structures. Further, the rules belonging to the
up-fragment of a system can be freely added to a Maude module.

The modules presented in this chapter consider the proof theoretical systems
from an analytical bottom-up proof construction point of view. This points out the
potential applications of these systems as logic programming languages, or directly
implementable operational semantics. In Chapter 8, I give an example of such a
usage.

An aspect that distinguishes my implementation of system LS, and also system
NEL (which cannot be designed in the sequent calculus,) is due to the promotion
rule. The Maude implementation of a sequent calculus system for linear logic in
[MOM96], involves this rule which requires a global knowledge of the context. In
the calculus of structures, thus in the implementations presented in this chapter,
this rule is replaced with a local rule which does not require such a global view of
the formulae. The implementations of systems BV and NEL, presented here, are
the first implementations of these systems. All the implementations discussed in
this chapter are available online 4.

The implementations presented in this chapter are implemented in language
Maude, so they are run on the command-line prompt of this language. Because of
this, using these implementations requires some knowledge of the language Maude.
Furthermore, the output generated by these tools is somewhat remote from the
usual presentation of the calculus of structures derivations. Schäfer has devel-
oped a graphical proof editor, called GraPE [Sch06], which functions as a user-
friendly graphical user interface to these Maude modules and makes it possible to
use the Maude implementations presented in this chapter interactively: By using
the GraPE tool, the user can guide the proof construction and choose between auto-
mated proof search and user-guided proof construction. Then the output derivation
can be exported as LATEXcode. The GraPE tool is available online 5.

4http://www.iccl.tu-dresden.de/~ozan/maude cos.html
5http://grape.sourceforge.net/grape.pdf





CHAPTER 5

Reducing Nondeterminism in Proof Search

The deep inference feature of the calculus of structures does not only provide
a richer combinatorial analysis of the logic being studied, but also provides shorter
proofs than any other formalism supporting analytical proofs (see, e.g., [Gug04c]):
As we have seen on an example in Chapter 1, applicability of the inference rules at
any depth inside a structure makes it possible to start the construction of a proof
by manipulating and annihilating substructures. However, deep inference causes a
greater nondeterminism in proof search: Because the inference rules can be applied
at many more positions, the breadth of the search space increases rather quickly.
Let us see this on the following examples.

Example 5.1. To the structure [(ā, b̄), a, b] the switch rule in system BV can be
applied bottom-up in 12 different ways that are shown below. (In system KSg, the
switch rule can be applied to this structure in 27 different ways.) The instances (1.)
to (6.) are the instances which result from the applications of equations for unit.
The trivial instances, such as those in Example 2.13, are excluded below. From all
the 12 instances, only two of these instances can lead to a proof, namely (8.) and
(10.) below:

(a, [b, (ā, b̄)])
(1.) s

[(ā, b̄), a, b]

(b, [a, (ā, b̄)])
(2.) s

[(ā, b̄), a, b]

(ā, b̄, [a, b])
(3.) s

[(ā, b̄), a, b]

[b, (a, ā, b̄)]
(4.) s

[(ā, b̄), a, b]

[(a, b), (ā, b̄)]
(5.) s

[(ā, b̄), a, b]

[a, (b, ā, b̄)]
(6.) s

[(ā, b̄), a, b]

[a, (b̄, [b, ā])]
(7.) s

[(ā, b̄), a, b]

[a, (ā, [b, b̄])]
(8.) s

[(ā, b̄), a, b]

(b̄, [a, b, ā])
(9.) s

[(ā, b̄), a, b]

[b, (b̄, [a, ā])]
(10.) s

[(ā, b̄), a, b]

[b, (ā, [a, b̄])]
(11.) s

[(ā, b̄), a, b]

(ā, [a, b, b̄])
(12.) s

[(ā, b̄), a, b]

In particular, when only system FBV is considered, there are altogether 358 deriva-
tions in the proof-search space of the structure [(ā, b̄), a, b], however only 6 of these
derivations are proofs.

In the example above, none of the rule instances is deep. However, one can
observe the redundant nondeterminism in these instances. The availability of deep
inference causes an even greater redundant nondeterminism in the structures where
the inference rules can be applied at any depth inside structures.

Example 5.2. Consider the structure below which is obtained by nesting the
structure above in itself:

[([ā1, (ā2, b̄2), a2, b2 ], b̄1), a1, b1 ]

95
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To this structure, the switch rule can be applied in 51 different ways but only 4 of
these instances can lead to a proof.

The process of searching for a proof within a certain deductive system is a
nondeterministic process (of course, if the subject logic is not in P, for instance,
like propositional Horn logic which is linear). From the point of view of logic
programming, this is a central feature which is due to the nature of logic. For
instance, given that multiplicative linear logic (MLL) is NP-complete [Kan91], if
P is different than NP, as many believe, coming up with a tractable algorithm
for MLL is not feasible. However, in proof search usually not all nondeterminism is
meaningful: In a proof search episode there are often some nondeterministic choices
to be made, i.e., deciding which rule instances to apply. In the process of searching
for a proof some of these actions must be avoided, because they result in a dead-end
and require backtracking, whereas others must be taken sooner or later so that a
proof can be constructed.

Reducing nondeterminism in proof search without losing the completeness of
the subject system requires combinatorial techniques that work in harmony with
the proof theoretical formalism. Because the rules of the sequent calculus act on
the main connective, and the notion of main connective resolves in the systems with
deep inference, it is impossible to use the techniques of the sequent calculus. For
instance, Andreoli’s focusing technique [And92, And01], which was introduced
to attack this problem within linear logic in the sequent calculus, exploits the ap-
plications of the inference rules at the main connective: The focusing technique
is based on permuting different phases of a proof by distinguishing between asyn-
chronous (deterministic) and synchronous (nondeterministic) parts of a proof. This
approach depends on the fact that in the sequent calculus asynchronous connec-
tives, e.g., par, and synchronous connectives, e.g., copar, can be treated in isolation.
However, in the calculus of structures connectives are never in isolation: Asynchro-
nous connectives are always matched to a synchronous connective at an inference
step. Furthermore, asynchronous parts of a proof map the object level, given by
the logical operators, onto the meta-level. For instance, par operators are mapped
to commas. In the systems with deep inference this is a superfluous operation,
because what is meta-level in the sequent calculus is brought to the object level,
thus there is no meta-level.

Another source of nondeterminism in the sequent calculus is due to the inference
rules that are responsible for the context management. For instance, let us consider
the sequent calculus � rule which splits the context of the main formula:

` Γ , A ` Σ , B
�
` Γ , Σ , A � B

In a bottom-up proof construction, if the multiset contexts of a sequent have n ≥ 0
formulas in it, then there can be as many as 2n ways that a context is partitioned
into two multisets. However, often very few of these splits will lead to a successful
proof. Application of this rule results in a decision that binds Σ with the right
(or left) branch of the proof tree, thereby making the communication of A with Σ
possible only by backtracking. This is an exponential source of unwanted nonde-
terminism.

The nondeterminism due to the context management rules in the sequent cal-
culus implementations was previously addressed by various authors: Hodas and
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Miller propose an approach, in [HM94], for splitting the context lazily by observ-
ing proof search as a kind of input/output process: When one part of a tensor is
being proved all of the formulas in the context are given to that part. Due the
branching in the sequent calculus proof, this will be the first branch in case of a
successful attempt, and then the rest of the context which is not consumed by the
first branch is given to the other part of the tensor. [HM94] includes a description
of a simple Prolog interpreter of this approach. Several researchers have developed
variations to the lazy splitting approach in the sequent calculus implementations
(see, e.g., [CHP96, Hod94]). Some other later approaches for context manage-
ment in linear logic programming use constraint solving techniques, also addressing
resource consumption issues which arise at the different parts of a sequent calculus
proof (see, e.g., [And01, HP03]).

In the calculus of structures, the inference rule that is responsible for the (com-
mutative) context management is the switch rule. Although the switch rule man-
ages the context in a lazier way and breaks the interaction between structures rather
gradually, this problem persists as it can be observed in the above examples. More-
over, applicability of the inference rules at any depth inside structures introduces
further nondeterminism which is not present in the sequent calculus.

In this chapter, I will introduce a proof theoretical technique in the calculus
of structures that reduces nondeterminism in proof search. This technique exploits
an intuitive observation on the mutual relations between atoms of the structure
being proved. These mutual relations are those of the graphical representations of
structures, called relation webs. Observed from the point of view of such relations
between atoms, the duty of the inference rules can be seen as starting from a set of
pairs of interacting atoms, reducing the interaction between atoms of the structure,
and finally arriving at a set of pairs of interacting atoms which are dual atoms,
having the same interaction with the other atoms in the structure. In other words,
proofs are constructed by promoting the interaction in the sense of a specific mutual
relation between dual atoms, and annihilating these dual atoms while going up in
a derivation. This technique also makes the shorter proofs, that are available due
to deep inference, more immediately accessible.

In the following, I will present the relation webs which are helpful to develop
and understand the ideas that I will present later in this chapter. I will then present
a class of systems equivalent to system BV, where nondeterminism in proof search
is reduced at different levels by using this technique. I will present experimental
results that demonstrate the performance improvement in a Maude implementation.
This technique exploits the common scheme, which is obeyed by all the systems of
the calculus of structures, and generalizes to all these other systems. As an evidence
to this, I will present a system equivalent to system KSg where nondeterminism is
reduced by this technique.

5.1. Relation Webs

In this section, we will see a characterization of the BV structures by means
of special graphs, called relation webs. Relation webs were introduced in [Gug07],
where Guglielmi uses them to derive the inference rules of system BV by asking for a
certain conservation property to hold while manipulating the structures, thus their
relation webs. In [Tiu01], Tiu uses the relation webs to show that deep inference
is essential for a deductive system to get all the provable structures of system BV.
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Relation webs are helpful to observe the mutual relations between atoms in a
structure with respect to the logical operators with which these atoms are related.
Because an application of the inference rules manipulates these mutual relations in
a specific way, they will be useful to make observations about the role played by
the inference rules during the construction of a proof. In the later sections, I will
exploit these observations while redesigning the inference rules. Thus, they play a
key role in the development of these ideas. Relation webs are fully developed for
system BV, however the intuitions behind them apply also to other systems.

A relation web is a complete graph whose nodes are all atom occurrences of a
structure. Relation webs can be considered as canonical graph representations of
equivalence classes of structures, that is, there is a unique relation web for every
equivalence class of structures:

Definition 5.3. Given a structure R, at R is the set of all the atoms appearing
in R.

Definition 5.4. We talk about atom occurrences when considering all the
atoms appearing in R as distinct (for example, by indexing them so that two atoms
which are equal get different indices). Given a structure R, occ R is the set of all
the atom occurrences appearing in R. The size of R is the cardinality of the set
occR. Let R be a structure in unit normal form. The four structural relations /R

(seq), .R (aseq), ↓R (par), and ↑R (co-par) are defined as the minimal sets such
that

/R, .R, ↓R, ↑R ⊂ (occ R) × (occR)

and for every S{ }, U and V and for every atom occurrence a in U and b in V
the following holds:

• if R = S〈U ; V 〉 then a /R b and b .R a;
• if R = S [U, V ] then a ↓R b;
• if R = S(U, V ) then a ↑R b.

To a structure that is not in unit normal form we associate the structural relation
obtained from any of its normal forms, because they yield the same relation ↓R.
The quadruple ( occR, /R, ↓R, ↑R ) is called the relation web of R, it is denoted by
wR. We shall omit the subscripts in /R, .R, ↓R, and ↑R, if it is clear from context
which structure we refer to. Given two sets of atom occurrences µ and ν, we write
µ ↓ ν to denote that, for every a in µ and for every b in ν, it holds that a ↓ b. The
notation | ↓R | denotes the cardinality of the set ↓R.

Example 5.5. In order to see the above definition at work, consider the fol-
lowing structure: R = [a, b, (b̄, [〈ā; c〉, c̄])]. We have at R = occR = {a, ā, b, b̄, c, c̄}.
Then in wR, we have a ↓ b, a ↓ b̄, a ↓ ā, a ↓ c, a ↓ c̄, b ↓ b̄, b ↓ ā, b ↓ c, b ↓ c̄, ā ↓ c̄,
c ↓ c̄, ā ↑ b̄, c ↑ b̄, c̄ ↑ b̄, ā / c, (we omit the symmetric relations, e.g., b ↓ a).

Structural relations between occurrences of atoms are represented by drawing

a b a b a b a b

when a / b, b . a, a ↓ b and a ↑ b, respectively.
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Example 5.6. Let us now consider the structure R = [a, b, (b̄, [〈ā; c〉, c̄])] graph-
ically as a relation web:

a ā

b b̄

c c̄

Guglielmi proves the following result in [Gug07].

Theorem 5.7. Two BV structures are equivalent if and only if they have the
same relation web.

Intuitively, one can consider the relation ↓R as a notion of interaction, and the
relations ↑R and /R ( .R) as non-interaction. In other words, the atoms which
are related by ↓R are interacting atoms, whereas others are non-interacting: Proofs
are constructed by isolating the interacting atoms in a way such that each atom
preserves the interaction with a dual in the relation web. Such interacting dual
atoms are annihilated at an application of the atomic interaction rule when they
share the same interaction/non-interaction scheme with the rest of the atoms in the
relation web. During a bottom-up proof search episode, while acting on structures,
inference rules perform such an isolation of atoms: In an instance of an inference
rule with the conclusion R, the inference rules transform some structural relations
↓R into structural relations ↑R and /R (.R), at applications of the switch and seq
rules, respectively, until dual atoms establish the same structural relations with
all the other atoms. Then an atomic interaction rule can be applied to an atom
and its dual, in a ↓R structural relation, when both of these atoms have the same
set of structural relations with all the other atoms of the structure. Figure 5.1
demonstrates the role of the inference rules from the point of view of relation webs.

S{ ◦ }
ai↓

S

{

a ā

}

S







R T

U







s

S







R T

U







S







R U

T V







q↓

S







R U

T V







Figure 5.1. The relation web view of the inference rules of system BV

Example 5.8. Let us now see a proof of the structure [a, b, (b̄, [〈ā; c〉, c̄])] and
the relation webs corresponding to the structures resulting from the instance of the
inference rules at each step of the proof:



100 5. REDUCING NONDETERMINISM IN PROOF SEARCH

◦↓
◦

ai↓

c c̄ [c, c̄]

ai↓
a ā

[〈 [a, ā] ; c〉, c̄]

c c̄
q↓

a ā

[a, 〈ā; c〉, c̄]

c c̄
ai↓

a ā

b b̄ [a, ( [b, b̄] , [〈ā; c〉, c̄])]

c c̄
s

a ā

b b̄ [a, b, (b̄, [〈ā; c〉, c̄]) ]

c c̄

Often inference rules can be applied to a structure in many different ways,
however only few of these applications can lead to a proof, for instance as in Example
5.1.

Proposition 5.9. If a structure R has a proof in BV then, for all the atoms a
that appear in R, there is an atom ā in R such that a ↓R ā.

Proof. With induction on the length k of the proof Π of R. The base case is
given by the proof consisting of the application of the rule ◦↓ which has no atoms
in it. Moving to the induction step, we assume that the proposition holds for proof
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of length k. Let us construct the structure R such that ρ is the bottom most rule
instance in the proof Π with length k + 1 and R, and R′ are, respectively, the
premise and the conclusion of ρ. With the induction hypothesis, for all the atoms
a in R′, there is an atom ā such that a ↓ ā ∈ wR′ . If ρ is ai↓ , then for R′ = S{◦}
the proof is trivial. If ρ is

• s , then, for R′ = S([P{a}, T{ā}], U) take

S([P{a}, T{ā}], U)
s ;
S [(P{a}, U), T{ā}]

• q↓ , then for R′ = S〈[P{a}, T{ā}]; [U, V ]〉 take

S〈[P{a}, T{ā}]; [U, V ]〉
q↓ .

S [〈P{a}; U〉, 〈T{ā}; V 〉]

�

The following example is helpful to understand the intuition behind the propo-
sition above.

Example 5.10. Consider the 12 derivations in Example 5.1. While going up
in these derivations, from conclusion to premise the following structural relations
cease to hold: in (1.), a ↓ b, a ↓ ā and a ↓ b̄; in (2.), b ↓ a, b ↓ ā and b ↓ b̄; in (3.)
a ↓ ā and b ↓ b̄; in (4.) a ↓ b̄ and b ↓ b̄; in (5.) a ↓ ā and b ↓ ā; in (6.) b ↓ ā and
b ↓ b̄; in (7.) b ↓ b̄; in (8.) b ↓ ā; in (9.) a ↓ ā and a ↓ b̄; in (10.) a ↓ b; in (11.)
a ↓ ā; and in (12.) a ↓ b. Only the instances (8.) and (10.) provide proofs.

It is easy to see that a structure is not necessarily provable if for every atom a
and its dual ā we have that a ↓ ā. For instance, the structure [(a, ā), (a, ā)] is not
provable.

Let me now state the following remarks which follow from the discussions in
this section.

Remark 5.11. Let R = S [a, ā] and R′ = S{◦} be BV structures. If
R′

ai↓ ,
R

then ↓R′ = ↓R \ { (a, ā) , (ā, a) } .

Remark 5.12. Let R = S [(P, T ), U ] and R′ = S([P, U ], T ) be BV structures.

If
R′

s ,
R

then

↓R′ = ↓R \ ( { (x, y) | x ∈ occT ∧ y ∈ occ U }∪ {(x, y)|x ∈ occ U ∧ y ∈ occT}) .

Remark 5.13. Let R = S [〈P ; T 〉, 〈U ; V 〉] and R′ = S〈[P, U ]; [T, V ]〉 be BV

structures. If
R′

q↓ ,
R

then

↓R′ = ↓R \ ({(x, y)|x ∈ occP ∧ y ∈ occ V } ∪ {(x, y)|x ∈ occV ∧ y ∈ occ P}∪

{(x, y)|x ∈ occU ∧ y ∈ occ T } ∪ {(x, y)|x ∈ occT ∧ y ∈ occ U}).

We can now state the following proposition.
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Proposition 5.14. The length of a proof of a BV structure R is bounded by

O(|occ R|2).

Proof. With Remark 5.11, 5.12, and 5.13; observe that ↓R⊆ (occR)×(occR),

hence | ↓R | ≤ |occR|2. For each (non-trivial) application of an inference rule such

that
R′

ρ
R

, we have that | ↓R′ | < | ↓R |. �

In the next sections, I will exploit these observations to redesign the inference
rules of system BV such that some instances of the inference rules that cannot
provide a proof of a provable structure will be disabled.

5.2. The Switch Rule

As we have seen in Example 5.1, in a proof search episode the applicability of the
inference rules, in particular the switch rule, in different ways causes a redundant
nondeterminism. With the below definition, I will re-design the switch rule such
that only those applications, which are meaningful from the point of view of proof
search, will be possible.

Definition 5.15. Let interaction switch be the rule

S([R, W ], T )
is

S [(R, T ), W ]

where at W ∩ atR 6= ∅.

Definition 5.16. The rule lazy interaction switch, or lis, is the instance of
the interaction switch rule where the structure W is not a proper par structure.

Definition 5.17. System BV with interaction switch, or system BVs, is the
system {◦↓ , ai↓ , is , q↓}.

Definition 5.18. System BV with lazy interaction switch, or system BVsl, is
the system resulting from replacing the rule is in BVs with the rule lis.

Example 5.19. It is important to observe that the rule lis can be applied bottom-
up to the structure [(ā, b̄), a, b] only as in the cases (8.) and (10.) of Example 5.1.

[([ā, a], b̄), b]
lis

[(ā, b̄), a, b]

[([b̄, b], ā), a]
lis

[(ā, b̄), a, b]

The switch rule can be safely replaced with the lazy interaction switch rule
in system BV without losing completeness. In the following, I will collect some
definitions and lemmas that will be necessary to prove this result.

Proposition 5.20. Let S ∈ {BV, BVs, BVsl}. In system S

(i) 〈R; T 〉 is provable if and only if R and T are provable;
(ii) (R, T ) is provable if and only if R and T are provable.

Proof. The only if direction is trivial. For the proof of the if direction, the
proof for the (ii) being analogous, let us see the proof for case (i). With induction
on the length of proof Π of 〈R; T 〉, we construct proofs of R and T : The base case
is trivial. Returning to the inductive cases, we do case analysis on the last rule ρ
applied in Π. The redex of ρ must be inside either in R or T , because otherwise the
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rule ρ ∈ S cannot be applied to 〈R; T 〉. The case where the redex inside T being
analogous, the case where the redex is inside R is the proof

〈R′; T 〉
ρ
〈R; T 〉

SΠ

. Take the proofs R′

ρ
R

SΠ1

and
T

SΠ2

where the proofs Π1 and Π2 are delivered by the induction hypothesis. �

Definition 5.21. Let R, T be BV structures such that R 6= ◦ 6= T and let
S ∈ {BV, BVs, BVsl}. R and T are independent (for S ) if and only if

[R, T ]

S

implies
R

S and
T

S .

Otherwise, they are dependent.

Example 5.22. For the structure S = [a, b, (ā, b̄), 〈[c, c̄]; [a, ā]〉],

R = [a, b, (ā, b̄)] and T = 〈[c, c̄]; [a, ā]〉

are independent, whereas

R′ = [a, b] and T ′ = [(ā, b̄), 〈[c, c̄]; [a, ā]〉]

are dependent.

Proposition 5.23. For any BV structures R and T , if at R̄ ∩ at T = ∅ then
R and T are independent.

Proof. Assume that there is a proof Π of [R, T ]. Construct a proof of R by
replacing all the substructures of T in Π with ◦: All the instances of the rules s

and q↓ remain intact. Further, from Proposition 5.9 it follows that all the instances
of the rule ai↓ remain intact, because for every atom a ∈ at [R, T ] there must be
an atom ā ∈ at [R, T ] and we have that at R̄ ∩ at T = ∅. This implies that
each instance of the rule ai↓ in Π annihilates an atom and its dual that are both
either in atR or in at T . Analogously, construct a proof of T by replacing all the
substructures of R in Π with ◦. �

Lemma 5.24. For any BV structures P , U , and R,

if
[P, U ]

BVslΠ
then there is a derivation

R

[(R, P ), U ]

BVsl .

Proof. We label each atom occuring in Π such that every pair of atom that is
annihilated by an application of the rule ai↓ get the same label, and the conclusion
of each rule instance in Π consists of pairwise distinct atoms. If U is a proper, then
there must be U1 and U2 such that U = [U1, U2 ], and at [P, U1 ] ∩ at U2 = ∅. If U
is not a proper par then it must be that either U1 = U and U2 = ◦ or U1 = ◦ and
U2 = U . Thus, there is a derivation

[(R, [P, U1 ]), U2 ]

[(R, P ), U ]

{lis}∆ .
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Given that [P, U1, U2 ] is provable, from Proposition 5.23, it follows that [P, U1 ] and

U2 are independent, which implies that there are proofs
[P, U1 ]

BVslΠ1

and
U2

BVslΠ2

.

We can then construct the following derivation:

R

[R, U2 ]

[(R, [P, U1 ]), U2 ]

[(R, P ), U1, U2 ]
BVsl∆

BVslΠ1

BVslΠ2

�

The following theorem is a specialization of the shallow splitting theorem which
was introduced, in [Gug07], for proving cut elimination for system BV. In the
following, I will use this theorem to show the completeness of system BVsl. By
exploiting the fact that systems in the calculus of structures follow a scheme, in
which the rules atomic interaction and switch are common to all other systems,
this technique was used also to prove cut elimination for classical logic [Brü03b,

Gug04d], linear logic [Str03a], and system NEL [GS02, Str03c]. As the name
suggests, this theorem splits the context of a structure so that the proof of the
structure can be partitioned into smaller pieces in a systematic way. Below we will
see that the splitting theorem can be specialized to system BVsl.

It is possible to prove the theorem below by following exactly the same scheme
as in [Gug07]. However, in the below proof I use a one-dimensional induction
measure, in contrast to Gugliemi’s two dimensional induction measure. This results
in a simpler proof:

Theorem 5.25. (Shallow splitting for BVsl) For all structures R, T and P :

(1) if [〈R; T 〉, P ] is provable in BVsl then there exists P1, P2 and
〈P1; P2〉

P
BVsl∆

such that [R, P1 ] and [T, P2 ] are provable in BVsl.

(2) if [(R, T ), P ] is provable in BVsl then there exists P1, P2 and
[P1, P2 ]

P
BVsl∆

such that [R, P1 ] and [T, P2 ] are provable in BVsl.
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Proof. All the derivations below are in BVsl. Consider the following two
statements:

S(n) = ∀n′.∀R, T, P.
(

(n′ ≤ n

∧ n′ = | ↓[〈R;T 〉,P ] |

∧ there is a proof
[〈R; T 〉, P ]

)

⇒ ∃P1, P2.(
〈P1; P2〉

P
∧

[R, P1 ]
∧

[T, P2 ]
)
)

,

C(n) = ∀n′.∀R, T, P.
(

(n′ ≤ n

∧ n′ = | ↓[(R,T ),P ] |

∧ there is a proof
[(R, T ), P ]

)

⇒ ∃P1, P2.(
[P1, P2 ]

P
∧

[R, P1 ]
∧

[T, P2 ]
)
)

.

The statement of the theorem is equivalent to ∀n.(S(n) ∧ C(n)) where n is a
measure of (S(n) ∧ C(n)), and the proof is an induction on this measure. The base
case is trivial. Let us see the inductive cases. I assume that P 6= ◦, because when
P = ◦ the theorem is trivially proved by Proposition 5.20. Similarly, I assume
R 6= ◦ 6= T . Below, the statements S(n) and C(n) will be proved separately.

(1) ∀n′.(n′ < n ∧ S(n′) ∧ C(n′)) ⇒ S(n) , that is, | ↓[〈R;T 〉,P ] | = n and
[〈R; T 〉, P ] has a proof. Consider the bottom rule instance in this proof:

Q
ρ ,

[〈R; T 〉, P ]

where I assume that ρ is non-trivial, because every proof with trivial rule
instances can be rewritten as a proof where these trivial instances are
removed. Let us do case analysis on the position of the redex of ρ in
[〈R; T 〉, P ]. We have the following possibilities:
(a) ρ = ai↓ : The following cases exhaust the possibilities:

(i) The redex is inside R:

Given [〈R′; T 〉, P ]
ai↓

[〈R; T 〉, P ]

, consider [R′, P1 ]
ai↓

[R, P1 ]

.

(ii) The redex is inside T : Analogous to the previous case.
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(iii) The redex is inside P :

Given [〈R; T 〉, P ′ ]
ai↓

[〈R; T 〉, P ]

, consider

〈P1; P2〉

P ′

ai↓
P

.

(b) ρ = q↓ : If the redex is inside R, T or P , the situation is analo-
gous to the ones seen above. The following cases exhaust the other
possibilities:

(i) R = 〈R′; R′′〉 , P = [〈P ′; P ′′〉, U ] and

[〈[R′, P ′ ]; [〈R′′; T 〉, P ′′ ]〉, U ]
q↓ .

[〈R′; R′′; T 〉, 〈P ′; P ′′〉, U ]

We can apply the induction hypothesis, by Remark 5.13, and
we get

〈U1; U2〉

U

∆1 ,
[R′, P ′, U1 ]

Π1

and
[〈R′′; T 〉, P ′′, U2 ]

Π2

.

Because | ↓[〈R′′;T 〉,P ′′,U2 ] | < | ↓[〈R′;R′′;T 〉,〈P ′;P ′′〉,U ] | (otherwise
the q↓ instance would be trivial), we can apply the induction
hypothesis on Π2, by Remark 5.13, and get

〈P ′
1; P2〉

[P ′′, U2 ]

∆2 ,
[R′′, P ′

1 ]

Π3

and
[T, P2 ]

Π4

.

We can now take the P1 = 〈[P ′, U1 ]; P ′
1〉 and construct

〈[P ′, U1 ]; P ′
1; P2〉

〈[P ′, U1 ]; [P ′′, U2 ]〉
q↓

[〈P ′; P ′′〉, 〈U1; U2〉]

[〈P ′; P ′′〉, U ]

∆1

∆2

and 〈[R′, P ′, U1 ]; [R′′, P ′
1 ]〉

q↓ .
[〈R′; R′′〉, 〈[P ′, U1 ]; P ′

1〉]

A similar argument holds when T = 〈T ′; T ′′〉 and we have a
proof

[〈[〈R; T ′〉, P ′ ]; [T ′′, P ′′ ]〉, U ]
q↓ .

[〈R; T ′; T ′′〉, 〈P ′; P ′′〉, U ]
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(ii) P = [〈P ′; P ′′〉, U ′, U ′′ ] and

[〈[〈R; T 〉, P ′, U ′ ]; P ′′〉, U ′′ ]
q↓ .

[〈R; T 〉, 〈P ′; P ′′〉, U ′, U ′′ ]

We can apply the induction hypothesis, by Remark 5.13, and
we get

〈U1; U2〉

U ′′

,
[〈R; T 〉, P ′, U ′, U1 ]

Π1

and
[P ′′, U2 ]

Π2

.

Because | ↓[〈R;T 〉,P ′,U ′,U1 ] | < | ↓[〈R;T 〉,〈P ′;P ′′〉,U ′,U ′′ ] | (other-
wise the q↓ instance would be trivial), we can apply the induc-
tion hypothesis on Π1, by Remark 5.13, and get

〈P1; P2〉

[P ′, U ′, U1 ]
,

[R, P1 ]

Π3

and
[T, P2 ]

Π4

.

We can now construct

〈P1; P2〉

[P ′, U1, U
′ ]

[〈[P ′, U1 ]; [P ′′, U2 ]〉, U ′ ]
q↓

[〈P ′; P ′′〉, U ′, 〈U1; U2〉]

[〈P ′; P ′′〉, U ′, U ′′ ]

.

A similar argument holds when we have a proof

[〈P ′; [〈R; T 〉, P ′′, U ′ ]〉, U ′′ ]
q↓ .

[〈R; T 〉, 〈P ′; P ′′〉, U ′, U ′′ ]

(c) ρ = lis : If the redex is inside R, T or P , we have analogous situa-
tions to the ones seen in Case 1.a. The only other possibility is the
following: Let P = [(P ′, P ′′), U ] and we have the proof

[([〈R; T 〉, P ′ ], P ′′), U ]
lis .

[〈R; T 〉, (P ′, P ′′), U ]
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We can apply the induction hypothesis, by Remark 5.12, and we get

[U1, U2 ]

U

∆1 ,
[〈R; T 〉, P ′, U1 ]

Π1

and
[P ′′, U2 ]

Π2

.

Because | ↓[〈R;T 〉,P ′,U ′,U1 ] | < | ↓[〈R;T 〉,(P ′,P ′′),U ′,U ′′ ] | (otherwise the
lis instance would be trivial), we can apply the induction hypothesis
on Π1, by Remark 5.12, and get

〈P1; P2〉

[P ′, U1 ]
,

[R, P1 ]

Π3

and
[T, P2 ]

Π4

.

We can now construct

〈P1; P2〉

[P ′, U1 ]

[(P ′, P ′′), U1, U2 ]

[(P ′, P ′′), U ]

∆ ;

where ∆ is the derivation delivered by Lemma 5.24 with proof Π2.

(2) ∀n′.(n′ ≺ n ∧ S(n′) ∧ C(n′)) ⇒ C(n) , that is, | ↓[(R,T ),P ] | = n and
[(R, T ), P ] has a proof. Consider the bottom rule instance in this proof:

Q
ρ .

[(R, T ), P ]

Again I assume that ρ is non-trivial, because every proof with trivial rule
instances can be rewritten as a proof where these trivial instances are
removed. Let us do case analysis on the position of the redex of ρ in
[(R, T ), P ]. We have the following possibilities:
(a) ρ = ai↓ : Analogous to Case 1.a.
(b) ρ = q↓ : If the redex is inside R, T or P , the situation is analogous

to the ones in Case 1.a. The only other possibility is the following;
let P = [〈P ′; P ′′〉, U ′, U ′′ ] and the given proof be

[〈[(R, T ), P ′, U ′ ]; P ′′〉, U ′′ ]
q↓ .

[(R, T ), 〈P ′; P ′′〉, U ′, U ′′ ]

We can apply the induction hypothesis, by Remark 5.13, and we get

〈U1; U2〉

U ′′

,
[(R, T ), P ′, U ′, U1 ]

Π1

and
[P ′′, U2 ]

Π2

.



5.2. THE SWITCH RULE 109

Because | ↓[(R,T ),P ′,U ′,U1 ] | < | ↓[(R,T ),〈P ′;P ′′〉,U ′,U ′′ ] | (otherwise the
q↓ instance would be trivial), we can apply the induction hypothesis
on Π1, by Remark 5.13, and get

[P1, P2 ]

[P ′, U ′, U1 ]
,

[R, P1 ]

Π3

and
[T, P2 ]

Π4

.

We can now construct

[P1, P2 ]

[P ′, U ′, U1 ]

[〈[P ′, U1 ]; [P ′′, U2 ]〉, U ′ ]
q↓

[〈P ′; P ′′〉, U ′, 〈U1; U2〉]

[〈P ′; P ′′〉, U ′, U ′′ ]

.

A similar argument holds when we have a proof

[〈P ′; [(R, T ), P ′′, U ′ ]〉, U ′′ ]
q↓ .

[(R, T ), 〈P ′; P ′′〉, U ′, U ′′ ]

(c) ρ = lis : If the redex is inside R, T or P , we have analogous situa-
tions to the ones seen in Case 1.a. The following cases exhaust the
possibilities:

(i) R = (R′, R′′), T = (T ′, T ′′), P = [P ′, P ′′ ] and

[([(R′, T ′), P ′ ], R′′, T ′′), P ′′ ]
lis :

[(R′, R′′, T ′, T ′′), P ′, P ′′ ]

We can apply the induction hypothesis, by Remark 5.12, and
we get

[P ′
1, P

′
2 ]

P ′′

∆1 ,
[(R′, T ′), P ′, P ′

1 ]

Π
and

[(R′′, T ′′), P ′
2 ]

Π′

.

Because |↓[(R′,T ′),P ′,P ′

1
]| < |↓[(R′,R′′,T ′,T ′′),P ′,P ′′ ]| > |↓[(R′′,T ′′),P ′

2
]|

we can apply the induction hypothesis both on Π and Π′, by
Remark 5.12, and get

[P ′′
1 , P ′′

2 ]

[P ′, P ′
1 ]

∆2 ,
[R′, P ′′

1 ]

Π1

and
[T ′, P ′′

2 ]

Π2

.
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[P ′′′
1 , P ′′′

2 ]

P ′
2

∆3 ,
[R′′, P ′′′

1 ]

Π3

and
[T ′′, P ′′′

2 ]

Π4

.

We can now take P1 = [P ′′
1 , P ′′′

1 ], and P2 = [P ′′
2 , P ′′′

2 ] and
construct

[P ′′
1 , P ′′

2 , P ′′′
1 , P ′′′

2 ]

[P ′′
1 , P ′′

2 , P ′
2 ]

[P ′, P ′
1, P

′
2 ]

[P ′, P ′′ ]

∆1

∆2

∆3

, [R′′, P ′′′
1 ]

[(R′, R′′), P ′′
1 , P ′′′

1 ]

∆4

, and [T ′′, P ′′′
2 ]

[(T ′, T ′′), P ′′
2 , P ′′′

2 ]

∆5

,

where ∆4 is the derivation delivered by Lemma 5.24 with proof
Π3, and ∆5 is the derivation delivered by Lemma 5.24 with
proof Π4.

(ii) P = [(P ′, P ′′), U ] and

[([(R, T ), P ′ ], P ′′), U ]
lis :

[(R, T ), (P ′, P ′′), U ]

We can apply the induction hypothesis, by Remark 5.12, and
we get

[U1, U2 ]

U

,
[(R, T ), P ′, U1 ]

Π1

and
[P ′′, U2 ]

Π2

.

Because | ↓[(R,T ),P ′,U1 ] | < | ↓[(R,T ),(P ′,P ′′),U ] | (otherwise the
lis instances would be trivial), we can apply the induction hy-
pothesis on Π1, by Remark 5.12, and get

[P1, P2 ]

[P ′, U1 ]
,

[R, P1 ]

Π3

and
[T, P2 ]

Π4

.

We can now construct

[P1, P2 ]

[P ′, U1 ]

[(P ′, P ′′), U1, U2 ]

[(P ′, P ′′), U ]

∆ .
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where ∆ is the derivation delivered by Lemma 5.24 with proof
Π2.

�

As we have seen in Proposition 2.30, system BV is a conservative extension of
system FBV. This observation allows to carry the ideas above to system FBV.

Definition 5.26. System FBV with interaction switch, or system FBVs, is the
system resulting from replacing the rule s in FBV with the rule is.

Definition 5.27. System FBV with lazy interaction switch, or system FBVi,
is the system resulting from replacing the rule s in FBV with the rule lis.

Corollary 5.28. (Shallow Splitting for FBVi) For all structures R, T and P ,

if [(R, T ), P ] is provable in FBVi then there exists P1, P2 and
[P1, P2 ]

P
FBVi∆ such that

[R, P1 ] and [T, P2 ] are provable in FBVi.

Proof. Follow the steps of the Theorem 5.25, leaving out the cases that involve
the seq operator. �

Because inference rules can be applied at any depth inside a structure, we
need the following theorem for accessing the deeper structures. This theorem is a
specialization of the context reduction theorem for BV in [Gug07]. In the following,
this theorem will be useful to reduce the context of a substructure of a provable
structure to the same level as the substructure without losing provability while
going up in a derivation.

Theorem 5.29. (Context reduction for BVsl) For all structures R and for all
contexts S{ } such that S{R} is provable in BVsl, there exists a structure U such
that for all structures X there exist derivations:

[X, U ]

S{X}
BVsl and

[R, U ]

BVsl
.

Proof. We prove by induction on the size of S{◦}. For the base, where
S{◦} = ◦, we get U = ◦. There are three inductive cases:

(1) S{ } = 〈S′{ }; P 〉 where P 6= ◦: By Proposition 5.20 there are proofs
in BVsl of S′{R} and of P . By applying the induction hypothesis, we can
find U and construct, for all X , the derivation

[X, U ]

S′{X}

〈S′{X}; P 〉
BVsl

BVsl

such that [R, U ] is provable in BVsl. We can apply the same argument
for the case where S{ } = 〈P ; S ′{ }〉 and P 6= ◦.
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(2) S{ } = [S′{ }, P ] where P 6= ◦ such that S ′{ } is not a proper par: If
S′{◦} = ◦ then the theorem is proved. Otherwise there are the following
two possibilities:
(a) S′{ } = (S′′{ }, P ′) where P 6= ◦: By Theorem 5.25 there exist

structures P1 and P2, the derivation

[P1, P2 ]

P
BVsl , and the proofs

[S′′{R}, P1 ]

BVslΠ1

and
[P ′, P2 ]

BVslΠ2

.

By applying the induction hypothesis to Π1 we get a derivation ∆1.
Then we can construct

[X, U ]

[S′′{X}, P1 ]

[(S′{X}, P ′), P1, P2 ]

[(S′′{X}, P ′), P ]
BVsl

BVsl∆

BVsl∆1

and
[R, U ]

BVs
.

where ∆ is the derivation delivered by Lemma 5.24 with proof Π2.
(b) S′{ } = 〈S′′{ }; P ′〉 where P ′ 6= ◦: By Theorem 5.25 there exist the

structures P1 and P2, the derivation

〈P1; P2〉

P
BVsl , and the proofs

[S′′{R}, P1 ]

BVslΠ1

and
[P ′, P2 ]

BVslΠ2

.

By applying the induction hypothesis to Π1 we get a derivation ∆1.
Then we can construct

[X, U ]

[S′′{X}, P1 ]

〈[S′′{X}, P1 ]; [P
′, P2 ]〉

q↓
[〈S′′{X}; P ′〉, 〈P1; P2〉]

[〈S′′{X}; P ′〉, P ]

BVsl

BVslΠ2

BVsl∆1

and
[R, U ]

BVs
.

We can proceed analogously when S ′{ } = 〈P ′; S′′{ }〉 where P ′ 6= ◦.
(3) S′{ } = (S′{ }, P ) where P 6= ◦: Analogous to Case 1.

�

Corollary 5.30. (Context reduction for FBVi) For all structures R and for
all contexts S{ } such that S{R} is provable in FBVi, there exists a structure U
such that for all structures X there exist derivations:

[X, U ]

S{X}
FBVi and

[R, U ]

FBVi
.



5.2. THE SWITCH RULE 113

Proof. Analogous to the proof of Theorem 5.29 by using Corollary 5.28 in-
stead of Theorem 5.25. �

Corollary 5.31. (Splitting for system BVsl) For all structures R, T and for
all contexts S{ }:

(1) if S〈R; T 〉 is provable in BVsl then there exist structures S1 and S2 such
that, for all structures X, there exists a derivation

[X, 〈S1; S2〉]

S{X }
BVsl∆ ;

(2) if S(R, T ) is provable in BVsl then there exist structures S1 and S2 such
that, for all structures X, there exists a derivation

[X, S1, S2 ]

S{X }
BVsl∆ ;

and, in both cases, there are proofs
[R, S1 ]

BVslΠ1

and
[T, S2 ]

BVslΠ2

.

Proof. The proof for (2) being analogous, the proof of (1) is as follows: Given
that S〈R; T 〉 is provable in BVsl, apply Theorem 5.29 to obtain the derivation ∆.
Replace X in ∆ with 〈R; T 〉. From Theorem 5.29, it follows that [〈R; T 〉, 〈S1; S2〉]
has a proof Π. Apply Theorem 5.25 to Π to obtain the proofs Π1 and Π2. �

We can now state the following results:

Theorem 5.32. Systems BV and BVsl are equivalent.

Proof. Observe that every proof in BVsl is also a proof in BV. For the other
direction, single out the upper-most instance of the switch rule in the BV proof
which is not an instance of the lazy interaction switch rule:

S([R, U ], T )
s
S [(R, T ), U ]

BVsl

From Theorem 5.29, there exists a structure V and a derivation

[{ }, V ]

S{ }
BVsl such that

[([R, U ], T ), V ]

BVsl
.

It follows from Theorem 5.25 that there are structures K1 and K2, a derivation

[K1, K2 ]

V
BVsl , and proofs

[R, U, K1 ]

BVsl
, and

[K2, T ]

BVslΠ
.
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We can then construct the following proof

[R, U, K1 ]

[(R, T ), U, K1, K2 ]

[(R, T ), U, V ]

S [(R, T ), U ]
BVsl

BVsl

BVsl∆

BVsl

where ∆ is the derivation delivered by Lemma 5.24 with proof Π. Repeat the above
procedure inductively until all the instances of the switch rule that are not instances
of lazy interaction switch rule are removed. �

Corollary 5.33. Systems BV and BVs are equivalent.

Proof. Observe that every proof in BVsl is a proof in BVs, and every proof in
BVs is a proof in BV. �

Corollary 5.34. Systems FBV, FBVs and FBVi are equivalent.

Proof. The proof of equivalence of FBV and FBVi is analogous to the proof
of Theorem 5.32 by using Corollary 5.28 and Corollary 5.30. Observe that every
proof in FBVi is a proof in FBVs, and every proof in FBVs is a proof in FBV. �

Example 5.35. Consider the provable FBV structure [(ā, b̄), a, b] of Example
5.1. The only proofs of this structure in system FBV, and also in FBVi, are the
following:

◦
ai↓

[b, b̄]
ai↓

[( [a, ā] , b̄), b]
lis

[ (ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄] )
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[([a, ā], b̄), b]
lis

[ (ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

[a, (ā, [b, b̄])]
lis

[ (ā, b̄), a, b ]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[ (ā, b̄), a, b ]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄] )
lis

[a, (ā, [b, b̄])]
lis

[ (ā, b̄), a, b ]

In system FBV, in the proof search space of [(ā, b̄), a, b], there are 358 deriva-
tions including these 6 proofs and no other proofs. However, in system FBVi these
6 proofs are the only possible derivations.

Using the above results, I will now prove the cut elimination result for system
BVsl, similar to the proof of cut elimination for system BV in [Gug07]. The
following proposition will be necessary.
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Proposition 5.36. For every context S{ } and structures R and T , there
exists a derivation

S [R, T ]

[S{R}, T ]

BV .

Proof. Proof with structural induction on S{ } : Base case, where S{ } is
the empty context, is trivial. There are three inductive cases:

(1) If S{ } = 〈S′{ }; P 〉 then take the derivation

〈S′ [R, T ]; P 〉

〈[S′{R}, T ]; P 〉
q↓

[〈S′{R}; P 〉, T ]

BV∆

where the derivation ∆ is delivered by the induction hypothesis.
(2) If S{ } = (S′{ }, P ) then take the derivation

(S′ [R, T ], P )

([S′{R}, T ], P )
s

[(S′{R}, P ), T ]

BV∆

where the derivation ∆ is delivered by the induction hypothesis.
(3) If S{ } = [S′{ }, P ] then take the derivation

[S′ [R, T ], P ]

[ [S′{R}, T ], P ]
≈

[ [S′{R}, P ], T ]

BV∆

where the derivation ∆ is delivered by the induction hypothesis.

�

Theorem 5.37. (Cut elimination for system BVsl) The cut rule (ai↑) is admis-
sible for system BVsl.

Proof. Consider the proof

S(a, ā)
ai↑

S{ ◦ }

BVslΠ

.

By applying Corollary 5.31 to proof Π we get the following derivations:

[S1, S2 ]

S{ ◦ }
BVsl∆ ,

[a, S1 ]

BVslΠ1

and
[ā, S2 ]

BVslΠ2

.
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It follows that in proof Π1 there must be a context S ′1{ } such that S1 = S′1{ ā }
and

Π1 =

S′′{◦}
ai↓

S′′ [a, ā]

[a, S′1{ā}]

BVsl∆

BVsl

for some S′′{ }, in which we single out the instance of the rule ai↓ where the
occurrence of a interacts with the occurrence of ā from S ′1{ ā }. By replacing in
Π1 every occurrence of a and ā with ◦, we can obtain a proof in BVsl of S ′1{ ◦ }.
Analogously, we can transform Π2 into a proof in BVsl of S ′2{◦} such that S2 =
S′2{a}. Because every proof in BVsl is also a proof in BV, we can then construct
the following proof

S′1{ ◦ }

S′1{S
′
2{ ◦}}

ai↓
S′1{S

′
2 [a, ā]}

[S′1{ ā }, S′2{ a }]

S{ ◦}
BVsl∆

BV∆′

BVsl

BVsl

where Proposition 5.36 is used twice to construct the derivation ∆′. By applying
Theorem 5.32, replace the proof of [S ′1{ ā }, S′2{ a }] in BV above with a proof in
BVsl. Repeat this argument inductively, starting from the top-most instance of the
rule ai↑, for any proof in BVsl ∪ { ai↑ } and eliminate all the instances of the rule
ai↑ one after another. �

5.3. The Seq Rule

At a first glance, the rules switch and seq appear to be different in nature due to
the different logical operators they work on. However, at a closer inspection of these
rules, one can observe that both of these rules manage the context of the structures
they are applied at in a similar way. While the switch rule reduces the interaction
in the structures involving a copar structure in a bottom-up application, the seq
rule does the same with the structures involving seq structures. In this section,
exploiting this observation, I will carry the ideas from the previous section to the
seq rule at the level of conjecture, state some facts about system BV, and discuss
the difficulties in attempts for proving this conjecture.

Definition 5.38. The rules

S〈[R, W ]; T 〉
lq3↓

S [〈R; T 〉, W ]
and

S〈R; [T, W ]〉
lq4↓

S [〈R; T 〉, W ]
,
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where W is not a proper par structure, are called lazy seq 3 (lq3↓) and lazy seq 4
(lq4↓), respectively.

Proposition 5.39. Let S ∈ {BV, BVs, BVsl}. The system resulting from re-
placing the rule q↓ in S with {q1↓, q2↓, lq3↓, lq4↓} and system BV are equivalent.

Proof. The rules q3↓ and q4↓ are derivable for the rules lq3↓ and lq4↓:

S〈[R, V, T ]; U〉
lq3↓

S [〈[V, T ]; U〉, R]
lq3↓

S [〈T ; U〉, R, V ]

S〈T ; [R, V, U ]〉
lq4↓

S [〈T ; [V, U ]〉, R]
lq4↓

S [〈T ; U〉, R, V ]

Result follows immediately from Corollary 4.29. �

Definition 5.40. Let W denote structures that are not proper par structures.
The following rules are called interaction seq rule 1, lazy interaction seq rule 3, and
lazy interaction seq rule 4, respectively:

S〈[R, U ]; [T, V ]〉
iq1↓

S [〈R; T 〉, 〈U ; V 〉]
where at R ∩ at U 6= ∅ and at T ∩ atV 6= ∅

S〈[R, W ]; T 〉
liq3↓

S [〈R; T 〉, W ]
where at R ∩ atW 6= ∅

S〈T ; [R, W ]〉
liq4↓

S [〈T ; R〉, W ]
where at R ∩ atW 6= ∅

Definition 5.41. The system resulting from replacing the seq rule in system
BVsl with the rules iq1↓, q2↓, liq3↓, and liq4↓ is called interaction system BV, or
BVi.

Definition 5.42. Let W denote structures that are not proper par structures.
The following rules are called non-interaction seq rule 1, non-interaction seq

rule 3, and non-interaction seq rule 4, respectively:

S〈[R, U ]; [T, V ]〉
niq1↓

S [〈R; T 〉, 〈U ; V 〉]
where atR ∩ at U = ∅ or at T ∩ at V = ∅

S〈[R, W ]; T 〉
niq3↓

S [〈R; T 〉, W ]
where at R ∩ at W = ∅

S〈T ; [R, W ]〉
niq4↓

S [〈T ; R〉, W ]
where at R ∩ at W = ∅

Remark 5.43. Every instance of the rule q↓ is an instance of one of the rules
iq1↓, niq1↓, q2↓, liq3↓, niq3↓, liq4↓, or niq4↓. We have seen in Proposition 5.39 that
the systems { q↓ } and { q1↓, q2↓, liq3↓, liq4↓ } are equivalent. Every instance of the
rule q1↓ is either an instance of the rule iq1↓ or niq1↓, every instance of the rule
q3↓ is either an instance of the rule liq3↓ or niq3↓, and every instance of the rule
q4↓ is either an instance of the rule liq4↓ or niq4↓.

When we carry the ideas above to system BVi, we observe that using the split-
ting technique will not be possible in the context of system BVi, as demonstrated
by the example below:



118 5. REDUCING NONDETERMINISM IN PROOF SEARCH

Example 5.44. Consider the structure

[〈[a, b, c]; [d, e]〉, ā, 〈b̄; d̄〉, 〈c̄; ē〉 ]

which is provable in BVsl. By applying Theorem 5.25, we can obtain the derivation

∆ =

〈[ā, b̄, c̄]; [d̄, ē]〉
q3↓

[ā, 〈[b̄, c̄]; [d̄, ē]〉]
q1↓

[ā, 〈b̄; d̄〉, 〈c̄; ē〉]

such that
[ā, b̄, c̄, a, b, c]

BVsl
and

[d̄, ē, d, e]

BVsl
.

However, the derivation ∆ is impossible in system BVi because the instances of the
rules q1↓ and q3↓ in ∆ are instances of the rules niq1↓ and niq3↓, respectively.

In the calculus of structures, often inference rules can be permuted over each
other, for example instance of one rule is inside the context of the other. In his
Ph.D. thesis, Straßburger gives a characterization of such permutations [Str03a].
Let me now consider these permutations in the context of system BVi:

Definition 5.45. A rule ρ permutes over a rule β (or β permutes under ρ) if

for every derivation

Q
β

U
ρ

P

there is a derivation

Q
ρ

V
β

P

.

Definition 5.46. A rule ρ permutes well over a rule β if for every derivation
Q

β
U

ρ
P

there is a derivation

Q
ρ

V
β

P

or
Q

ρ
P

.

Definition 5.47. In an instance of an inference rule a substructure that occurs
exactly once in the redex as well as in the contractum of a rule without changing is
called passive, and all the substructures of the redexes and the contracta, that are
not passive, (i.e. that change, disappear or are duplicated) are called active.

Example 5.48. Consider the following instance of the rule s:

([a, b, d], c)
s

[([a, b], c), d]

In this instance, the structures a, b, c, d, and [a, b] are passive, whereas the struc-
tures ([a, b, d], c), [([a, b], c), d], [a, b, d], [b, d], [a, d], and ([a, b], c) are active.

Remark 5.49. Every rule ρ permutes over every rule β if both of the following
conditions hold:

(a) the redex of β is not inside an active structure of the contractum of ρ;
(b) the contractum of ρ is not inside an active structure of the redex of β.

The reason for this can be observed, as it is demonstrated, in the following
situation:

Q
β

S{U}
ρ

S{R}

where the redex R and the contractum U of ρ are known and we have to make a
case analysis for the proposition of the redex of β inside the structure S{U}. There
are the following possibilities:
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(1) The redex of β is inside the context S{ } of ρ. Let Q = S ′{U}. Then we
permute as follows:

S′{U}
β

S{U}
ρ

S{R}

;

S′{U}
ρ

S′{R}
β

S{R}

(2) The contractum U of ρ is inside a passive structure of the redex of β.
Then we permute as in case (1).

(3) The redex of β is inside a passive structure of the contractum U of ρ.
Let R = R′{T}, U = U ′{T}, and Q = S{U ′{T ′}}. Then we permute as
follows:

S{U ′{T ′}}
β

S{U ′{T}}
ρ

S{R′{T}}

;

S{U ′{T ′}}
ρ

S{R′{T ′}}
β

S{R′{T}}

Proposition 5.50. Any rule ρ ∈ {niq1↓, niq3↓, niq4↓, q2↓} permutes well over
any β ∈ {lis, ai↓, liq3↓, liq4↓}.

Proof. It suffices to check the cases excluded by the conditions of Remark
5.49. I will prove the result for ρ = niq1↓ and ρ = q2↓. The cases for ρ = niq3↓ and
ρ = niq4↓ are similar to the case for ρ = niq1↓.

(1) ρ = niq1↓

(a) The redex of β is inside an active structure of the contractum of
niq1↓. Let β ∈ {lis, ai↓, liq3↓, liq4↓}. Then such a derivation must be
of the form

S〈Q ; [T, V ]〉
β

S〈 [R, U ] ; [T, V ]〉
niq1↓

S [〈R; T 〉, 〈U ; V 〉]

where the redex and the contractum of β are marked. However, this
contradicts with at R ∩ at U = ∅, thus this case is impossible.

(b) The contractum of niq1↓ is inside an active structure of the redex
of β: For β ∈ {lis, ai↓} this is impossible because the contractum
of niq1↓ is a proper seq structure, whereas the redex of β does not
contain any seq structures. For liq3↓, we have the following situation,
the case for liq4↓ is similar:

S〈[R, U, P ]; [T, V ]〉
liq3↓

S [P, 〈[R, U ]; [T, V ]〉]
niq1↓

S [P, 〈R; T 〉, 〈U ; V 〉]

It must be that atP ∩ at [R, U ] 6= ∅. If atP ∩ at R 6= ∅, then we
permute as follows:

S〈[R, U, P ]; [T, V ]〉
niq1↓

S [〈[P, R]; T 〉, 〈U ; V 〉]
liq3↓

S [P, 〈R; T 〉, 〈U ; V 〉]
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Otherwise we permute as follows:

S〈[R, U, P ]; [T, V ]〉
niq1↓

S [〈R; T 〉, 〈[P, U ]; V 〉]
liq3↓

S [P, 〈R; T 〉, 〈U ; V 〉]

(2) ρ = q2↓

(a) The redex of β is inside an active structure of the contractum of q2↓:
For β ∈ {lis, ai↓, liq3↓, liq4↓} this is impossible because the contractum
of q2↓ is a proper seq structure which cannot match the redex of β.

(b) The contractum of q2↓ is inside an active structure of the redex of β:
For β ∈ {lis, ai↓} because β does not involve any seq structures, this
is impossible. For β ∈ {liq3↓, liq4↓} we can have the situation where
the instance of the rule liq3↓ (liq4↓) can be equivalently removed as
follows:

S〈[R, P ]; T 〉
liq3↓

S [〈R; T 〉, P ]
q2↓

S [R, T, P ]

;
S〈[R, P ]; T 〉

q2↓
S [R, T, P ]

�

In general, the rules niq1↓, niq3↓, niq4↓, and q2↓ cannot permute over iq1↓. For
instance, consider the following derivations (the redexes are highlighted):

〈[a, ā, b]; [c, d, d̄]〉
iq1↓

[〈[a, b]; [c, d]〉, 〈ā; d̄〉]
niq1↓

[〈a; c〉, 〈b; d〉, 〈ā; d̄〉]

〈[a, b, b̄]; [c, c̄]〉
iq1↓

[〈[a, b]; c〉, 〈b̄; c̄〉]
niq3↓

[〈a; c〉, b, 〈b̄; c̄〉]

〈[a, ā]; [b, c, 〈b̄; c̄〉]〉
iq1↓

[〈a; [b, c]〉, 〈ā; b̄; c̄〉]
q2↓

[〈a; [b, c]〉, 〈 [ā, b̄] ; c̄〉]

However, we can state the following result:

Proposition 5.51. Any rule ρ ∈ {niq1↓, niq3↓, niq4↓, q2↓} permutes well over
iq1↓ if the contractum of ρ is not inside an active structure of the redex of iq1↓.

Proof. We check the only case excluded by the conditions of Remark 5.49:
The redex of iq1↓ is inside an active structure of the contractum of ρ. I will prove
the result for ρ = niq1↓ and ρ = q2↓. The cases for ρ = niq3↓ and ρ = niq4↓ are
similar to the case for ρ = niq1↓.

(1) If ρ = niq1↓, then the redex of iq1↓ is inside an active structure of the
contractum of niq1↓. Such a derivation must be of the form

S〈 [R′, U ′ ]; [R′′, U ′′ ] ; [T, V ]〉
iq1↓

S〈 [〈R′; R′′〉, 〈U ′; U ′′〉] ; [T, V ]〉
niq1↓

S [〈R′; R′′; T 〉, 〈U ′; U ′′; V 〉]

where the redex and the contractum of q1↓ are marked. It must be that

at 〈R′; R′′〉 ∩ at 〈U ′; U ′′〉 = ∅ or at T ∩ at V = ∅. These conditions cannot
both hold, because this contradicts with the conditions at R′ ∩ at U ′ 6= ∅
and at R′′ ∩ atU ′′ 6= ∅. Otherwise if at T ∩ atV = ∅, then we have the
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situation in the above derivation. Then we permute as follows:

S〈[R′, U ′ ]; [R′′, U ′′ ]; [T, V ]〉
niq1↓

S〈[R′, U ′ ]; [〈R′′; T 〉, 〈U ′′; V 〉]〉
iq1↓

S [〈R′; R′′; T 〉, 〈U ′; U ′′; V 〉]

(2) If ρ = q2↓, then this case is impossible, because the contractum of q2↓ is
a proper seq structure which cannot match the redex of iq1↓.

�

Proposition 5.52. Rule lis permutes under any rule ρ ∈ {ai↓, iq1↓, liq3↓, liq4↓}
if the redex of lis is not an active structure of the contractum of ρ.

Proof. We check the only case excluded by the conditions of Remark 5.49:
The contractum of ρ is an active structure of the redex of lis. This is impossible
because the contractum of the rule ai↓ is the unit and the contractum of iq1↓, liq3↓,
and liq4↓ is a seq structure which cannot be active structures inside the redex of
lis. �

Remark 5.53. Despite the propositions above, it is impossible to obtain a parti-
tioning of the provable BV structures within system BVi even in more general forms

of Theorem 5.25, for instance given a derivation of the form
〈K1; K2〉

K
BVsl∆ we cannot

obtain a derivation

[L1, . . . , Lm, 〈P1,1; P1,2〉, . . . , 〈Ps,1; Ps,2〉, R1, . . . , Rn ]

K

BVi ,

such that there are derivations

K1

[L1, . . . , Lm, P1,1, . . . , Ps,1 ]

BVsl and

K2

[P1,2, . . . , Ps,2, R1, . . . , Rn ]

BVsl .

Example 5.54. Consider the following structure which is provable in system
BVi:

[〈[ā, b̄]; c̄; d̄〉, 〈a; (〈c; d〉, ē)〉, 〈b; e〉]

We can apply Theorem 5.25 to this structure such that 〈R; T 〉 = 〈[ā, b̄]; c̄; d̄〉, such
that R = 〈[ā, b̄]; c̄〉 and T = d̄. We get the derivation

〈[a, b]; c; d〉
ai↓
〈[a, b]; (〈c; d〉, [e, ē])〉

lis
〈[a, b]; [(〈c; d〉, ē), e]〉

q1↓
[〈a; (〈c; d〉, ē)〉, 〈b; e〉]

such that [R, 〈[a, b]; c〉] and [T, d̄ ] are provable in BVsl. A partitioning, even in the
form of Remark 5.53 is impossible in system BVi.

However, in the light of the observations above we can state the following
conjecture:

Conjecture 5.55. System BV and BVi are equivalent.
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It is immediate that every proof in BVi is also a proof in BV. However, trans-
forming the proofs in BV into proofs in BVi is difficult: In the proofs of BV struc-
tures, because of the interleaving between the context management of the com-
mutative copar operator, performed by the rule s, and the non-commutative seq
operator, performed by the rule q↓, it is also impossible to decompose the proof into
different phases [Str03a] such that at every phase different rules are applied. This
is because the commutative and non-commutative context cooperate to promote
the interactions described by the relation ↓, and then some instances of atomic
interactions must be applied so that other substructures will be released so that a
proof can be constructed:

Example 5.56. Straßburger gives the structure

[〈([d, d̄], 〈a; b〉); c〉, 〈ā; (〈b̄; c̄〉, [e, ē])〉] ,

which is provable in BV. This structure cannot be proved by constructing a proof
bottom-up, by first applying only the rules s and q↓, and then only the rule ai↓.

This complex behaviour is the source of difficulty also for the conjecture on the
equivalence of system BV and pomset logic [Gug07, Str03a].

When we analyze system BV further, we observe that an important part of the
nondeterminism in proof search is because of the rule q2↓.

Example 5.57. Consider the following BV structure which is trivially provable
in system BVi by applying the rule ai↓ twice:

[a, ā, b, b̄]

The rule q2↓ can be applied to this structure in 50 different ways, e.g.,

〈[a, b]; [ā, b̄]〉
q2↓

[a, b, ā, b̄]
,

〈a; [b, ā, b̄]〉
q2↓

[a, b, ā, b̄]
,

〈b; [a, ā, b̄]〉
q2↓

[a, b, ā, b̄]
, and

〈ā; [a, b, b̄]〉
q2↓

[a, b, ā, b̄]
,

although this structure can be proved without any instance of this rule and the
premise of only 15 of these 50 remain provable.

Unlike the rule switch 2, presented in Definition 4.24, which can be safely
removed from system BV, the rule seq 2 cannot be removed from any system which
is complete for provable BV structures. In order to see the reason for this consider
the following example BV structure that I borrowed from [Tiu01]:

Example 5.58. The structure [〈a; [b, c]〉, 〈[ā, b̄]; c̄〉] cannot be proved without
any instance of the rule q2↓. Because there are no proper copar structures in this
structure the rule s cannot be applied to this structure (without resorting to equations
for unit). Furthermore, because of Proposition 5.9, application of any of the rules
q1↓, q3↓, and q4↓ results in a structure which is not provable. However, with the
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availability of the rule q2↓, among others, we have the following proof:

◦↓
◦

ai↓
[b, b̄]

ai↓
[〈 [a, ā] ; b〉, b̄]

liq3↓
[〈a; b〉, ā, b̄]

ai↓
〈[〈a; b〉, ā, b̄]; [c, c̄]〉

iq1↓
[〈a; b; c〉, 〈[ā, b̄]; c̄〉]

q2↓
[〈a; [b, c]〉, 〈[ā, b̄]; c̄〉]

Definition 5.59. Let system BVu′ and BVi′, respectively, be the systems ob-
tained by removing the rule q2↓ from systems BVu and BVi, respectively.

As it can be observed in Example 5.58, the systems BVu′ and BVi′ are not
complete for provable BV structures, because these systems lack the rule q2↓. How-
ever, the observations on the relationship between the commutative par relation
and the non-commutative seq relation in relation webs makes it possible to state
the conjecture below.

Definition 5.60. Let interaction seq 2 be the rule

S〈R; T 〉
iq2↓

S [R, T ]

such that the following holds: Let µ and ν be the sets of atom occurrences in struc-
tures R̄ and T̄ , respectively. Then it holds that µ / ν ⊆ /S{ }.

Definition 5.61. Let system BVi′′ = BVi′ ∪ { iq2↓ }.

Conjecture 5.62. The system BVi′′ and system BVi are equivalent.

The intuition behind this conjecture is the following: The role played by the
rule q2↓ in proof search is transforming the commutative par relation between two
structures into the non-commutative seq relation. Although this is necessary in
some cases, in others it is better not to allow the application of this rule if the duals
of the atoms in these two structures are not already in a seq relation.

5.4. Cautious Rules

In a bottom-up application of the rules switch and seq in proof construction,
besides promoting interactions between some atoms, the interaction between other
atoms are broken as it can be seen in Example 5.10. However, if the structure being
proved consists of pairwise distinct atoms, breaking the interaction between dual
atoms in a bottom-up inference step delivers a structure which cannot be proved.
The following definition introduces a further restriction on these inference rules
that exploits this observation and allows only cautious instances of the inference
rules which do not break the interaction between dual atoms.

Definition 5.63. Pruned switch is the rule

S([R, W ], T )
ps

S [(R, T ), W ]
,
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where at T ∩ at W = ∅, and pruned seq is the rule

S〈[R, T ]; [U, V ]〉
pq↓

S [〈R; U〉, 〈T ; V 〉]
,

where at T ∩ at U = ∅ and atR ∩ at V = ∅.

Definition 5.64. Pruned system BV, or system BVp is the system given by
{◦↓ , ai↓ , ps , pq↓}.

Proposition 5.65. Let P be a BV structure that consists of pairwise distinct
atoms and Π be a proof of P in BV (BVs, BVsl, respectively). In Π all the instances
of the rule s (is, lis, respectively) are instances of the rule ps and all the instances
of the rule q↓ are instances of the rule pq↓.

Proof. For any provable BV structure P , from Proposition 5.9, we have that
for all the atoms a ∈ at P , (a, ā) ∈↓P . Thus, it suffices to show that the bottom-up
application of the rules s and q↓ without respecting the restriction imposed by the
rules ps and pq↓ result in structures that are not provable. Let P be a provable BV

structure with pairwise distinct atoms such that

• P = S [(R, T{a}), W{ā}], that is, at W{ā} ∩ at T{a} ⊇ {a}. Applying
the rule s without the restriction imposed by the rule ps results in the
structure P ′ = S([R, W{ā}], T{a}). It follows that (a, ā) /∈ ↓P ′ which
contradicts with Proposition 5.9.

• P = S [〈R; U{a}〉, 〈T{ā}; V 〉], that is, atT{ā} ∩ atU{a} ⊇ {a}. Applying
the rule q↓ without the restriction imposed by the rule pq↓ results in the
structure P ′ = S〈[R, T{ā}]; [U{a}, V ]〉. It follows that (a, ā) /∈↓P ′ which
contradicts with Proposition 5.9.

�

Proposition 5.66. Let P be a BV structure that consists of pairwise distinct
atoms and Π be a proof of P in BVi. In Π all the instances of the rule s are instances
of the rule ps and all the instances of the rule iq1↓,q2↓, liq3↓, and liq4↓ are instances
of the rule pq↓.

Proof. Follows immediately from Remark 5.43 and Proposition 5.65. �

5.5. Implementation in Maude

In Chapter 3, we have seen that the bottom up application of an inference rule
can be represented as a rewriting rule that rewrites the conclusion to the premise
of the inference rule. Similarly, inference rules with conditions can be represented
as conditional rewrite rules. For instance, consider the following rewrite rule for
the inference rule interaction seq rule 1:

iq1↓ : [〈R; U〉, 〈T ; V 〉] → 〈[R, T ]; [U, V ]〉

if at R ∩ atT 6= ∅ ∧ atU ∩ atV 6= ∅

The inference rules of system BVi, that impose restrictions on the structures,
can be implemented in the language Maude, by considering these inference rules
as such conditional rewrite rules. The conditional rewrite rules are defined by the
keyword crl in their Maude representation with the syntax
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crl [<Label>] : <Term-1> => <Term-2>

if <Condition-1> /\ ... /\ <Condition-k> .

where the conditions can be equations which are computed by a functional module.
The implementation below exploits these features of the language Maude for im-
plementing systems FBVi and BVi. The functional module Can-interact contains
the equations that implement the conditions of the inference rules of system BVi.
When we remove the rewrite rules for the rule q↓ from the module for system BVi

below, we obtain an implementation of system FBVi.

fmod BV-Signature is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

ops a b c d e f g h i j k l m n p q r s : -> Atom .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ].

op -_ : Structure -> Structure [ prec 50 ] .

op [_,_] : Structure Structure -> Structure [assoc comm] .

op {_,_} : Structure Structure -> Structure [assoc comm] .

op <_;_> : Structure Structure -> Structure [assoc] .

endfm

fmod Can-interact is

inc BV-Signature .

sort Interaction_Query .

op can-interact : -> Interaction_Query .

op empty-set : -> Interaction_Query .

op _or_ : Interaction_Query Interaction_Query

-> Interaction_Query [assoc comm prec 70] .

op _ci_ : Atom Structure -> Interaction_Query [prec 60] .

var R T U V : Structure .

var A B : Atom .

var C : Interaction_Query .

eq A ci - A = can-interact .

eq - A ci A = can-interact .

eq A ci B = empty-set [owise] .

eq [ T , U ] ci R = T ci R or U ci R .

eq { T , U } ci R = T ci R or U ci R .

eq < T ; U > ci R = T ci R or U ci R .
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eq A ci [ R , T ] = A ci R or A ci T .

eq A ci { R , T } = A ci R or A ci T .

eq A ci < R ; T > = A ci R or A ci T .

eq can-interact or C = can-interact .

eq empty-set or C = C .

endfm

mod BVi is

inc Can-interact .

var R T U V P Q : Structure . var A : Atom .

rl [ai-u1-down] : [ [ A , - A ] , R ] => R .

rl [ai-u2-down] : { [ A , - A ] , R } => R .

rl [ai-u3-down] : < [ A , - A ] ; R > => R .

rl [ai-u4-down] : < R ; [ A , - A ] > => R .

crl [rls1] : [ { R , T } , A ] =>

{ [ R , A ] , T }

if R ci A = can-interact .

crl [rls2] : [ { R , T } , { U, V } ] =>

{ [ R , { U , V } ] , T }

if R ci { U , V } = can-interact .

crl [q1-down] : [ < R ; T > , < U ; V > ] =>

< [R,U] ; [T,V] >

if R ci U = can-interact /\

T ci V = can-interact .

rl [q2-down] : [ R , T ] => < R ; T > .

crl [q31-down] : [ A , < R ; T > ] => < [ R , A ] ; T >

if R ci A = can-interact .

crl [q32-down] : [ { U , V } , < R ; T > ] =>

< [ R , { U , V } ] ; T >

if R ci { U , V } = can-interact .

crl [q33-down] : [ < U ; V > , < R ; T > ] =>

< [ R , < U ; V > ] ; T >

if R ci < U ; V > = can-interact .

crl [q41-down] : [ A , < R ; T > ] => < R ; [ T , A ] >

if T ci A = can-interact .
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crl [q42-down] : [ { U , V } , < R ; T > ] =>

< R ; [ T , { U , V } ] >

if T ci { U , V } = can-interact .

crl [q43-down] : [ < U ; V > , < R ; T > ] =>

< R ; [ T , < U ; V > ] >

if T ci < U ; V > = can-interact .

endm

Some representative examples of experiments for comparing the performance
of systems FBV and FBVi are as follows: Consider the following provable flat BV

structures in the implementation in the context of system FBV.

1. [a, b, (ā, c̄), (b̄, c)] 2. [a, b, (ā, b̄, [a, b, (ā, b̄)])]

3. [a, b, (ā, b̄, [c, d, (c̄, d̄)])] 4. [a, b, (ā, b̄, [c, d, (c̄, d̄, [e, f, (ē, f̄)])])]

Let us call the system FBVu the system obtained by removing the inference
rules q1↓, q2↓, q3↓, and q4↓ from system BVu. When we search for a proof of these
queries within the Maude modules for the systems FBVu and FBVi, we get the
results in Table 5.1.

finds a proof search terminates

Query System # states ex-
plored

finds a proof in
# ms (cpu)

# states ex-
plored

finds a proof in
# ms (cpu)

1. FBVu 342 60 369 100

FBVi 34 10 44 20

2. FBVu 1041 100 1074 100

FBVi 264 0 318 10

3. FBVu 1671 310 1759 370

FBVi 140 0 146 10

4. FBVu – – – –

FBVi 6595 1370 6690 1420

Table 5.1. Representative performance comparison of proof
search in the implementations of the systems FBV, and FBVi. The
search on Query 4. halted by running out of memory after having
spent approximately 3GB memory and 80 minutes (cpu).

In the experiments presented in Table 5.1, it is important to observe that the
number of explored states is proportional with the time spent for finding a proof.

Table 5.2 gives a performance comparison of the implementations of the other
systems that I discussed so far in this chapter with the performance of the system
BVu. These experiments were performed on the structures in Section 4.3.1 which
were used for the experiments presented in Table 4.1.

It is important to note that the proof search strategy used in these implementa-
tions is breadth-first search. This search strategy provides a complete exploration
of the search space. However, in proof search, the size of the proof search space
expands rather quickly after a small number of steps in the depth of the search
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tree. For instance, if at every node there are in average 10 (there are often many
more) different possible rule instances, the search space which admits a proof with
length n has

101 + 102 + · · ·+ 10n

nodes, which should be visited, in order to reach this shortest proof. The problem
persists with the depth-first strategy: If the node delivering the proof is at the
right-most node of depth n, and the algorithm starts exploring the search space
from the left-most nodes, then even many more nodes must be visited, before the
proof is found.

As we have seen in Example 5.57, the main source of nondeterminism in system
BVi is the rule q2↓. This can be observed also in the results of the experiments shown
in Table 5.2 . Redesigning this rule in such a way that gets rid of the unnecessary
nondeterminism, possibly as described in Definition 5.60, would provide a much
better performance in proof search.

Because system BV is a multiplicative logic, the essential nondeterminism in
system BV is due to the multiple occurrence of the same atom in the structure
whose proof is being searched. In other words, deciding which atom a to pair with
which atom ā is the main source of nondeterminism in these systems.

Example 5.67. Consider the FBV structure

[a, ā, (a, ā)]

which does not consist of pairwise distinct atoms. The following structures

[a1, ā1, (a2, ā2)] [a1, ā2, (a2, ā1)]

are obtained from the structures above by renaming the atoms. The first structure
is not provable in FBV because the atoms a2 and ā2 are not in a ↓ relation, as it can
be seen in Proposition 5.9. However, the second one is provable in system FBVi.

In [Gue99], Guerrini has shown that correctness of a multiplicative proof net
[Gir87] can be performed in linear time. This result implies that provability of
multiplicative linear logic structures that consist of pairwise distinct atoms can be
performed in linear time. Because system BV is a multiplicative logic, it is plausible
to argue that the ideas of [Gue99] can be carried to system BV. In fact, logical
expressions of pomset logic [Ret97, Ret99], which is a logic similar logic to system
BV, admit a graphical representation called R&B-cographs resembling proof nets.
R&B-cographs enjoy a correctness criterion. Guglielmi [Gug07] and Straßburger
[Str03a] conjectured that system BV and pomset logic are equivalent.

5.6. Nondeterminism in Classical Logic

Systems in the calculus of structures follow a common scheme where the context
management of commutative operators is performed by the switch rule. System KSg

for classical logic is no exception to this. In this section, I will show that, similar
to system BV, the switch rule of system KSg can be safely replaced with the lazy
interaction switch rule in order to reduce nondeterminism in proof search. I will
then show that this technique is complete also for system KS, which is the local
system for classical logic in the calculus of structures [Brü03b].

Definition 5.68. The system KSgi is the system obtained from system KSg by
replacing the rule s with the rule lis. System KSgi is defined on KSg structures.
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finds a proof search terminates

Query System in # millisec. after # rewrites in # millisec. after # rewrites

1. BVu 80 7034 90 7929

BVi 60 12210 60 12210

2. BVu 150 14684 670 57617

BVi 20 10390 180 40227

BVu′ 10 1108 20 1531

BVi′ 0 168 0 785

3. BVu 330 27252 780 57956

BVi 120 28122 230 36452

BVu′ 40 2636 50 3434

BVi′ 30 6000 40 6562

4. BVu 390 36549 1370 117427

BVi 140 40365 520 95408

BVu′ 30 2073 40 2673

BVi′ 10 2382 20 3070

5. BVu 460 43304 1060 86880

BVi 160 36334 410 65744

BVu′ 10 792 10 830

BVi′ 0 862 0 910

6. BVu 3270 258313 6140 447774

BVi 550 158375 1090 224313

BVu′ 330 20878 410 24493

BVi′ 70 24304 100 29225

7. BVu 4420 382911 7280 605438

BVi 900 232448 2010 415960

8. BVu 6200 469793 19060 1248859

BVi 1270 477279 3200 832513

BVu′ 620 43031 910 57301

BVi′ 80 28154 90 31589

9. BVu 9520 855145 18370 1568647

BVi 2830 1285032 3990 1602574

BVu′ 1320 102154 2050 147409

BVi′ 120 49467 170 57458

BVu 17660 1187905 70680 3129460

10. BVi 3670 1495887 8470 2306500

BVu′ 1630 116382 2240 144178

BVi′ 210 77704 260 86538

Table 5.2. Representative performance comparison of proof
search in the implementations of the systems BVu, BVi, BVu′ and
BVi′. Queries 1 and 7 are not provable in systems BVu′ and BVi′.
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In the following, I will show that the systems KSg and KSgi are equivalent. For
this purpose, I will first collect some definitions and lemmas that will be necessary.

Lemma 5.69. The rule w↓ of system KSg permutes under the rule s.

Proof. It suffices to check the cases excluded by Remark 5.49.

(a) The redex is of w↓ is inside an active structure of the contractum of s. In
this case we permute as follows:

S(ff, T )
w↓

S( [R, U ] , T )
s
S [(R, T ), U ]

;

S(ff, T )
w↓

S(R, T )
w↓

S [(R, T ), U ]

(b) The contractum of s is inside an active structure of the redex of w↓. All
the cases being analogous to below, in this case we permute as follows:

S([R, U ], ff)
w↓

S([R, U ], T, P )
s
S([(R, T ), U ], P )

;

S([R, U ], ff)
s
S([(R, ff), U ], ff)

w↓
S([(R, T ), U ], ff)

w↓
S([(R, T ), U ], P )

�

Theorem 5.70. A structure R has a proof in KSg if and only if there are
structures R1, R2, and R3 and there is a proof such that

R3

{ ai↓}

R2

{ s }

R1

{w↓}

R
{ c↓}

.

Proof. The only if direction being trivial, let us see the proof of the if direc-
tion: From Theorem 4.56 it follows that if R has a proof in KSg, then there is a
proof of the following form where R2 is in conjunctive normal form:

R3

{ai↓}

R2

{w↓}

R
{s,c↓}∆

Further, from Lemma 5.69, we know that the rule s permutes over the rule w↓.
Thus, it suffices to show that we can replace the derivation ∆ in the derivation
above as follows, because we can then permute all the instances of the rule s over
all the instances of w↓ by using Lemma 5.69.

R2

R

{s,c↓}∆ ;

R2

R1

{s}

R

{c↓}
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Let us prove this with structural induction on R. If R is an atom or the unit tt or
ff, then it is already in conjunctive normal form. If R = (T, U) or R = [T, U ] then
we have the following derivations by induction hypothesis

T2

T1

{s}∆′

T

T

{c↓}∆T

U2

U1

{s}∆′

U

U

{c↓}∆U

where T2 and U2 are in conjunctive normal form. Let n be the number of disjunc-
tions in U2. We assume that n is greater than one. Otherwise, we can exchange T2

with U2, or if in both T2 and U2, there are less than 2 disjunctions, then they would
be already in conjunctive normal form. We construct the derivations we need for
R = (T, U) and R = [T, U ], respectively, as follows:

(T2, U2)

(T1, U1)

{ s }[∆′

T ,∆′

U ]

(T, U)

{ c↓ }[∆T ,∆U ]

R2

[T2, . . . , T2, U2 ]

{ s }

[T1, . . . , T1, U1 ]

{ s }[∆′

T ,...,∆′

T ,∆′

U ]

[T, . . . , T, U ]

{ c↓ }[∆T ,...,∆T ,∆U ]

[T, U ]

{ c↓ }

�

Definition 5.71. The system Ki is the system obtained from system KSg by
replacing the rule s with the rule lis and removing the rules w↓ and c↓. System Ki

is defined on KSg structures.

The reader might realize that there is a significant similarity between the sys-
tems Ki and the system FBVi (FBV) (the system for multiplicative linear logic
extended by the rules mix and nullary mix). Indeed, these two systems have the
same set of inference rules. However, the treatment of the units in these systems
is quite different: In system FBV there is a single unit, which is shared by all the
connectives. On the other hand, in system Ki, there are two different units, tt and
ff, which are units for different operators. If we consider the multiplicative fragment
of the linear logic system LS (where there are two different units 1 and ⊥, and mix
and nullary mix are not valid), the similarity with system Ki is greater. However,
there is a significant difference between this system and system Ki: In system KSg,
thus also in system Ki, the equalities ff = (ff, ff) and tt = [tt, tt] hold. However, in
multiplicative linear logic, the analogs of these equalities do not hold, and they are
not derivable.

Below, I will carry some definitions and results from the Section 5.2 to system
Ki:
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Definition 5.72. Let R, T be KSg structures such that R 6= ff 6= T . R and T
are independent for Ki if and only if

[R, T ]

Ki
implies

R

Ki and
T

Ki .

Otherwise, they are dependent.

Proposition 5.73. For any Ki structures R and T , if at R̄ ∩ atT = ∅ then R
and T are independent.

Proof. Analogous to the proof of Proposition 5.23: Construct a proof of R
by replacing all the substructures of T in Π with ff. Similarly, construct a proof of
T by replacing all the substructures of R in Π with ff. �

Lemma 5.74.

If
[P, U ]

KiΠ
then, for any structure R, there is a derivation

R

[(R, P ), U ]

Ki .

Proof. Analogous to the proof of Lemma 5.24. �

Theorem 5.75. (Shallow splitting for Ki) For all structures R, T , and P , if

[(R, T ), P ] is provable in Ki then there exists P1, P2 and
[P1, P2 ]

P
Ki∆ such that [R, P1 ]

and [T, P2 ] are provable in Ki.

Proof. Proof by induction, similar to the proof of Theorem 5.25. Consider
the following statement, where the relation ↓R for a structure R is defined as for
BV structures with the difference that the occurrence of the units tt and ff are not
considered in ↓R.

C(n) = ∀n′.∀R, T, P.
(

(n′ ≤ n

∧ n′ = | ↓[(R,T ),P ] |

∧ there is a proof
[(R, T ), P ]

)

⇒ ∃P1, P2.(
[P1, P2 ]

P
∧

[R, P1 ]
∧

[T, P2 ]
)
)

.

The statement of the theorem is equivalent to ∀n.C(n) and the proof is done by
taking n as the induction measure. The base case is trivial. For the inductive cases,
let us always assume tt 6= P 6= ff, because when this is not the case the theorem
is trivially proved. For the same reason, I assume R 6= tt 6= T and R 6= ff 6= T .
Consider the bottom rule instance of the proof Π of [(R, T ), P ]:

Q
ρ ,

[(R, T ), P ]
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I assume that ρ is non-trivial, because every proof with trivial rule instances can
be rewritten as a proof where these trivial instances are removed. The cases for
ρ = ai↓ and ρ = lis, respectively, are as in the Case 2.a and Case 2.c of Theorem
5.25, respectively, by using Lemma 5.74 instead of Lemma 5.24. �

Theorem 5.76. (Context reduction for Ki) For all structures R and for all
contexts S{ } such that S{R} is provable in Ki, there exists a structure U such
that for all structures X there exist derivations:

[X, U ]

S{X}
Ki and

[R, U ]

Ki
.

Proof. Similar to the proof of Theorem 5.29 by induction on the size of S{ff}.
The base case is trivial: U = ff. There are two inductive cases:

(1) S{ } = (S′{ }, P ), for some P 6= tt. There must be proofs in Ki of
S′{R} and of P , thus it must be that P 6= ff. By applying the induction
hypothesis, we can find U and construct, for all X :

[X, U ]

S′{X}

(S′{X}, P )
Ki

Ki

such that [R, U ] is provable in Ki.

(2) S{ } = [S′{ }, P ], for some P 6= ff such that S ′{ } is not a proper par:
If P = tt or S′{ ff } = ff then the theorem is proved; otherwise it must be
that S′{ } = (S′′{ }, P ′), for some P 6= tt. The rest is same as in Case
2.a of the proof of Theorem 5.29, by using Lemma 5.74 instead of Lemma
5.24.

�

We can now state the main result of this section:

Theorem 5.77. System KSg and KSgi are equivalent.

Proof. Observe that every proof in KSgi is also a proof in KSg. For the other
direction, let R be a structure which has a proof in KSg. From Theorem 5.70, we
have the following proof:

R′

R

{w↓ , c↓}∆

{s,ai↓}Π

Replace the proof Π with a proof in Ki, analogous to the proof of Theorem
5.32, by using Theorem 5.76, Theorem 5.75, and Lemma 5.74. �
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5.6.1. Nondeterminism in a Local System for Classical Logic. System
KS [Brü03b] is a local system for classical logic. System KS is obtained from
system KSg by replacing the weakening rule with the atomic weakening rule, and
the contraction rule with the atomic contraction rule and another rule, called the
medial :

Definition 5.78. The following rules are called atomic weakening (aw↓), atomic
contraction (ac↓) and medial (m), respectively:

S{ff}
aw↓

S{a}

S [a, a]
ac↓

S{a}

S [(R, U), (T, V )]
m

S([R, T ], [U, V ])

Definition 5.79. System KS is the system obtained from system KSg by re-
placing the rule w↓ and the rule c↓ with the rules aw↓, ac↓ and m.

Definition 5.80. The following rule is called tt-weakening (ttw↓):

S{ff}
ttw↓

S{tt}

Proposition 5.81. The rule ttw↓ is derivable for {s}.

Proof. Take the following derivation:

S{ff}
≈

S([tt, tt], ff)
s
S [(tt, ff), tt]

≈
S{tt}

�

Brünnler and Tiu proved the following two theorems in [BT01].

Theorem 5.82. The rule w↓ is derivable for {aw↓, ttw↓}. The rule c↓ is deriv-
able for {ac↓, m}.

Theorem 5.83. System KS and KSg are equivalent.

Definition 5.84. The system KSi is the system obtained from system KS by
replacing the rule s with the rules lis and ttw↓.

Corollary 5.85. Systems KSi, KSgi, KS and KSg are equivalent.

Proof. Follows immediately from Theorem 5.70, Theorem 5.77, Theorem 5.82
and Theorem 5.83. �

5.7. Discussion

In this chapter, I have introduced a technique for reducing nondeterminism in
proof search by restricting the application of the inference rules. The inference
rules for context management, which are redesigned with respect to this technique,
can be applied only in certain ways that promote the interaction, in the sense of
a specific mutual relation between dual atoms. Because proofs are constructed by
annihilating dual atoms, the restrictions on the applications of the inference rules
do not only reduce the breadth of the search space drastically, but also make the
shorter proofs more immediately accessible.
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The mutual relationships, that I used, originate from a graphical representation
(relation webs) of BV structures. However, we have seen that the intuition provided
by these relations can be analogously carried to other logics such as classical logic.
By using this technique, I obtained a class of equivalent systems to system BV

where nondeterminism is reduced at different levels. Then I demonstrated that this
technique does not depend on the multiplicative nature of system BV: It can be
analogously applied to systems for classical logic, i.e., systems KSg and KS, in a
way that results in equivalent systems to these systems, where nondeterminism is
reduced.

The splitting argument that I used in the completeness proofs of the result-
ing systems was initially invented as a technique in [Gug07] for proving cut-
elimination. For system BVsl, I employed a simple specialization of the splitting
theorem in [Gug07]. Because the procedure for showing the completeness of these
systems is closely related with a cut-elimination procedure, the new systems which
are obtained by means of this new technique remain clean from a proof theoretic
point of view. Further, because splitting provides a partitioning of the structure
being proved, it can also be used as a search strategy in conjunction with the
technique of this thesis.

In [Str03a], Straßburger used the splitting technique to prove cut elimination
in a linear logic system in the calculus of structures. In [GS02, Str03a], decompo-
sition and splitting are used together to prove cut-elimination for system NEL in a
similar way to the completeness proof of system KSgi in this chapter. Furthermore,
all the systems in the calculus of structures follow a scheme where the context man-
agement is performed by the switch rule, which is common to all systems. Because
system BVsl is obtained by replacing the switch rule with the restricted lazy switch
rule by means of splitting, I believe that the methods that I presented in this chap-
ter can be generalized to systems NEL, LS, and other systems in the calculus of
structures.





CHAPTER 6

System BV is NP-complete

Since its emergence, the multiplicative fragment of linear logic remained in the
focus of researchers due to its resource conscious features that capture properties
of concurrent computation (see, e.g., [Bel97]). Max Kanovich shows in [Kan91,

Kan92] that multiplicative linear logic (MLL) is NP-complete. In [LW94], Lin-
coln and Winkler show that constant-only fragment of MLL is also NP-complete.
However, from the point of view of applications, multiplicative linear logic lacks a
natural notion of sequentiality, which is crucial for expressing many computational
phenomena, e.g., sequential composition of processes in concurrency theory. Sys-
tem BV extends MLL with the rules mix (mix), nullary mix (mix0), and a self-dual
non-commutative logical operator seq. Thus, system BV extends the applications
of MLL to those where sequential composition is crucial.

System NEL extends system BV with the exponentials of linear logic. In other
words, system NEL is an extension of multiplicative exponential linear logic (MELL)
with the rules mix, mix0, and the self-dual non-commutative logical operator seq.
Although it is unknown whether multiplicative exponential linear logic is decidable
or not, in [Str03c], Straßburger showed that system NEL is undecidable. Figure
2.5 summarizes the relationship between MLL, FBV, BV, MELL, and NEL. In this
chapter, I will show that when MLL is extended with mix and mix0, it remains
NP-complete. Then I will show that the decision problem for system BV is also
NP-complete. For this purpose, I will resort to some results from Chapter 5, which
will serve as combinatoric proof theoretic tools.

6.1. System BV is NP-hard

In this section, I present an encoding of the 3-Partition Problem [GJ79] in
system FBV to show the NP-hardness of this logic and system BV. This problem
was also used by Lincoln and Winkler, in [LW94], to show the NP-hardness of the
constant only fragment of MLL. By providing a similar encoding, and resorting
to the proof theory of system FBV, I will provide a very simple correctness proof
without going into a complicated case analysis.

Problem 6.1. (3-Partition) Given a set of A = {a1, a2, . . . , a3m} of elements,
a bound B ∈ N

+, and a size S(a) ∈ N
+ for each a ∈ A such that 1

4B < S(a) < 1
2B

and
∑

a∈A S(a) = Bm, does there exist a partition of A into m disjoint subsets Ai

so that
∑

a∈Ai
S(a) = B for each Ai in the partition.

The constraints on the S(a) imply that such a partition must have exactly three
elements in each of its sets. This problem is NP-complete in the strong sense, which
implies that even when the input is represented in unary, the problem is NP-hard.
This property of 3-Partition is essential for my encoding, because I represent the
input problem by using atoms.

137
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6.1.1. Encoding the 3-Partition Problem in FBV. Given an instance of
3-Partition equipped with a set A = {a1, a2, . . . , a3m}, a unary function S, and a
natural number B, presented as a tuple 〈A, m, B, S〉, the encoding function θ is
defined as θ( 〈A, m, B, S〉 ) =

[(k, [ c, . . . , c
︸ ︷︷ ︸

× S(a1)

]), . . . , (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a3m)

]), ([k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)], . . . , [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])

︸ ︷︷ ︸

×m

]

Lemma 6.2. Let S(a1), S(a2) and S(a3) be natural numbers such that, for some
natural number B, it holds that 1

4B < S(a1), S(a2), S(a3) < 1
2B. If S(a1)+S(a2)+

S(a3) = B, then

[R, Q]

[R, (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a1)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a2)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a3)

]), (Q, [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])]

FBV∆
.

Proof. Take the following derivation where the redex in the conclusion of the
applied rule is highlighted.

[R, Q]
i↓

[R, (Q, [ c, . . . , c
︸ ︷︷ ︸

× S(a1)

, c, . . . , c
︸ ︷︷ ︸

× S(a2)

, c, . . . , c
︸ ︷︷ ︸

× S(a3)

, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])]

ai↓
...

s
[R, (k, [c, . . . , c]), (k, [c, . . . , c]), (Q, [k̄, k̄, c, . . . , c, (c̄, . . . , c̄)]) ]

ai↓
[R, (k, [c, . . . , c]), (k, [c, . . . , c]), (Q, [( [k, k̄ ] , [c, . . . , c]), k̄, k̄, (c̄, . . . , c̄)])]

s
[R, (k, [c, . . . , c]), (k, [c, . . . , c]), (Q, [(k, [c, . . . , c]), k̄ , k̄, k̄, (c̄, . . . , c̄)])]

s
[R, (k, [ c, . . . , c

︸ ︷︷ ︸

× S(a1)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a2)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a3)

]), (Q, [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)]) ]

�

Theorem 6.3. If a 3-Partition problem 〈A, m, B, S〉 is solvable, then there is
a proof of θ( 〈A, m, B, S〉 ) in FBV.

Proof. By induction on m: The base case is given by the proof consisting of
the rule ◦↓. For the inductive case, assume that the result holds for m = k. Assume
that the problem 〈A ∪ {a1, a2, a3}, k + 1, B, S〉 is solvable such that {a1, a2, a3} is
a 3-partition in the solution. It follows that there is a solvable 3-Partition problem
given with 〈A, k, B, S〉. Let [R, Q] = θ( 〈A, k, B, S〉 ). Take the proof below of
θ( 〈A ∪ {a1, a2, a3}, k + 1, B, S〉 ) where Π is given by the induction hypothesis and
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∆ is given by Lemma 6.2.

[R, Q]

[R, (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a1)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a2)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a3)

]), (Q, [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])]

∆

Π

�

6.1.2. Completeness of the Encoding.

Theorem 6.4. For A, m, B, and S satisfying the constraints of 3-Partition, if
there is a proof of θ( 〈A, m, B, S〉 ) in FBV, then the 3-Partition problem 〈A, m, B, S〉
is solvable.

Proof. By induction on m: The case for m = 0 corresponds to empty problem
which is trivially solved. For the inductive case, let 〈A, m + 1, B, S〉 be such that
A = {a1, a2, . . . , a3m, a3m+1, a3m+2, a3m+3}. Assuming that we have a proof of
θ( 〈A, m + 1, B, S〉 ), we show that 〈A, m + 1, B, S〉 is solvable. Let

R = [(k, [ c, . . . , c
︸ ︷︷ ︸

× S(a1)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a2)

]), . . . , (k, [ c, . . . , c
︸ ︷︷ ︸

× S(a3m+2)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

×S(a3m+3)

])]

and Q = ([k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)], . . . , [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])

︸ ︷︷ ︸

×m

such that

θ( 〈A, m + 1, B, S〉 ) = [R, (Q, [k̄, k̄, k̄, ( c̄, . . . , c̄
︸ ︷︷ ︸

×B

)])] .

From Corollary 5.34 we have that θ( 〈A, m + 1, B, S〉 ) has a proof in FBV if and
only if it has a proof in FBVs. It follows from Corollary 5.28 that

[K1, K2 ]

R
FBVs∆ such that

[K1, Q]

FBVsΠ
and

[K2, k̄, k̄, k̄, (c̄, . . . , c̄)]

FBVs
.

Because there are only positive atoms in R, it follows that none of the rules ai↓
and is can be applied in ∆, hence the derivation ∆ must be the structure R. This
implies that [K1, K2 ] are two partitions of R. Observe that in K2 there must be
exactly 3 occurrences of k, which implies that, for some ai, aj , ak ∈ A,

K2 = [(k, [ c, . . . , c
︸ ︷︷ ︸

× S(ai)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(aj)

]), (k, [ c, . . . , c
︸ ︷︷ ︸

× S(ak)

])]

and S(ai) + S(aj) + S(ak) = B, and we can apply the induction hypothesis to the
proof Π. �

Corollary 6.5. System FBV is NP-hard.

Proof. Follows immediately from Theorem 6.3 and Theorem 6.4. �
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Because system BV is a conservative extension of system FBV, this result im-
plies the NP-hardness of system BV.

Corollary 6.6. System BV is NP-hard.

Proof. Follows immediately from Proposition 2.30 and Corollary 6.5. �

6.2. System BV is NP-complete

With Proposition 5.14, we have seen that the length of a proof of a BV structure
is bounded by a polynomial in the size of this structure. Thus, the main result of
this Chapter follows from the result in Sections 6.1.

Theorem 6.7. System BV is NP-complete.

Proof. Follows immediately from Corollary 6.6 and Proposition 5.14. �

Corollary 6.8. Multiplicative linear logic extended by the rules mix and mix0,
or System FBV, is NP-complete.

Proof. Follows immediately from Corollary 6.5 and Proposition 5.14. �



CHAPTER 7

Implementing Deep Inference Imperatively

In the previous chapters, we have seen implementations of the calculus of struc-
tures systems in Maude. Due to its simple high level language and built in breadth-
first function, Maude is well suited for implementing these systems. However, when
proof search is considered by using a search strategy different than breadth-first
search, implementing these strategies in Maude is rather intricate due to the in-
terweaving between the object-level language and the complex meta-level language
of Maude. As an alternative to these Maude implementations, in this chapter, I
present a recipe for implementing the systems of the calculus of structures in imper-
ative languages, such as C and Java. In these languages different search strategies
can be easily implemented and advanced programming techniques can be effectively
used.

In the following, I will describe a Java implementation of system BV. Be-
cause imperative languages usually do not support pattern matching and term
rewriting directly, in these implementations the Tom tool is used. Tom [MRV03,

KMR05b] is a pattern matching preprocessor that integrates term rewriting and
pattern matching facilities into imperative and functional languages such as C, Java

and OCaml. By resorting to these features of Tom, it becomes possible to combine
term rewriting with the expressive power of these languages.

The Tom tool does not support associative commutative term rewriting. For
this reason, instead of expressing commutativity as equations in the underlying
equational theory of a calculus of structures system, I show that the role played
by the equations for commutativity can be embedded into the inference rules of
the system. Given that the equations for commutativity are equivalently removed,
associativity of the structures can be expressed in a list representation of the struc-
tures. Then, by expressing the inference rules as term rewriting rules as before,
these systems can be easily implemented.

7.1. Removing the Equations for Commutativity

In this section, I will present systems in the calculus of structures where the
equations for commutativity become redundant, and thus can be equivalently re-
moved from the underlying equational theory. In order to remove the equations
for commutativity, I will make the role played by these equations explicit in the
inference rules. That is, for every possible instance of the inference rules which is
obtained by the applications of the equations for commutativity, I will introduce an
inference rule that simulates the role played by these equations. I will first consider
system BV and then show that other systems in the calculus of structures can be
treated analogously, e.g., system KSg:

7.1.1. Removing the Equations for Commutativity in System BV.

141
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Definition 7.1. Consider the following restriction on system BVu, given in
Figure 4.4: The structures W in the inference rules are restricted to atoms, copar
structures and seq structures. In other words, structure W is not a proper par
structure. We will call this system unit-free lazy BV or BVul.

Proposition 7.2. System BV and system BVul are equivalent.

Proof. Follows immediately from Corollary 4.33 and Proposition 5.39. �

Definition 7.3. The system in Figure 7.1 is called commutativity-free BV or
BVc, where W is not a proper par structure. Inference rules of system BVc are
applied to BV structures that are considered equivalent only modulo equations for
associativity.

Proposition 7.4. System BV and system BVc are equivalent.

Proof. Inference rules of BVc are instances of the inference rules of BV. The
proof of the other direction is by induction on the length of the proof with case
analysis on the last applied rule: Let Π be the proof of R in BVul. By induction on
Π, we construct a proof Π′ of R in BVc.

• If Π is ax
[a, ā]

, take the same rule in BVc. (Observe that ax
[ā, a]

is an

instance of this rule, also when commutativity does not apply, since ā is
an atom, and ¯̄a = a.)

• If ai1↓ is the last rule applied in Π, we have the following 4 cases:

(1)

S{R}
ai1↓

S [R, [a, ā] ]
≈

Q

, there are the following possibilities for Q : If

– Q = S [R, a, ā]; take ai11↓.

– Q = S [a, ā, R]; take ai12↓.

– Q = S [a, R, ā]; take ai13↓.

(2)

S{R}
ai1↓

S(R, [a, ā])
≈

Q

, there are the following possibilities for Q : If

– Q = S(R, [a, ā]); take ai21↓.

– Q = S([a, ā], R); take ai22↓.

(3)
S{R}

ai1↓
S〈R; [a, ā]〉

, then take ai3↓ .

(4)
S{R}

ai1↓
S〈[a, ā]; R〉

, then take ai4↓ .

• If s1 is the last rule applied in Π, we have the following 4 cases
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ax
[a, ā]

S{R}
ai11↓

S [R, a, ā]

S{R}
ai12↓

S [a, ā, R]

S{R}
ai13↓

S [a, R, ā]

S{R}
ai21↓

S(R, [a, ā])

S{R}
ai22↓

S([a, ā], R)

S{R}
ai3↓

S〈R; [a, ā]〉

S{R}
ai4↓

S〈[a, ā]; R〉

S([R, W ], T )
s11a

S [(R, T ), W ]

S([R, W ], T )
s12a

S [(T, R), W ]

S([R, W ], T )
s13a

S [W, (R, T )]

S([R, W ], T )
s14a

S [W, (T, R)]

S([(R, U), W ], T )
s15a

S [(R, T, U), W ]

S([(R, U), W ], T )
s16a

S [W, (R, T, U)]

S [([R, W ], T ), P ]
s11b

S [(R, T ), P, W ]

S [([R, W ], T ), P ]
s12b

S [(T, R), P, W ]

S [([R, W ], T ), P ]
s13b

S [W, P, (R, T )]

S [([R, W ], T ), P ]
s14b

S [W, P, (T, R)]

S [([(R, U), W ], T ), P ]
s15b

S [(R, T, U), P, W ]

S [([(R, U), W ], T ), P ]
s16b

S [W, P, (R, T, U)]

S〈[R, T ]; [U, V ]〉
q11↓

S [〈R; U〉, 〈T ; V 〉]

S [〈[R, T ]; [U, V ]〉, P ]
q12↓

S [〈R; U〉, P, 〈T ; V 〉]

S〈R; T 〉
q21↓

S [R, T ]

S〈R; T 〉
q22↓

S [T, R]

S [〈R; T 〉, P ]
q23↓

S [R, P, T ]

S [〈R; T 〉, P ]
q24↓

S [T, P, R]

S〈[W, T ]; U〉
q31↓

S [W, 〈T ; U〉]

S〈[W, T ]; U〉
q32↓

S [〈T ; U〉, W ]

S [〈[W, T ]; U〉, P ]
q33↓

S [W, P, 〈T ; U〉]

S [〈[W, T ]; U〉, P ]
q34↓

S [〈T ; U〉, P, W ]

S [〈T ; [W, U ]〉, P ]
q44↓

S [〈T ; U〉, P, W ]

S〈T ; [W, U ]〉
q41↓

S [W, 〈T ; U〉]

S〈T ; [W, U ]〉
q42↓

S [〈T ; U〉, W ]

S [〈T ; [W, U ]〉, P ]
q43↓

S [W, P, 〈T ; U〉]

Figure 7.1. System BVc

(1)

S([R, W ], T )
s1

S [(R, T ), W ]
≈

Q

, there are the following possibilities for Q : If
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– Q = S [(R, T ), W ]; take s11a.

– Q = S [(T, R), W ]; take s12a.

– Q = S [W, (R, T )]; take s13a.

– Q = S [W, (T, R)]; take s14a.

(2)

S([(R, U), W ], T )
s1

S [(R, U, T ), W ]
≈

Q

, there are the following possibilities for Q : If

– Q = S [(R, T, U), W ]; take s15a.

– Q = S [W, (R, T, U)]; take s16a.

(3)

S([R, W ], T )
s1

S [(R, T ), W ]
≈

Q

, there are the following possibilities for Q : If

– Q = S′ [(R, T ), P, W ] and S{ } = S′ [{ }, P ]; take s11b.

– Q = S′ [(T, R), P, W ] and S{ } = S′ [{ }, P ]; take s12b.

– Q = S′ [W, P, (R, T )] and S{ } = S′ [{ }, P ]; take s13b.

– Q = S′ [W, P, (T, R)] and S{ } = S′ [{ }, P ]; take s14b.

(4)

S([R, W ], T )
s1

S [(R, T ), W ]
≈

Q

, there are the following possibilities for Q : If

– Q = S′ [(R, T, U), P, W ] and S{ } = S′ [{ }, P ]; take s15b.

– Q = S′ [W, P, (R, T, U)] and S{ } = S′ [{ }, P ]; take s16b.

• If q1↓ is the last rule applied in Π, such that

S〈[R, T ]; [U, V ]〉
q1↓

S [〈R; U〉, 〈T ; V 〉]
≈

Q

, there are the following possibilities for Q : If

– Q = S [〈R; U〉, 〈T ; V 〉]; take q11↓.

– Q = S′ [〈R; U〉, P, 〈T ; V 〉] and S{ } = S ′ [{ }, P ]; take q12↓.

• If q2↓ is the last rule applied in Π, such that

S〈R; T 〉
q2↓

S [R, T ]
≈

Q

, there are the following possibilities for Q : If

– Q = S [R, T ]; take q21↓.

– Q = S [T, R]; take q22↓.
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– Q = S′ [R, P, T ] and S{ } = S′ [{ }, P ]; take q23↓.

– Q = S′ [T, P, R] and S{ } = S′ [{ }, P ]; take q24↓.

• If q3↓ is the last rule applied in Π, such that

S〈[W, T ]; U〉
q3↓

S [W, 〈T ; U〉]
≈

Q

, there are the following possibilities for Q : If

– Q = S [W, 〈T ; U〉]; take q31↓.

– Q = S [〈T ; U〉, W ]; take q32↓.

– Q = S′ [W, P, 〈T ; U〉] and S{ } = S′ [{ }, P ]; take q33↓.

– Q = S′ [〈T ; U〉, P, W ] and S{ } = S′ [{ }, P ]; take q34↓.

• If q4↓ is the last rule applied in Π, such that

S〈T ; [W, U ]〉
q4↓

S [W, 〈T ; U〉]
≈

Q

, there are the following possibilities for Q : If

– Q = S [W, 〈T ; U〉]; take q41↓.

– Q = S [〈T ; U〉, W ]; take q42↓.

– Q = S′ [W, P, 〈T ; U〉] and S{ } = S′ [{ }, P ]; take q43↓.

– Q = S′ [〈T ; U〉, P, W ] and S{ } = S′ [{ }, P ]; take q44↓.

�

7.1.2. Removing the Equations for Commutativity in System KSg.

We can carry the above ideas analogously to other systems of the calculus of struc-
tures, e.g., system KSg:

Definition 7.5. The system in Figure 7.2 is called commutativity-free KSg

or KSgc, where W is either an atom or a conjunction. Inference rules of system
KSgc are applied to KSg structures that are considered equivalent modulo equations
for associativity.

Proposition 7.6. System KSg and system KSgc are strongly equivalent.

Proof. It is immediate that the inference rules of KSgc are instances of the
inference rules of KSg. For the proof of the other direction observe that from
Proposition 4.53 systems KSg and KSgn are strongly equivalent. By inductive case
analysis on the commutative application of the inference rules of KSgn construct
a derivation in KSgc: Observe that the switch rule can be replaced with its lazy
version in system KSgn analogous to that of system BVul. The case for the switch
rule being same as that of Proposition 7.4 other cases follow trivially by analogous
case analysis. �
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tt↓
tt

S{tt}
ai11↓

S [a, ā]

S [R, tt]
ai12↓

S [a, R, ā]

S{ff}
w↓

S{R}

S [R, R]
c↓

S{R}

S{R}
u1l↓

S [ff, R]

S{R}
u1r↓

S [R, ff ]

S{R}
u2l↓

S(tt, R)

S{R}
u2r↓

S(R, tt)

S([R, W ], T )
s11a

S [(R, T ), W ]

S([R, W ], T )
s12a

S [(T, R), W ]

S([R, W ], T )
s13a

S [W, (R, T )]

S([R, W ], T )
s14a

S [W, (T, R)]

S([(R, U), W ], T )
s15a

S [(R, T, U), W ]

S([(R, U), W ], T )
s16a

S [W, (R, T, U)]

S [([R, W ], T ), P ]
s11b

S [(R, T ), P, W ]

S [([R, W ], T ), P ]
s12b

S [(T, R), P, W ]

S [([R, W ], T ), P ]
s13b

S [W, P, (R, T )]

S [([R, W ], T ), P ]
s14b

S [W, P, (T, R)]

S [([(R, U), W ], T ), P ]
s15b

S [(R, T, U), P, W ]

S [([(R, U), W ], T ), P ]
s16b

S [W, P, (R, T, U)]

Figure 7.2. System KSgc

7.1.3. Nondeterminism in System BVc. With the definition below, I will
combine the ideas from systems BVc and BVi in a single system, that is, I will
impose the restrictions on the rules of BVi analogously on the inference rules of
system BVc. This way, a system will be obtained where the equalities for unit and
commutativity are redundant and nondeterminism is reduced.

Definition 7.7. Let commutativity-free interaction system BV or system BVci

be the system obtained by imposing the following restrictions on system BVc: In the
rules s11a, s12a, s13a, s14a, s11b, s12b, s13b, and s14b we have atR ∩ atW 6= ∅; in the
rules s15a, s16a, s15b, and s16b we have at (R, U) ∩ at W 6= ∅; in the rules q11↓, and
q12↓ we have atR ∩ at T 6= ∅ and atU ∩ at V 6= ∅; in the rules q31↓, q32↓, q33↓,
and q34↓ we have at W ∩ atT 6= ∅; in the rules q41↓, q42↓, q43↓, and q44↓ we have
atW ∩ atU 6= ∅.

Proposition 7.8. If systems BV and BVi are equivalent then system BV and
system BVci are equivalent.

Proof. Follows immediately from Proposition 7.4. �
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7.2. Implementation of BV in Java

In the previous sections, we have seen that it is possible to remove the equations
up to associativity in a calculus of structures system. In the following by resort-
ing to these results and using a list representation of n-ary terms, which captures
associativity, I will present a Java implementation of the term rewriting system
corresponding to system BVci by using the term rewriting features provided by
Tom.

Tom is a language extension that adds pattern-matching facilities to existing
languages like Java, C, and OCaml. This approach is particularly well-suited when
describing transformations of structured expressions like trees/terms. Exploiting
these features, I use Tom, combined with Java, to implement proof search in system
BV.

Design and implementation issues related to Tom can be found in [MRV03,

KMR05b]. However, let me briefly describe this tool, following [KMR05b]: At a
level of abstraction, we can say that Tom adds two new constructs to the imperative
language: %match and back-quote (‘). The first construct is similar to the match

primitive of ML and related languages: Given a term (called subject) and a list of
pairs pattern-action, the match primitive selects a pattern that matches the subject
and performs the associated action.

A main originality of this system is to be data-structure independent. This
means that a mapping has to be defined to connect algebraic data-structures to
low-level data-structures that correspond to the implementation. In such a setting,
pattern matching is performed on the algebraic data-structures. Most of the time,
Tom is used in conjunction with the ApiGen system [vdBMV03], which gener-
ates abstract syntax tree implementations and a mapping from a given datatype
definition. The input format for ApiGen is a concise language defining sorts and
constructors for the abstract syntax. The output is an efficient, in time and mem-
ory, (Java) implementation for this datatype. This implementation is characterized
by strong typing and maximal sub-term sharing, while providing both memory
efficiency and constant-time equality checking.

7.2.1. Structures as Data Structures. A difficulty when implementing the
systems of the calculus of structures is to find an appropriate representation for the
structures. Below, these constructors are considered as unary operators that take
a list of structures as argument. Using ApiGen, the considered data-type can be
described by the following signature, demonstrated for the structures par, cop, and
seq of system BV:

module Struct

public sorts Struc StrucPar StrucCop StrucSeq

abstract syntax

a -> Struc

b -> Struc

...other atom constants

neg(Struc) -> Struc

par(StrucPar) -> Struc

cop(StrucCop) -> Struc

seq(StrucSeq) -> Struc

concPar( Struc* ) -> StrucPar
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concCop( Struc* ) -> StrucCop

concSeq( Struc* ) -> StrucSeq

The grammar rule par(StrucPar) -> Struc defines a unary operator par

of sort Struct that takes a StrucPar as unique argument. The grammar rule
concPar(Struc*) -> StrucPar defines the concPar operator of sort StrucPar.
The special syntax Struc* indicates that concPar is a list-operator that takes a
list of Struc as argument. Thus, by combining par and concPar it becomes pos-
sible to represent the structure [a, [b, c] ] by par(concPar(a,b,c)). Note that
structures are flattened meaning that unnecessary brackets are removed. In Tom,
list-operators are convenient because their arity is not fixed. Thus, concPar(a,b,c)
corresponds to a list of 3 elements, concPar(a) corresponds to a list of single ele-
ment, namely a, whereas concPar() denotes the empty list. (R, T ) and 〈R; T 〉 are
represented in a similar way, using cop, seq, concCop, and concSeq.

A problem with this approach is that objects such as par(concPar()) can be
manipulated, although such objects do not necessarily correspond to structures that
we intend to manipulate. It is also possible to have several representations for the
same structure. Hence, par(concPar(a)) and cop(concCop(a)) both denote the
structure a. To avoid such situations, in the defined mapping a notion of canonical
form is encoded. This avoids building such unintended terms.

• [ ], 〈〉 and () are reduced when containing only one sub-structure:
par(concPar(x)) → x

• nested structures are flattened:
par(concPar(..., par(concPar(x1 , ..., xn)), ...)→ par(concPar(..., x1, ..., xn, ...)

• subterms are sorted (according to a given total lexical order <):
concPar(..., xi, ..., xj , ...)→ concPar(..., xj , ..., xi, ...) if xj < xi.

This notion of canonical form allows to efficiently check if two terms represent the
same structure with respect to commutativity of those logical operators.

7.2.2. Rewrite rules. The rewrite rules define the deduction steps in system
BVci. They are implemented by a match construct that matches a sub-term with
the left-hand side of the rewrite rule. Then the right-hand side of the rule builds
the deduced structure.

For instance, the rules [(R, T ), U ] → ([R, U ], T ) and [(R, T ), U ] → ([T, U ], R)
are encoded by the following match construct.

%match(Struc t) {

par(concPar(X1*,cop(concCop(R*,T*)),X2*,U,X3*)) -> {

if(‘T*.isEmpty() || ‘R*.isEmpty() ) {

} else {

StrucPar context = ‘concPar(X1*,X2*,X3*);

if(canReact(‘R*,‘U)) {

StrucPar parR = cop2par(‘R*);

// transform a StrucCop into a StrucPar

Struc elt1 = ‘par(concPar(

cop(concCop(par(concPar(parR*,U)),T*)),context*));

c.add(elt1);

}

if(canReact(‘T*,‘U)) {

StrucPar parT = cop2par(‘T*);
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Struc elt2 = ‘par(concPar(

cop(concCop(par(concPar(parT*,U)),R*)),context*));

c.add(elt2);

} } } }

The first test in the above code ensures that the rules are not applied if R or U is
the empty list. The other tests implement the restrictions on the application of the
rules given in Chapter 5 for reducing nondeterminism. This is done by using an
auxiliary predicate function canReact(R,U) that collects all atoms in the structures
R and U and returns true only if R contains at least one atom that is contained in
a negated form in U. This function can be made efficient by using the features of
the host language of Tom, in the case of the present implementation, by using an
efficient hash-set implementation in Java. The remaining rules are expressed in a
similar way.

7.2.3. Strategy. When designing a proof search procedure, implementing the
set of inference rules is very important, but this is only one part of the job. The
second part consists in defining a strategy that describes how to apply the rules. In
rule based systems like ELAN or Maude, such strategies can be described by using
primitive operators or meta-level capabilities. In some cases, however, it may be
difficult to express strategies that take time and space into consideration. In ELAN

for example, the search is implemented using a backtracking mechanism. This is a
good approach to implement depth-first search strategies. While being efficient in
space, such a strategy may lead to explore infinite branches and non-terminating
programs. On the other hand, breadth-first search, as in Maude, eventually termi-
nates when a proof exists, but the memory needed can be huge. Further, given that
every structure has at least several child nodes after applying all the possible rule
instances, the search space explodes after few steps and this results in infeasible
amount of time for the search to terminate. In Tom, there is no particular support
for implementing search space exploration strategies. Thus, the search space has
to be handled explicitly. On one hand, this leads to more complex implementa-
tions, but on the other, this allows to define different search strategies that involve
heuristic functions, or implement randomized search algorithms, e.g., hill climbing
[RN02].

In the implementation that I discuss here, a global search strategy has been
employed. However, by using the same ideas and by modifying the implementation
slightly, other search strategies can be easily implemented. Let me describe how
this is done: The search space is given by a stack of structures. At the beginning of
the search the stack consists of a single structure, namely, the structure the proof
of which is being searched.

PSfrag replacements

...

R′

R

The algorithm (see, e.g., [RN02]) takes the top most structure R in the stack
and applies to R all the possible bottom-up rule instances, premises of which are
R1, R2,. . . , Rn. Then all these structures are placed into the stack with respect
to a heuristic function f such that there is a total order of structures in the stack,
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e.g., f(Ri) > . . . > f(Rj) > f(R′) > f(Rk).

PSfrag replacements

R

R1 R2 Rn· · ·

;

PSfrag replacements

Ri

Rj

R′

Rk

...

...

This is repeated until the top-most structure in the stack is the unit.
Global search strategy can be easily modified to local search by putting a fixed

bound on the size of the stack. Further, breadth-first search can be introduced
by stacking the structures R1, R2,. . . , Rn at the bottom of the stack; depth-first
search can be introduced by stacking R1, R2,. . . , Rn at the top of the stack.

In the implementation of system BVci, which I discuss here, in a global search
setting, the following heuristic function f on structure R is employed:

f(R) =
1

(# of ‘;‘ in R) . (# of atoms in R)2

This heuristic function delays the instances of the rule q2↓, because the struc-
tures with less number of ‘;‘ symbols are pushed to the top of the stack. It promotes
the instances of the rule ai↓, because the structures with less number of atoms are
also pushed to the top of the stack by this function. Table 7.1 gives a performance
comparison of the implementations of system BVi in Maude and system BVci in
Tom on the examples given Subsection 4.3.1.

7.3. Discussion

In this chapter, we have seen a recipe for implementing systems of the calculus
of structures in imperative languages such as C and Java where these languages can
be used in their full expressive power. As an example to such an implementation,
we have seen a proof search implementation of system BV in Java. In this imple-
mentation the pattern matching preprocessor Tom is used in order to express the
inference rules as term rewriting rules within a Java program. The source code of
the implementation is available at the Tom distribution 1. A representative applet
of this implementation is also available online 2.

In the previous chapters, we have seen that the systems of the calculus of struc-
tures can be expressed as term rewriting systems modulo equational theories and
this equational theory can be reduced to equations for associativity and commuta-
tivity. Because Tom does not support associative-commutative rewriting, in this
chapter, by making the role played by the equations for commutativity in the ap-
plication of the inference rules explicit, I introduced a system equivalent to system
BV where these equations become redundant. This makes it possible to express the
associativity of structures in a list representation.

1http://tom.loria.fr
2http://tom.loria.fr/examples/structures/BV.html
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Query System finds a proof in
# millisec.

1. Maude 60

Tom 300

2. Maude 20

Tom 16

3. Maude 120

Tom 29

4. Maude 140

Tom 26

5. Maude 160

Tom 15

Query System finds a proof in
# millisec.

6. Maude 550

Tom 694

7. Maude 900

Tom 2172

8. Maude 1270

Tom 14442

9. Maude 2830

TomBVi 1553

10. Maude 3670

Tom out of memory

Table 7.1. Representative performance comparison of proof
search in the implementations of system BVi in Maude and sys-
tem BVci in Tom.

We have also seen that the procedure for removing the equations for commuta-
tivity can be analogously generalized to other systems in the calculus of structures.
As an evidence for this, I have introduced a system for classical logic that is equiv-
alent to system KSg where the equations for commutativity are redundant.

Because of the expressive power of imperative languages, by following the recipe
described in this chapter, it becomes possible to easily implement any search strat-
egy for proof search. In the implementation described in this chapter a global search
strategy is employed: Stack the structures that are premises of all the bottom-up
instances of the inference rules with respect to a heuristic function and proceed
with applying this procedure to the topmost structure in the stack until the top-
most structure is the unit. This allows to choose a heuristic function which respects
the mutual relations between dual atoms such that proofs can be constructed by
annihilating dual atoms.

Because systems in the calculus of structures follow a common scheme which
I exploit in this chapter, the content of this chapter can be analogously carried
over to any other system in the calculus of structures. Thus, the description of
the implementation that I describe provides a recipe for implementing systems for
other logics in the calculus of structures. Further, the implementation described in
this chapter can be easily generalized for implementing different tools for the other
systems of the calculus of structures, also by employing different search strategies
at will.





CHAPTER 8

A Common Language for Planning and

Concurrency

Planning and concurrency are two fields of computer science and AI that
evolved independently. However, as we have seen in Section 1.3, although these
two fields address problems which are different in perspective, they aim at solving
tasks that are very similar in nature. The difference in perspective can be seen
as the difference of quantification: Planning formalisms focus on finding a plan, if
there exists such a plan, that solves a given planning problem. The focus in con-
currency theory is on the global behavior of a given concurrent system, resulting in
universally quantified queries such as verification of a security protocol. In contrast
to the approaches to planning, in order to be able to handle such queries, languages
for concurrency are equipped with a rich arsenal of mathematical methods that
allow for an analysis of equivalence of processes.

In concurrency theory, the interaction between the processes of a concurrent
system is central: The input produced by one process is the output of another
process which is consumed during the interaction of these two processes. That is,
during their interaction, the input of the latter annihilates (consumes) the output
of the former, and this way the latter process produces its output. This output is
then to be consumed by another process, and so on. This scheme of causality is also
captured in resource conscious planning (see Section 8.2). Further, in a possible
model of concurrent processes, when two processes do not require the same resources
as input, they can co-occur. The interaction of such processes with their common
descendants and succedents synchronizes these processes. Their independence with
respect to the resources that they require as input gives an explicit representation
of nondeterminism. Such a scheme of causality, independence and nondeterminism
by means of resources is captured, for instance, in Petri nets [Pet62]. As in petri
nets, by observing these interactions, due to the representation of resources being
consumed and produced, conclusions about the global behavior of the system can
be drawn.

In this chapter, I present a common proof theoretical language for planning
and concurrency. This language, which I call K, aims at bringing planning and
concurrency closer, so that the tools and methods used in these fields can be car-
ried over both ways. Thus, the goal of this language is, while remaining in formal
grounds, to act as a bridge between these two fields so that techniques can be
interchanged: Such a language is useful for bringing the formal methods of concur-
rency theory to planning. By means of this language, one can address questions for
plans that are standard in concurrency theory, for instance, in order to establish
a notion of plan equivalence analogous to the notion of equivalence of processes.

153
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Such a language also prepares the formal grounds for bringing highly optimized
implementation techniques from planning to concurrency and vice versa.

Perhaps the most important question in designing a common logical language
for planning and concurrency is which logic to choose. The host logic should be
expressive enough to capture causality so that one can do planning and simulta-
neously provide a satisfactory semantic treatment of concurrent actions. From the
planning point of view, the underlying logic must be powerful enough to express
causality in a simple way without raising the frame problem (see Subsection 8.1.6).
From the concurrency point of view, an explicit treatment of resources is crucial
in order to express the independence and nondeterminism in a concurrent system.
Further, in process algebras, which study the syntactic representations of processes,
parallel and sequential composition are represented at the same level because they
are equivalently important notions for expressing concurrent processes. Thus, it is
crucial to express parallel and sequential composition of actions at the same logical
level. This way, the structure of the problem can be captured at the logical level,
rather than term level, so that logic can be used in an interesting and useful way
to do reasoning on these expressions.

The linear logic approach to planning (see Section 8.2) offers a solution to
some of these challenges. Although parallel composition of actions can be naturally
mapped to the commutative par operator of linear logic, sequential composition
does not find a natural interpretation. For this reason, for the language I develop,
I resort to system NEL. System NEL provides a satisfactory treatment of resources
and allows to represent the parallel and sequential composition by means of its
logical operators. Parallel composition of actions, plans, and processes is natu-
rally mapped to the commutative par operator of linear logic, whereas sequential
composition is mapped to the non-commutative self-dual seq operator.

From the planning point of view, the language K follows the linear logic ap-
proach to conjunctive planning [MTV90], which is, in [GHS96], shown to be
equivalent to Bibel’s connection method approach [Bib86] and Hölldobler and
Schneeberger’s equational logic programming approach [HS90]. From the con-
currency point of view, the language has the features of a simple process algebra
corresponding to a fragment of CCS [Mil89] equipped with prefixing (sequential
composition) and parallel composition. The language admits a behavioral non-
interleaving branching time concurrency semantics, namely labelled event structure
semantics [SNW96, WN95]. As other approaches to conjunctive planning, the
language resembles Petri nets. The computation in language K is performed as
computation as proof search in an abstract logic programming setting.

In the following section, I will give an overview of the previous work on reason-
ing about action in artificial intelligence and planning. This section can be read as
a survey.

8.1. Planning: Historical Perspective

Reasoning about action and planning are the fields of computer science that
study the characterization of the concepts of action, change, and planning of action
sequences to accomplish a given task. Mainly, logic has been providing the rigorous
methods that are necessary for the formal treatment of the problems addressed in
these fields. Planning systems, as algorithms that operate on explicit representa-
tions of states and actions, have been historically motivated by theorem proving,
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state space search, and associated techniques and the needs of robotics [RN02].
The relation between logic, changes involved in reasoning, and plan generation have
been studied, either by embedding actions into a classical logic framework or by
using non-standard formalisms.

Situation calculus, which is a formalism for reasoning about action in classical
logic, initiated the declarative (theorem proving) approach, in contrast to proce-
dural approach: In the declarative approach, the agent’s initial program, before it
starts to receive percepts, is built by adding one by one the sentences that represent
the designer’s knowledge of the environment 1.

8.1.1. Situation Calculus and the Like. The research on reasoning about
action has been mainly driven by the so called frame problem since it was recognized
by McCarthy and Hayes in [MH69]. Informally, the frame problem occurs when
the formal language expresses what changes, but does not express what stays the
same. In other words, representing all the things that stay the same is called the
frame problem. The name “frame” comes from “frame of reference” in physics,
the assumed stationary background with respect to which motion is measured. It
also has an analogy to the frames of a movie, in which normally very little changes
from one frame to the next. Finding an efficient solution to the frame problem is
important, because in the real world almost everything stays the same most of the
time. Each action affects only a tiny fraction of the world. In this respect, the
frame problem has long been recognized as a key problem within formal theories of
action and has been studied by many authors.

Situation calculus as a formalism was first proposed in [McC63] and elaborated
in [MH69]. However, the name “situation calculus” was first used in [MH69].
[McC86] is the first significant, but unsuccessful, attempt to solve the frame prob-
lem within the situation calculus. The version of the situation calculus that was
developed for the cognitive robotics project at the University of Toronto is perhaps
the melting pot of all the others with the same name. [Sha97] and [Rei01] give
complete treatments of reasoning about action in situation calculus along these
lines.

In the simplest form of situation calculus, each action, which is a term built
from function symbols of a classical logic signature, is described by two axioms: A
possibility axiom that states when it is possible to execute an action, and an effect
axiom (successor-state axiom) that states what happens when an action is executed
[Rei91]. Often Poss(a, s) is used to express that it is possible to execute action
a in situation s. Situations are logical terms built from a function symbol rep-
resenting the initial situation and another function symbol representing execution
of actions: The function Result(a, s) (sometimes called Do) names the situation
that results when action a is executed in situation s. Fluents are predicates that
represent atomic properties of the world and vary from one situation to the next,
e.g., the location of an agent. According to the dictionary, a fluent is something
that flows, like a liquid. In this sense, it is flowing or changing across situations.
The principal intuition captured by the axioms is that situations are histories, that
is finite sequences of primitive actions. The successor-state axioms then express

1In contrast, the procedural approach encodes desired behaviors directly as program code;
minimizing the role of explicit representation and reasoning can result in a much more efficient
system.
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the relation between two situations that are before and after the execution of an
action.

The frame problem comes with two facets: A representational one, which con-
cerns the efforts to specify the non-effects of actions, and an inferential one, which
concerns the effort needed to actually compute these non-effects. Successor state
axioms of the situation calculus suffice to solve the representational frame prob-
lem. The solution of the inferential frame problem can be traced to the work by
Hölldobler and Schneeberger [HS90], based on equational logic programming, that
later became known as the fluent calculus: Beside the solution to the representa-
tional frame problem that rules out the need for axioms that specify the non-effects
of an action, the axiomatization in the fluent calculus that allows not applying
separate inference steps for unaffected piece of knowledge provides the solution to
the inferential frame problem 2.

The fluent calculus reifies the situations of the situation calculus by representing
fluents as terms instead of atoms and introducing the function symbol state. In the
fluent calculus, axioms, written in classical predicate logic, formalize equational
relations between the states at consecutive situations. The original fluent calculus,
which was first introduced in [HS90], is resource conscious, because it employs an
AC1 operator in order to express the states. The interpretation of this AC1 operator
is multiset union. The later version of the fluent calculus, which was introduced
in [Thi99], treats the fluents as properties similar to the situation calculus by
extending the equational theory underlying this operator with idempotency. The
approach that I explore in this work is analogous to the first, resource conscious
version of the fluent calculus (see Subsection 8.1.6).

The solution of the frame problem made the declarative approach to reasoning
about action formalisms plausible also for planning. The GOLOG [LRL+97] and
FLUX [Thi05] languages, implemented in Prolog, use the expressive power of logic
programming and constraint logic programming, respectively, to describe actions
and plans in the lines of situation calculus and fluent calculus, respectively. [Thi05]
provides also a comparison of these two languages.

The event calculus [Sha99], another popular formalism for reasoning about ac-
tion, handles continuous time in a nonmonotonic circumscription (see, e.g., [Bre91])
based framework. In the event calculus, the term event is used as a synonym for
the term action. Fluents hold at points in time rather than at situations and the
calculus is designed to allow reasoning over intervals of time. An event calculus
axiom states that a fluent is true at a point in time if the fluent was initiated by
an event at some time in the past and was not terminated by an intervening event.
An event may represent an action with no explicit agent.

There are also so called action languages for reasoning about actions in differ-
ent scenarios involving different sorts of problems. Action languages have natural
language like syntax and clear formal semantics. [GL98] is a good overview with
references. [Thi94] and [KT03], respectively, establishes the relationship between
the fluent calculus and the action description languages A and Ak [GL93, LT01],
respectively.

8.1.2. Reasoning about Action and Concurrency. Most of the research
in reasoning about action and change has been done under the assumption that

2[Rei91] also proposes a solution to the inferential frame problem, which is different from
the solution in the fluent calculus.
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an agent performs sequences of actions. In general, in the situation calculus like
languages, it is assumed that the execution of an action is indivisible and unin-
terruptible. This is often referred to as the atomic assumption. For this reason,
in such languages, when parallel execution of actions is considered, concurrency is
usually defined over the parametrized time spans shared by the actions, which have
durations. The focus is usually on providing a solution to those problems where an
agent needs to accomplish a task that requires parallel synchronized actions, e.g.,
lifting a bowl of soup by holding it with both handles simultaneously.

In his PhD thesis, Pinto [Pin94] presents an axiomatization of the situation
calculus that includes concurrent actions and continuous time by giving the starting
point of an action in time as an argument of the action. [Rei96] further elaborates
on this approach by extending the axiomatization to cover natural event occurrences
that are external to the agent. These axiomatizations allow representing sets of sin-
gle actions that can be executed in parallel, while lacking an operational semantics.
[DGLL00] axiomatizes the transition semantics of the plans, which leads to an ex-
tension of the situation calculus implementation language GOLOG. However, this
approach does not provide a discussion of the possible conflicts between the actions
with respect to the resources being used by the actions.

The methods presented in [Rei96] have many similarities with the action de-
scription language AC of Baral and Gelfond [BG97]. The action description lan-
guage AC extends the action description language A [GL93] to cover concurrent
actions where, like in [Rei96], concurrent actions are represented as sets of actions
that are executed simultaneously. [GL98] introduces a rather expressive action
description language, called C, that subsumes AC . The action description language
C has a transition system semantics and can also express nondeterministic actions
as well as actions with indirect effects. [BS96] presents a mapping of AC domain
descriptions into neural networks of linear size.

In [Thi01], Thielscher gives an account of the ideas in [Rei96], for concurrent
continuous actions within the fluent calculus also by parameterizing time as an
argument of fluents and actions.

[KG99] proposes an approach within temporal logic, called TAL-C, which also
puts time directly into the model theory of the language and supports the descrip-
tion of concurrent actions with interactions. TAL-C builds on an existing logic TAL,
which includes the use of dependency laws for dealing with ramification. TAL-C can
represent action durations where the effects of one action interferes with or enables
another action, synergistic effects of concurrent actions, conflicting and cumulative
effect interactions, and resource conflicts.

8.1.3. Overview of Planners. Despite the efforts made on reasoning about
action by logical methods, planners that offer effective methods and heuristics
for exploring the state-space gained importance because of performance reasons.
STRIPS [FN71] is the first major planning system that illustrates the influences
of logic, state-space search and robotics. It was designed in 1971 as the planning
component of the Shakey robot project at the SRI. The STRIPS language describes
actions in terms of their preconditions and effects and describes the initial and goal
states as conjunctions of positive literals. The effects of an action are given by so
called add- and delete-lists, which are sets of fluents.
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Although the action representation language of STRIPS lacks a clear logical
semantics (see, e.g., [Lif86]), it had a strong influence on almost all the later plan-
ning systems. Bylander showed, in [Byl92], that simple planning in the fashion
of STRIPS is PSPACE-complete. In 1986, the action description language ADL

[Ped89] relaxed some of the restrictions in the STRIPS language, allowing dis-
junction, negation, and quantifiers. The Problem Domain Description Language or
PDDL [GLKM98] was introduced as a computer-parsable, standardized syntax for
representing STRIPS, ADL, and other languages. Since 1998, PDDL has been used
as the standard language for the planning competitions at the AIPS conference.

Partial order planning gained importance until the mid 90s. Partial order
planning (POP) algorithms explore the space of plans without committing to a
totally ordered sequence of actions. They work back from the goal, adding actions to
the plan to achieve each subgoal. [PW92] introduced the UCPOP planner, the first
partial order planner for problems expressed in ADL, and provided a completeness
proof. It had a better performance than its predecessors, but was rarely able to
find plans with more than a dozen or so steps. Although improved heuristics were
developed for UCPOP, partial order planning lost its popularity in the 1990s, and
leaving its place to the Graphplan approach.

The Graphplan approach [BM97] is based on processing the planning graph by
using a backward search to extract a plan and allowing for some partial ordering
among actions. A planning graph can be constructed incrementally, starting from
the initial state. Each layer contains a superset of all the literals or actions that
could occur at that time step and encodes mutual exclusion relations among literals
or actions that cannot co-occur. Planning graphs yield also useful heuristics for
state-space-search and partial order planners. [NK01] give a thorough analysis of
heuristics derived from planning graphs and describe a partial order planner, called
REPOP, based on these ideas, which scales up much better than Graphplan.

Kautz and Selman introduced the planning-as-satisfiability approach and the
SATplan algorithm, which is inspired by the success of the greedy local search for
satisfiability problems. The SATplan algorithm translates a planning problem into
propositional axioms and applies a satisfiability algorithm to find a model that cor-
responds to a valid plan. Later, several different propositional representations have
been developed with varying degree of compactness and efficiency. The BLACKBOX

planner combines ideas from Graphplan and SATplan [KS98].
The different approaches to planning have been mainly motivated by concerns

about efficiency, however, so far there is no consensus on which planner and what
approach is best. The most successful state-space search approach to date, at
the planning competitions, is based on Hoffmann’s FASTFORWARD, winner of the
AIPS 2000 planning competition. This approach, combining forward and local
search, uses a simplified planning graph heuristic by cutting out the branches of
the search tree that do not have the potential to provide a plan. [Hof03] is an
overview of these approaches. [Wel94, Wel99] are surveys of modern planning,
concentrating on partial order planning, Graphplan, and SATplan.

8.1.4. Partial Order Planning and Concurrency. The atomic assump-
tion, that considers an action indivisible, stems from the representation that only
models the preconditions and effects of an action. When these preconditions and
effects are seen as properties of the world, such a consideration disregards the
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independence between actions: In a nutshell, two actions are independent (true-
concurrent) if the effect of the two actions executed simultaneously is same as the
effect of two actions being executed in isolation. Because it would be unclear from
the action specification whether any two actions can be executed simultaneously
without interacting with one another, an assumption that disregards the depen-
dency between actions is not appropriate for observing parallelism in plans.

Executing actions concurrently requires explicit handling of potential resource
conflicts. If two actions are left unordered, for instance, as in a partial order
planning, they can be executed in either order. A partial order plan represents a
set of possible totally-ordered plans. Such two unordered actions can be executed
in either order, however two actions’ being unordered relative to one another does
not imply that they can be executed in parallel. Simultaneous execution requires
that potential resource conflicts between unordered actions are made explicit and
avoided by means of an approach that takes the dependency between actions into
account. One of the solutions for this is to employ a formal framework that allows
for explicit representation of resources, which is the approach in this thesis.

Another solution is by means of imposing resource constraints that control
the order of the execution of the actions. In [Kno94], Knoblock presents such a
method where he identifies the conditions under which two unordered actions can
be executed in parallel by providing some linguistic resource constraints. Knoblock
identifies the underlying assumptions about when a partial order planner can be
executed in parallel, defines the class of parallel plans that can be generated by
different partial order planners, and describes the changes required to turn the
UCPOP planner into a parallel execution planner. In order to avoid resource con-
flicts, Knoblock modifies the planner to ensure that if two operators require the
same resource, then they are not left unordered relative to one another.

In [BB01], Boutilier et al. exploit the ideas in [Kno94] and also give a good
overview of the previous research on concurrent actions in reasoning about actions.
There, action interactions are handled by specifying the effects of all joint (concur-
rent) actions directly within the formal language, which extends STRIPS in a way
that can be generalized to an arbitrary planning algorithm. Boutilier et al. make a
number of modifications to standard partial order planners by first adding equality
or inequality constraints on action orderings to enforce concurrency and then ex-
panding the definition of threads to cover concurrent actions that could prevent an
intended action effect. The main addition to STRIPS representation is a concurrent
action list, e.g., for an action a, that describes restrictions on other actions that
can or cannot be executed concurrently with a in order for a to have the specified
effect.

In [Bäc98], Bäckström discusses, for a class of STRIPS-like planners, reorder-
ing of plans and relaxing of a total order plan into a partial order such that actions
can be executed in parallel. He proposes three different definitions with linguistic
constraints for this purpose and provides a formal comparison of these different
definitions. He shows that the general problem of finding an optimal parallel exe-
cution plan is NP-hard [Bäc98] and also compares his approach with other partial
order planners.

8.1.5. Concurrency Methods in Planning. Methods of concurrency were
previously considered for reasoning about actions, especially in systems for reactive
planning. In reactive planning, no specific sequence of actions is planned in advance.



160 8. A COMMON LANGUAGE FOR PLANNING AND CONCURRENCY

The planner is given a set of initial conditions and a goal. However, instead of
producing a plan with branches, it produces a set of condition-action rules (see,
e.g. [Dru89]). Along these lines, [Ndj01] proposes an approach in a modal logic
setting for reactive systems, based on Milner’s [HM85] observation equivalence:
Within this approach, given the specification of an agent’s behavior in terms of
what it can do in every situation, an equivalent specification with fewer states can
be derived.

Pym et al. propose a process algebra method for reasoning about actions in
[PPM96] where they abstract away from the conditions and effects of actions.
Ignoring the construction of plans, they describe a simple algebra of plans in order
to represent actions through the processes by which changes occur. Pym et al.
argue that the requirements of plan-execution are better met by representing actions
through the processes by which changes occur than by the more widely used state-
change representation. Instead of imposing a total order on plan outcomes, via
some utility value, their analysis requires a partial order. Pym et al. define their
algebra of processes, presenting and illustrating a number of combinators that allow
to construct complex plans from simpler ones, and present a method to compare
these plans.

Another approach based on process algebras is [DGC96], where the dynamic
behavior of the system is modeled by a transition graph that represents all the pos-
sible system evolutions in terms of state changes caused by actions. The transition
graph is defined through a description formalism in µ-calculus that leads to a pro-
cess algebra model that allows to express the concurrent behavior in a multiagent
dynamic system. The reasoning on the system is performed by model checking.
The authors argue that, besides the features for reasoning about action, this ap-
proach inherits the tools of process algebras for dealing with complex systems,
treating aspects like parallelism, communication, interruption, and coordination
among agents. The approach is applicable only when complete information about
the system is available.

A similar approach, where also µ-calculus is used, is presented in [Sin98].
However, instead of assuming a fully specified model as it is the case in [DGC96],
this approach allows constructing a model incrementally. A branching model of time
is used to express concurrent actions by multiple agents that also allows expressing
the nondeterministic effects of the actions. Instead of sequences of actions, the plans
are viewed as decision graphs describing the agent’s actions in different situations
that leads to a model of time that allows multiple future paths from each moment.

Although it is not directly related with concurrency, [AK01] presents an ap-
proach called planning by rewriting that somewhat addresses plan equivalence. The
basic idea of planning by rewriting is, with respect to a plan quality measure, trans-
forming an easy to generate, but possibly suboptimal, initial plan into a high quality
plan by applying declarative plan rewriting rules in an iterative style. In planning
by rewriting two plans are considered equivalent if they are solutions to the same
planning problem, although they may differ on their cost or operators. However,
the focus is not on using the rewriting rules to prove such equivalence, but using
the rewriting rules to explore the solution space of plans.

8.1.6. Properties versus Resources. Traditional mathematical and logical
languages, such as classical logic, are concerned with modeling properties. In a
two-valued logic a property is either true or false under a given interpretation and,
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in particular, cannot change its truth assignment in a reasoning episode. In this
sense, being the logic of mathematical reasoning, classical logic is adequate for
reasoning about unchanging entities. For instance, employing a lemma to prove a
theorem does not make the lemma cease. One can use the same lemma again. This
is due to the idempotent nature of conjunction and disjunction in classical logic,
that is, a ∨ a ≡ a and a ∧ a ≡ a are valid propositions in classical logic. When
modeling knowledge, such a statement is very natural because there should not be
any difference between knowing a once or twice.

On the other hand, the above statement makes a crucial difference when one
is reasoning about action and change. As they are considered in reasoning about
action, if dynamically changing worlds are to be modeled, then the truth value
assigned to a particular item may change from one state to another. In fact, this
phenomenon establishes the core of the frame problem, as it occurs in the situation
calculus. Situation calculus proposes a solution to this problem by augmenting
each fluent (atomic property) with a situation term, e.g., open(s), that captures
a timely behavior: The situation that results from executing an action a at that
situation (successor situation) is represented by a function symbol that increments
the situation term, e.g., open(Do(a, s)). Then, by means of the so called frame
axioms it becomes necessary to explicitly state that every fluent that is not effected
from the execution of that action is carried to the successor situation. As a result
of this, the computational complexity of programs increases and the modularity of
programs gets damaged.

The frame problem, which results from using atoms in classical logic to rep-
resent fluents, is an artificial problem, because it is not due to the nature of the
actions and causality, but it caused by the representation scheme being used which
puts properties in focus. In contrast to properties, resources, which can be con-
sumed and produced in the course of reasoning, are a key to modeling dynamically
changing worlds within a logical language, as it was first observed by Wolfgang
Bibel. In [Bib86], Bibel introduces an approach to deductive planning where no
frame axioms are needed: In the linear connection method he imposes a syntactical
condition on proofs of the planning problems that requires each literal to engage in
at most one connection.

Fluent calculus, which was first introduced in [HS90] as the equational logic
programming paradigm, brings the resources under the realm of classical logic. It
is based on the idea of reifying fluents and states, and representing them on the
term level by using an associative commutative function symbol that admits a unit
element and is not idempotent 3. The non-idempotency is the key to view fluents
as resources that can be produced and consumed in a reasoning episode. It is also
the key for solving the technical frame problem representationally as well as com-
putationally (inferential frame problem). Specifying conjunctions of fluents using
an AC1-operator essentially amounts to defining the states over the data struc-
ture multiset and considering actions as multiset rewriting rules. Fluents represent

3[Thi99] presents a different version of the fluent calculus, where the AC1 operator is ex-

tended with idempotency and this way fluents are treated as properties. However, the extensions
of this approach that propose solutions to sensing, concurrency, ramification, and qualification
problems lack modularity and a unifying operational semantics, in the sense that these solutions
can be integrated with each other without going through an intrinsic engineering process.
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resources that are consumed and produced by the actions. The fluent calculus, in-
troduced in [HS90], give a more general account of such planning problems which
are called conjunctive planning problems.

The equational axioms for the AC1 equational theory, in the fluent calculus,
are built into the unification computation and SLDE-resolution is applied as an in-
ference rule. SLDE-resolution extends Prolog’s SLD-resolution with an equational
theory of a function symbol. Expressing conjunctive planning problems within
classical logic requires an additional machinery to the logic that takes care of uni-
fication under the AC1 theory. The linear logic approach to deductive planning,
introduced in [MTV90], does not require such an additional unification mechanism
and suffices to give the full operational semantics of the planning problems.

Linear logic [Gir87] was created in 1987 as a logic motivated by languages
for concurrent and resource-oriented computations and revived interest in all the
related substructural logics, which in the past were mainly studied by philosophers
without having computation in mind. In the mean time, linear logic has been stud-
ied by many researchers and has been broadly recognized as a logic of concurrency
(see, e.g., [Mil92, EW93]). In linear logic, weakening and contraction rules of clas-
sical logic that cause the idempotent behavior of conjunction and disjunction are
controlled: The multiplicative conjunction ⊗ is not idempotent, that is, “a⊗a ` a”
is not provable. This allows linear logic to easily represent actions and causality
as it is considered in the linear connection method and fluent calculus. In fact,
resource conscious fluent calculus, Bibel’s linear connection method, and the linear
logic approach to planning are equivalent, as it was shown in [GHS96].

8.2. Linear Logic Planning

The inference rule modus ponens of classical logic infers q from p and p ⇒ q.
Similar to the way people reason, after the conclusion q is reached, the premises
p and p ⇒ q are remembered (preserved) to be used in a later inference. Such a
process of acquiring knowledge, as it is modeled in classical logic, is cumulative.
This cumulative behavior is an essential feature of mathematical language: When
people are gaining new knowledge, with the help of books and taking notes, they
ideally do not forget the previous knowledge on which the new knowledge is built.

Linear logic interprets this syntactical inference quite differently. Viewing p and
q as resources being consumed and produced, once the linear implication p−◦q and
p is used in an inference, they are used up, hence become unavailable for another
inference. For instance, in the context of messages, which are sent and received by
processes, the implication p−◦q models that upon receiving the message p, message
q is sent out, but there is no remembering of p, which is a typical situation, e.g., in
a communication protocol where the information is not archived.

In the linear logic approach to planning, the formula p−◦ q is interpreted as an
action in the context of a conjunctive planning problem. In this case its application
transforms a state p into a state q. These states are treated as resources, that is,
when action p−◦q is applied to the state p, p is consumed (annihilated) and state q
is produced. This results in a representation of change, called conjunctive planning,
elegantly solving the frame problem.

8.2.1. Conjunctive Planning Problems. Before introducing linear logic
planning, let me recall the basic definitions of conjunctive planning, following
[GHS96, MTV90]:
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Notation 8.1. Multisets are denoted by the curly brackets “ {̇” and “ }̇”. The

empty multiset is denoted by ∅̇ . ∪̇ , −̇, and ⊆̇ denote the multiset operations
corresponding to the usual set operations ∪ , − , and ⊆ , respectively.

Definition 8.2. A conjunctive planning domain is given by:

i. a finite set R of constants, which represent atomic properties of the world
and are called resources. Resources are denoted by a, b, c, . . .;

ii. a finite set A of actions (transition rules) of the form

a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇,

where a is the name of the action and {̇ c1, . . . , cp }̇ and {̇ e1, . . . , eq }̇ are
multisets of resources, which are called condition and effect, respectively.

Definition 8.3. Given a set R of resources, a world state, denoted by Z, I,
or G, is a multiset of resources from R. I will use the word ’state’ instead of ’world
state’ where no confusion is possible.

Definition 8.4. Given a planning domain with R and A , a conjunctive plan-
ning problem P is given by 〈R, A , I,G〉 where I and G are two distinguished states,
which are called the initial state and the goal state, respectively.

Now, to illustrate the above definitions, let us see the following example, which
is a modification of an example from [GHS96].

Example 8.5. Suppose Peter is working on a Sunday at the computer science
department and he feels hungry. Peter is an easy-going person, so he will be happy
(h) if he gets a candy-bar (c) and also a lemonade (l) to go with it. There is a
vending machine in the department, which offers both the lemonade (l) and the
candy-bar (c). The lemonade and the candy-bar cost 50 cents (f) each. Peter has
a euro (e) in his pocket. However, because the vending machine accepts only 50
cents coins, he has to get change for his euro. This scenario can be described as the
planning problem P = 〈R, A , I,G〉 with

R = {h, c, l, e, f}

and the set A of actions that contains

ceuro : {̇ e }̇ → {̇ f, f }̇ ,

bcandy : {̇ f }̇ → {̇ c }̇ ,

blem : {̇ f }̇ → {̇ l }̇ ,

hlunch : {̇ c, l }̇ → {̇h }̇

respectively, that allow him to change a euro for two 50 cents coins, buy a candy-bar,
buy a lemonade, and have lunch, respectively.

Definition 8.6. An action a of the form

{̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇,

is applicable in a state Z if and only if {̇ c1, . . . , cp }̇ ⊆̇ Z . The application of an
action a to a state Z is defined by the function Φ, where it is applicable, as

Φ(a,Z) = (Z −̇ {̇ c1, . . . , cp }̇ ) ∪̇ {̇ e1, . . . , eq }̇ .

Definition 8.7. A plan is a structure generated by

P ::= ◦ | a | 〈P ; P 〉
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where a denotes atoms representing actions and ◦ denotes the empty plan. As
before, the operator 〈 · ; · 〉 is associative and ◦ is its left and right unit. Plans are
assumed to be in unit normal form, that is, there are no occurrences of ◦ in a plan
that can be equivalently removed. The length of a plan is the number of actions in
that plan.

Definition 8.8. The application of a plan P = 〈a1; . . . ; ak〉 to a state Z0 is
defined as

Φ(ak, . . . , Φ(a1,Z0) . . .) = Z

where Z is the resulting state. If it is more convenient, Φ(ak, . . . , Φ(a1,Z0) . . .) will
be abbreviated with Φ(P,Z0). For a planning problem P = 〈R, A , I,G〉 , a plan P

solves P if Φ(P, I) = G.

Example 8.9. Consider the planning problem of Example 8.5. Clearly, two
solutions of this planning problem are the following two plans:

〈ceuro ; bcandy ; blem ; hlunch〉 〈ceuro ; blem ; bcandy ; hlunch〉

These two plans differ in the order of execution of the actions blem and bcandy.
Thus, when all the plans solving this problem are considered, these two actions
are partially ordered in the sense that they can be executed in either order. In
fact, due to the explicit representation of resources by means of multisets, without
committing to a totally ordered plan, such partially ordered actions can also be
executed simultaneously without causing any resource conflicts.

Proposition 8.10. For every planning problem P given with the initial state
I, the goal state G, the set A of actions, and a plan 〈a1; . . . ; ak〉 that solves P,
for any s ≤ k, there is a planning problem P ′ given with the initial state I ′ =
Φ(as, . . . , Φ(a1, I) . . .), goal G, and A that is solved by 〈as+1; . . . ; ak〉.

Proof. Given that 〈a1; . . . ; as; as+1; . . . ; ak〉 solves P , it follows that I ′ =
Φ(as, . . . , Φ(a1, I) . . .) is a state and Φ(ak, . . . , Φ(as+1, I ′) . . .) = G. �

Proposition 8.11. For any states I, Z1, Z2, and plan P, if Φ(P, I) = Z1

then Φ(P , I ∪̇Z2) = Z1 ∪̇ Z2 .

Proof. With induction on the length of the plan P. If P is the empty plan
then we have Φ(◦ , I ∪̇Z2) = I ∪̇Z2. Turning to the inductive step, assume that
the proposition holds for a plan of length k. Let 〈P; a〉 be a plan of length k + 1,
where C and E are the condition and effect of the action a, respectively. Assume that
Φ(a , Φ(P, I ) ) = Z1 and Φ(P, I ) = Z . It follows that Z1 = (Z −̇ C ) ∪̇ E . From
the induction hypothesis, we have Φ(a , Φ(P, I ∪̇Z2 ) ) = Φ(a , Z ∪̇Z2 ). Because
a is applicable in Z ′ it is also applicable in Z ′ ∪̇ Z2. Thus, Φ(a,Z ′ ∪̇ Z2 ) =
((Z ′ ∪̇ Z2 ) −̇ C ) ∪̇ E = Z1 ∪̇ Z2. �

8.2.2. Linear Logic Approach to Conjunctive Planning. I will now
briefly revise the mapping of the conjunctive planning problems to multiplicative
fragment of linear logic, as can be found in [MTV90]:

Formulas in the multiplicative fragment of linear logic that are used in [MTV90]
are either atoms or of the form s � t, where s and t are formulas. If not stated
otherwise, s, t, . . . denote formulas and Γ, ∆, . . . denote multisets of formulas:
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axiom
a ` a

Γ ` s ∆, s ` t
(cut)

Γ, ∆ ` t
1r
` 1

Γ, s, t ` u
(�l)

Γ, s � t ` u

Γ ` s ∆ ` t
(�r)

Γ, ∆ ` s � t

Γ ` s
(1l)

Γ, 1 ` s

Figure 8.1. Conjunctive linear theory

Definition 8.12. A conjunctive linear theory consists of the axioms and rules
in Figure 8.1 together with the proper axioms

a
c1, . . . , cp ` e1 ⊗ . . .⊗ eq

for each action of the form a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ . Sequents are limited
to only one formula on the right-hand-side, in the spirit of intuitionistic logic.

A proof of a conjunctive planning problem Γ ` t is a solution for a conjunctive
planning problem if and only if Γ is the multiset that represents the initial state,
and t is the multiplicative conjunction of the atoms representing resources that are
available in the goal state.

Example 8.13. To illustrate these ideas, let us consider the planning problem
in Example 8.5. We represent these actions as the following proper axioms

ceuro
e ` f � f

blem
f ` l

bcandy
f ` c

hlunch
l, c ` h

and the planning problem as e ` h . Then we get the following proof:

ceuro
e ` f ⊗ f

blem
f ` l

bcandy
f ` c

hlunch
c , l ` h

cut
l , f ` h

cut
f , f ` h

⊗l
f ⊗ f ` h

cut
e ` h

In this approach, the plan is extracted by reading the leaves of the proof tree
from left to right. For instance, the above proof reads as the plan

〈ceuro ; blem ; bcandy ; hlunch〉 ,

which is one of the solutions of this planning problem. For this reason, while
constructing the proof, we must keep track of the premises: In an application
of a cut rule, the sequents Γ ` s and ∆, s ` t must occur, respectively, on the
left and right side of the premise. Furthermore, in an application of the �r rule
one has to decide which premise is written to the left and which one to the right
nondeterministically. These decisions disregard the other plans that solve the same
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planning problem, and in particular any possible partial order between the actions
remains hidden.

In the following, I will present a different encoding of the conjunctive planning
problems in the multiplicative exponential linear logic. This encoding will allow to
construct cut-free proofs and extract partial order plans from proofs that have a
non-interleaving concurrency semantics.

This new encoding can be presented in the sequent calculus presentation of mul-
tiplicative exponential linear logic. However, I will employ the calculus of structures
presentation of multiplicative exponential linear logic, namely system ELS. There
are two reasons for this:

(1) In section 8.4, I present an encoding of conjunctive planning problems in
system NEL. System NEL cannot be expressed in the sequent calculus.
However, the structures and inference rules of systems NEL and ELS are
quite similar. Using the same formalism, i.e., the calculus of structures,
for both encodings is helpful to carry the results in both directions.

(2) I will use some proof theoretical properties of system ELS such as decom-
position of ELS proofs. These properties are not available in the sequent
calculus presentation of multiplicative exponential linear logic.

8.2.3. Conjunctive Planning Problems in System ELS. I will now present
an encoding of the planning problems in the language of ELS, that is, in multiplica-
tive exponential linear logic in the calculus of structures. Instead of using proper
axioms for actions, I embed the actions in a structure that represents the planning
problem. This way, we will observe cut-free proofs. Beside the nondeterminism
due to the choice of the competing actions, the availability of the cut rule brings an
extra nondeterminism: In a bottom-up search, applying a cut rule means guessing
a formula to be appropriate to be the cut formula that will result in a proof. By
having a cut-free proof system, we reduce this nondeterminism in proof search to
the choice of the application of the inference rules.

Consider the following sequent calculus encoding of an action {̇ c1, . . . , cp }̇ →

{̇ e1, . . . , eq }̇ .

c1 � . . . � cp −◦ e1 � . . . � eq

Note that linear implication −◦ is defined as s −◦ t = s⊥ O t , where O is a par
connective. � is the times connective. This way we obtain an action as a linear logic
formula, analogous to the proper axioms representing actions. However, because
the encoding is in a one-sided calculus, I take the De Morgan dual of this formula.
Let us see this as an ELS structure:

Definition 8.14. Given an action a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ , the con-
junctive action structure for a, denoted by A (possibly indexed), is a structure of
the form

(c̄1, . . . , c̄p, [e1, . . . , eq ]) .

The initial and goal states of a planning problem are encoded similarly:

Definition 8.15. Given an initial state I = {̇ r1, . . . , rm }̇ and a goal state

G = {̇ g1, . . . , gn }̇, the problem structure for I and G, denoted by K, is a structure
of the form

[r1, . . . , rm, (ḡ1, . . . , ḡn)] .
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This way, in an abstract logic programming setting, this encoding allows to
observe an explicit logical duality between the problem and action structures:

(c̄1, . . . , c̄p, [e1, . . . , eq ]) = [c1, . . . , cp, (ē1, . . . , ēq)]

We are now ready to define a conjunctive planning problem in the language of
ELS.

Definition 8.16. Given a conjunctive planning problem P = 〈R, A , I,G〉, let
A1, . . . , As be the action structures for all the actions a1, . . . , as ∈ A and K be the
problem structure for I and G. The conjunctive planning problem structure (cpps)
for P, denoted by P, is defined as follows:

[?A1, . . . , ?As, ! K]

In the above encoding, because an action can be executed arbitrarily many
times, I employ ’ ? ’ of linear logic, which retains a controlled contraction and weak-
ening on the action structures. This way, an action structure can be duplicated,
when needed, by applying the b↓ rule, or annihilated by applying the rule w↓ during
the proof search. To make the interaction between the planning problems and ac-
tions explicit, I prefix a planning problem with ’ ! ’. This allows an action structure
to get inside and interact with a problem structure by an application of the rule p↓.
Because of the duality between ’ ? ’ and ’ ! ’, the duality between action structures
and the problem structures remains preserved.

Example 8.17. The cpps for the planning problem of Example 8.5 is as follows:

[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [e, h̄ ] ]

The structures (ē, [f, f ]), (f̄, l), (f̄, c), and (l̄, c̄, h), respectively, are the conjunctive
action structures for the actions ceuro, blem, bcan, and hlunch, respectively. The atom
e denotes the initial state and the atom h̄ denotes the goal state.

I will now show that proving a cpps in ELS is equivalent to showing that the
corresponding conjunctive planning problem has a solution. I will first need some
definitions and lemmas.

Definition 8.18. The following rule is called action.

S [ ?(c̄1, . . . , c̄p, E) , ! [E, R] ]
action

S [ ?(c̄1, . . . , c̄p, E) , ! [c1, . . . , cp, R] ]

Lemma 8.19. The rule action is derivable for system ELS.

Proof. Take the following derivation where the instance of the rule i↓ is as
given in Proposition 4.46:

S [ ?(c̄1, . . . , c̄p, E) , ! [E, R] ]
i↓

S [ ?(c̄1, . . . , c̄p, E) , ! [([(c̄1, . . . , c̄p) , c1, . . . , cp ], E), R] ]
s

S [ ?(c̄1, . . . , c̄p, E) , ! [(c̄1, . . . , c̄p, E) , c1, . . . , cp, R] ]
p↓

S [ ?(c̄1, . . . , c̄p, E) , ?(c̄1, . . . , c̄p, E) , ! [c1, . . . , cp, R] ]
b↓

S [ ?(c̄1, . . . , c̄p, E) , ! [c1, . . . , cp, R] ]

�
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Definition 8.20. The following rule is called termination.

termination
[?A1, . . . , ?As, ! [g1, . . . , gm, (ḡ1, . . . , ḡm)] ]

Lemma 8.21. The rule termination is derivable for system ELS.

Proof. Take the following derivation where the instance of the rule i↓ is as
given in Proposition 4.46:

1↓
1

i↓
! [g1, . . . , gm, (ḡ1, . . . , ḡm)]

w↓
...

w↓
[?A1, . . . , ?As, ! [g1, . . . , gm, (ḡ1, . . . , ḡm)] ]

�

It is important to observe that the inference rules action and termination provide
the operational semantics of a planner, that is, these inference rules can be used as
machine instructions in an implementation of this approach. Let us see these rules
on our example:

Example 8.22. A proof of the cpps for the planning problem of Example 8.5
can be constructed as follows:

termination
[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [h, h̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [ l, c , h̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [l, f, h̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [f, f, h̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ! [e, h̄ ] ]

Now, let me state the following theorem, which Straßburger proved in [Str03b].
It is important to note that it is not possible to state an analogous result in the
sequent calculus presentation of multiplicative exponential linear logic:

Theorem 8.23. (decomposition) For every proof
R

in system ELS, there are

derivations ∆1, . . . , ∆4, such that

R3

{ai↓}∆4

R2

{s , p↓}∆3

R1

{w↓}∆2

R

{b↓}∆1

for some structures R1,R2, and R3.
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With the help of the following lemma, this decomposition theorem provides a
decomposition of the proofs of the cpps where only a single inference rule is used
at each phase of the proof. In the following, this decomposition of the proofs of the
cpps will be useful in proving some properties of the cpps.

Lemma 8.24. The rule s permutes over the rule p↓ if the redex of p↓ is not
inside an active structure of the contractum of s.

Proof. It suffices to check the only case excluded by the conditions of Remark
5.49, that is, when the contractum of s is inside an active structure of the redex of
p↓. In this case, we permute as follows:

S{![P, ([R, U ], T )]}
p↓

S [!P, ?([R, U ], T )]
s
S [!P, ?[(R, T ), U ] ]

;

S{![P, ([R, U ], T )]}
s

S{![P, (R, T ), U ]}
p↓

S [!P, ?[(R, T ), U ] ]

S{![([R, U ], T ), P ]}
p↓

S [!([R, U ], T ), ?P ]
s
S [! [(R, T ), U ] , ?P ]

;

S{![([R, U ], T ), P ]}
s

S{![(R, T ), U , P ]}
p↓

S [![(R, T ), U ], ?P ]

�

By using this result, we can achieve a finer decomposition of the proofs of the
conjunctive planning problem structures compared to Theorem 8.23:

Corollary 8.25. Let P = [?A1, . . . , ?As, ! K] be a cpps. For every proof Π of
P in system ELS, there are derivations ∆1, . . . , ∆5, such that

!([a1, ā1 ], . . . , [am, ām ])

{ai↓}∆5

![A1, . . . , Ak, K]
{s}∆4

[?A1, . . . , ?Ak, ! K]
{p↓}∆3

[?A1, . . . , ?As, ?As+1, . . . , ?An, ! K]
{w↓}∆2

[?A1, . . . , ?As, ! K]
{b↓}∆1

where for all A ∈ {̇A1, . . . , As, As+1, . . . , An }̇, it holds that A ∈ {A1, . . . , As} and
there are k number of instances of the rule p↓.

Proposition 8.26. Let R = [S{ā}, a] be an ELS structure that consists of
pairwise distinct atoms. R has a proof in system {ai↓, s} if and only if S{1} has a
proof.

Proof. (⇒:) Construct a proof of S{1} from the proof of R by replacing a
with ⊥ and ā with 1. (⇐:) The proof follows from the derivation

S{1}
ai↓

S [ā, a]

[S{ā}, a]

{s}
.
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�

Theorem 8.27. Let P be a planning problem and P be the cpps for P. There
is a plan P with length k that solves P if and only if there is a proof of P with k
number of instances of the rule p↓.

Proof. Proof by induction on k.
(⇒:) For the base case, if P is the empty plan then it must be that

I = {̇ g1, . . . , gm }̇ = G .

Together with Lemma 8.21, take the proof

termination .
[?A1, . . . , ?As, ! [g1, . . . , gm, (ḡ1, . . . , ḡm)] ]

For the induction step we assume that the result holds for a plan with k actions.
Suppose there is a planning problem P = 〈R, A , I,G〉 where

I = {̇ r1, . . . , rm }̇ , G = {̇ g1, . . . , gn }̇ .

Assume that 〈a1; . . . ; ak; ak+1〉 solves the planning problem P . Then we find
an action a1 ∈ A and a planning problem P ′ = 〈R, A , I ′,G〉 such that

a1 : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ ,

I ′ = {̇ r′1, . . . , r
′
m′ }̇ = ( {̇ r1, . . . , rm }̇ −̇ {̇ c1, . . . , cp }̇ ) ∪̇ {̇ e1, . . . , eq }̇

and the plan 〈a2; . . . ; ak; ak+1〉 solves P
′. With the induction hypothesis we find

P = [?A1, . . . , ?As, ![r1
′, . . . , r′m′ , (ḡ1, . . . , ḡq)] ] such that

P

ELSΠ
.

Together with the Lemma 8.19 take the following proof:

[?A1, . . . , ?As, ! [r
′
1, . . . , r

′
m′ , (ḡ1, . . . , ḡn)] ]

action
[?A1, . . . , ?As, ! [r1, . . . , rm, (ḡ1, . . . , ḡn)] ]

ELSΠ

(⇐:) For the base case, if there are non applications of the rule p↓ in Π, then from
Corollary 8.25, there must be a decomposition of Π as follows:

![r1, . . . , rm, (ḡ1, . . . , ḡn)]

{s,ai↓}Π′

[?A1, . . . , ?As , ![r1, . . . , rm, (ḡ1, . . . , ḡn)] ]
{w↓}

In order for a proof Π′ to exist, it must be that {̇ r1, . . . , rm }̇ = {̇ g1, . . . , gn }̇.
Thus, there is a plan with length 0 that solves the planning problem P .

For the induction step we assume that the result holds for a proof with k
number of instances of the rule p↓. Suppose that there is a planning problem
P = 〈R, A , I,G〉 where

I = {̇ r1, . . . , rm }̇ , G = {̇ g1, . . . , gn }̇ ,
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P is its encoding and there is a proof of P with k+1 number of instances of the rule
p↓. From Corollary 8.25, there must be a decomposition of Π, with k + 1 instances
of the rule p↓, as follows:

![A1, . . . , Ak, Ak+1, K]

{ai↓,s}Π′

[?A1, . . . , ?Ak, ?Ak+1, ! K]
{p↓}∆3

[?A1, . . . , ?As, ?As+1, . . . , ?An, ! K]
{w↓}∆2

[?A1, . . . , ?As, ! K]
{b↓}∆1

Let Π′′ be the following proof obtained from Π′ by renaming the atoms in Π′ in a
way such that there are only structures that consist of pairwise distinct atoms at
the premise and conclusion of each instance of the inference rules.

[A1, . . . , Ak, Ak+1, r1, . . . , rm, (ḡ1, . . . , ḡn)]

{ai↓,s}Π′′

Thus, for every r ∈ {̇ r1, . . . , rm }̇, there must be an action structure

A = (c̄1, . . . , c̄p, [e1, . . . , eq ]) ∈ {̇A1, . . . , Ak, Ak+1 }̇

such that r ∈ {̇ c1, . . . , cp }̇. (Without loss of generality assume that r /∈ {̇ g1, . . . , gn }̇).
Since there cannot be an ELS structure of the form

[(c̄1,1, . . . , c̄1,p1
, [e1,1, . . . , e1,q1

]), . . . , (c̄n,1, . . . , c̄n,pn
, [e1,1, . . . , e1,qn

]), (ḡ1, . . . , ḡs)]

which is provable in system {ai↓, s}, it follows from Proposition 8.26 that there

must be an action structure A ∈ {̇A1, . . . , Ak, Ak+1 }̇ such that

A = (c̄1, . . . , c̄p, [e1, . . . , eq ]) and {̇ c1, . . . , cp }̇ ⊆̇ {̇ r1, . . . , rm }̇ .

Then there must be an action a ∈ A such that

(1) a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ .

(2) Let {̇ r′1, . . . , r
′
m′ }̇ = ( {̇ r1, . . . , rm }̇ −̇ {̇ c1, . . . , cp }̇ ) ∪̇ {̇ e1, . . . , eq }̇ .

Because of commutativity and associativity we can assume that A = Ak+1. By
applying Proposition 8.26 we get the following proof:

[A1, . . . , Ak, r
′
1, . . . , r

′
m′ , (ḡ1, . . . , ḡn)]

{ai↓,s}Π1

[A1, . . . , Ak, (c1, . . . , cp, [e1, . . . , eq ]), r1, . . . , rm, (ḡ1, . . . , ḡn)]
{ai↓,s}

With Corollary 8.25 and proof Π1 above, we can construct a proof, with k number
of applications of the rule p↓, of the cpps P ′ for the planning problem P

′ =
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〈R, A , I ′,G〉, where I ′ = {̇ r′1, . . . , r
′
m′ }̇ as follows:

![A1, . . . , Ak, r
′
1, . . . , r

′
m′ , (ḡ1, . . . , ḡn)]

{ai↓,s}Π1

[?A1, . . . , ?Ak, ! [r′1, . . . , r
′
m′ , (ḡ1, . . . , ḡn)] ]

{p↓}

[?A1, . . . , ?As, ?As+1, . . . , ?An, ! [r′1, . . . , r
′
m′ , (ḡ1, . . . , ḡn)] ]

{w↓}

[?A1, . . . , ?As, ! [r′1, . . . , r
′
m′ , (ḡ1, . . . , ḡn)] ]

{b↓}

From the induction hypothesis we get a plan P with length k that solves P ′. From
(1) and (2), it follows that 〈 a ; P 〉, with length k + 1, solves P . �

Corollary 8.28. Let P be a planning problem and P be the cpps for P. The
following are equivalent:

i. There is a plan P that solves P.
ii. There is a proof of P in system ELS of the form given in Corollary 8.25.

iii. There is a proof of P that is constructed by applying the rule action induc-
tively bottom-up for the action structures for the actions in P with respect
to their order in P; and then finally by applying the rule termination when
the plan is empty.

Remark 8.29. In the definition of cpps, where a conjunctive planning problem
is encoded as an ELS structure, the exponential ’ ! ’ preceding the problem struc-
ture can be safely removed. However, in this case proofs of such structures are
constructed without any instance of the rule p↓.

Remark 8.30. The definition of a plan that solves a planning problem, which
was used so far in this section, is too restrictive: The condition of this definition
imposes the state that is reached by the plan, to be exactly the same as the goal state.
However it is also feasible to replace the equality in the condition with multiset
inclusion. In other words, the states that contain the resources of the goal state
together with other resources can be considered as accepting states. Such a view
of planning problems can be easily accommodated into the current definition by
means of additional actions for consuming the excessive resources at the end of the
execution of the plan: For each resource r ∈ R, one can define an action that has
only this resource as the condition and an empty effect.

Let us see this on the following example.

Example 8.31. As before, Peter has a euro which he can change for two fifty
cents. However, this time he is thirsty, so he only wants to get a lemonade. The
actions for changing the euro and buying a lemonade are defined as before. However,

now we are also equipped with the auxiliary action {̇ f }̇ → ∅̇ for getting rid of the
“excessive” fifty cents. We get the following cpps for this planning problem

[? (ē, [f, f ]), ? (f̄, l), ? (f̄,⊥), ! [e, l̄ ] ]
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which can be proved as follows:

termination
[? (ē, [f, f ]), ? (f̄, l), ? (f̄,⊥), ! [ l, l̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄,⊥), ! [l, f, l̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄,⊥), ! [f, f, l̄ ] ]

action
[? (ē, [f, f ]), ? (f̄, l), ? (f̄,⊥), ! [e, l̄ ] ]

With Theorem 8.27, I provided a constructive proof of the equivalence of exis-
tence of a plan solving a planning problem and existence of a proof of the encoding
of the planning problem in ELS. As we have seen in Corollary 8.28, the rules action

and termination provide an algorithm for reading a plan from a proof that is con-
structed by using only these rules. However, because of the possible permutation
of the inference rules, a proof of a cpps can be constructed in many different ways,
and these instances do not provide an explicit reading of a plan from these different
proofs.

In the following, I will give an algorithm for extracting partial order plans from
the proofs of conjunctive planning problem structures. This way, I will establish an
explicit correspondence between partial order plans and proofs of the cpps. Because
of the explicit treatment of resources in conjunctive planning, these partial order
plans respect a concurrency semantics, namely labelled event structure semantics.

8.3. Labelled Event Structure Semantics

Labelled event structures (LES) [SNW96, WN95] is a non-interleaving branching-
time behavioral model of concurrency. An interleaving model of concurrency is
equipped with an expansion law that identifies parallel composition by means of
choice and sequential composition. In a nut shell, in an interleaving model, paral-
lel composition of two events indicates that these events can take place in either
order. A model for concurrency without such an expansion law is said to be a non-
interleaving model: When two events are composed in parallel they can take place
simultaneously or in either order. In such a view of the systems, the independence
and causality between the events of the system is central. In a LES the causality
between actions is captured in terms of their dependencies in a partial order.

In concurrency theory another discussion is centered around linear-time seman-
tics versus branching-time semantics. In a linear-time semantics, two processes that
agree on the ordering of actions are considered equivalent. However, such processes
may differ in their branching structure. In this respect, the branching structure of
a process is determined by the moments that choices between alternative branches
of behaviour are made. A branching-time semantics distinguishes processes with
the same ordering of actions but different branching structures.

Labelled event structures provide a branching-time semantics of the systems
being modelled. Apart from the causality which is expressed in a partial order, in
a LES, the nondeterminism in the computation is captured by a conflict relation,
which is a symmetric irreflexive relation of events. In a planning perspective, this
corresponds to actions that are applicable in the same state, but are in conflict.
When two actions are in conflict with each other, execution of one of them instead of
the other determines a different state space ahead. This provides a branching-time
model of the possible computations.
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In this section, I associate to every planning problem a LES that represents
the independence and causality of all the actions performable in different states
of a search for a plan. By resorting to the inference rule action, which gives the
operational semantics of the conjunctive planning problems, I associate a transition
system to each proof of a planning problem. I then adapt some ideas from [Gug96]
where LES semantics for a class of linear logic proofs has been studied: I apply the
techniques presented in [Gug96] to conjunctive planning problems to obtain LES
from the transition systems. Following this, by relying on the notion of indepen-
dence among actions provided by the explicit handling of the resources, I provide
an algorithm to extract partial order plans that respects the LES semantics of the
plans from the proofs of the planning problems.

8.3.1. From Proofs to Transition Systems. In order to obtain a character-
ization of the conjunctive planning problems that takes into account all the possible
computations, I will first associate to each cpps a transition system. Such an ex-
plicit representation of the states is called a system model in [SNW96, WN95],
in contrast to behavioral models, which abstract away from such information, and
focus instead on the behavior in terms of patterns of occurrences of actions over
time. The LES that will be obtained later is such a behavioral model.

Let us first recall the notion of a transition system.

Definition 8.32. A transition system is a 4-tuple 〈S, sI ,L,→〉 where

(1) S is a set of states;
(2) sI ∈ S is the initial state;
(3) L is a set of labels;
(4) → ⊆ S2 ×L is the labelled transition relation.

If (s, s′, a) ∈→ we write s
a
→ s′. If s0

a1→ . . .
ah→ sh, h ≥ 1, we write s0

P
� sh, where

P = 〈a1; . . . ; ah〉 or P = ◦. Let s
◦
→ s denote the empty composition of transitions.

A state s is reachable, if sI
P
� s for some P. A transition system is reachable,

if every state in S is reachable. A transition system is acyclic if s
P
� s implies

P = ◦. Transitions are denoted by t. A sequence 〈t1; t2; . . .〉 of transitions such
that ti = (si−1, si, ai) for i = 1, 2, . . . and s0 = sI is called a path. A finite path
τ = 〈t1; . . . ; th〉 yields sh, if th = (sh−1, sh, ah). A path can also be denoted as

s0
a1→ . . .

ah→ sh. The length of a path is the number of transitions in it.

With the following definitions I will carry the notion of a transition system to
the derivations where the notion of a derivation unifies with the notion of a state.
States are derivations. The premises and conclusions of these derivations are cpps.
Because a cpps P is also a derivation, it is also a state. The computation consists
of moving from one state to another state. Labels are adopted to keep track of the
actions that are selected and used at the application of the rule action.

Definition 8.33. Given a conjunctive planning problem P, let P be the cpps
for P. TSJP K = (S, sI , A ,→) is the reachable transition system such that (∆, ∆′, a) ∈
→ where ∆, ∆′ ∈ S if and only if

(i) sI = P ;

(ii) for some P ′, ∆ has the shape
P ′

P

{ action }∆ ;
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(iii) for some P ′′, there exists a derivation
P ′′

action
P ′

where the conjunctive

action structure for the action a ∈ A is used;

(iv) ∆′ is the derivation

P ′′
action

P ′

P

{ action }∆

.

We then write ∆
a
→ ∆′ .

Example 8.34. Let us consider the cpps P for the planning problem of Example
8.5. Let S{ } denote the structure context

[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), !{ }] .

The transition system TSJP K is as follows:

S [e, h̄]

ceuro

S [f, f, h̄]

S [e, h̄]

blem bcandy

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

blem
bcandy

S [f, c, h̄]

S [f, f, h̄]

S [e, h̄]

blem

bcandy

S [l, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

S [c, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

hlunch

S [l, c, h̄]

S [f, c, h̄]

S [f, f, h̄]

S [e, h̄]

hlunch

S [c, c, h̄]

S [f, c, h̄]

S [f, f, h̄]

S [e, h̄]

S [h, h̄]

S [c, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

S [h, h̄]

S [l, c, h̄]

S [f, c, h̄]

S [f, f, h̄]

S [e, h̄]

Proposition 8.35. Given a cpps P, TSJP K is acyclic;
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Proof. Every transition transforms a derivation into a syntactically bigger
derivation. �

Definition 8.36. Let P be a cpps and τ = 〈t1; . . . ; th〉 be a finite path in
TSJP K. τ is a path yielding ∆h, if, for 1 ≤ i ≤ h, we have that ti = (∆i−1, ∆i, ai).
If the premise of ∆h is P ′ and the rule termination is applicable to P ′, then τ is a
successful path. If the rule termination is not applicable to P ′ and there is no ∆ in

TSJP K such that for any a ∈ A , ∆h
a
→ ∆, then τ is called a failed path.

Example 8.37. Consider the transition system TSJP K of Example 8.34. The
following is a successful path because the rule termination can be applied to the last
derivation of the path:

S [e, h̄]
ceuro→

S [f, f, h̄]

S [e, h̄]

blem→

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

bcandy
→

S [c, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

hlunch→

S [h, h̄]

S [c, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

The following is a failed path because neither the rule termination can be applied to
the last derivation of the path, nor is there a possible transition from this derivation.

S [e, h̄]
ceuro→

S [f, f, h̄]

S [e, h̄]

blem→

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

blem→

S [l, l, h̄]

S [f, l, h̄]

S [f, f, h̄]

S [e, h̄]

Proposition 8.38. There is a proof of a cpps P in ELS with k number of
applications of the rule p↓ if and only if there is a successful path in TSJP K with
length k.

Proof. From Corollary 8.28, it follows that a plan P with length k solves a
planning problem if and only if there is a successful path in TSJP K with length
k. The result follows from Theorem 8.27, because there is a plan with length k
that solves the planning problem if and only if there is a proof of a cpps P with k
number of applications of the rule p↓. �

The transition system of Example 8.34 is a transition system with finite number
of states. Because in planning one is usually interested in finite computations, I
used this example so far. However from the point of view of concurrency theory,
often infinite computations need to be modeled. For instance, if one considers
modeling an operating system, ideally the computations should not terminate. In
order to be able to argue about such infinite computations, I will now extend the
example of this chapter in a way that accommodates an infinite computation:

Example 8.39. Consider the planning problem P = 〈R, A , I,G〉 of Example
8.5 where we have the scenario where Peter is hungry and wants to have lunch
with his euro. I now extend the planning problem P by allowing Peter to sell his
candy-bar and lemonade to a colleague for a euro whenever he wants. Thus, the
planning problem P ′ = 〈R, A ′, I,G〉 is obtained from the planning problem P by
extending the set A with the action slunch such that

A
′ = A ∪ { slunch : {̇ l, c }̇ → {̇ e }̇ } .
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Figure 8.2. The transition system TSJP ′ K

Let P ′ be the cpps for P
′. This way, we can observe infinite computations in the

transition system TSJP ′ K, which is depicted in Figure 8.2. In this figure, each arrow
denotes a transition in TSJP ′ K.

In a first step towards observing the independence and the causality in the
derivations, we will now consider two derivations equivalent if they have the same
premise and conclusion. The following definition serves this purpose:

Definition 8.40. Let D be the set of derivations, and P and P ′ be cpps.
≈ ⊂ D2 is the least equivalence relation such that ∆ ≈ ∆′ if and only if

P ′

P
ELS∆ and

P ′

P
ELS∆′ .

[∆]≈ denotes the equivalence class of the derivation ∆ under ≈. The set D/≈ ,
the set of equivalence classes of derivations under ≈ , is called the set of abstract
derivations. The elements of D/≈ are denoted by δ.

Example 8.41. Let us consider the cpps of Example 8.34. We have the follow-
ing syntactically different derivations that are equivalent under ≈:

S [l, c, h̄]

S [f, c, h̄]

S [f, f, h̄]

S [e, h̄]

≈

S [l, c, h̄]

S [ l, f , h̄]

S [f, f, h̄]

S [e, h̄]

Proposition 8.42. If two states of TSJPK, ∆ and ∆′, are equivalent under

≈ and if ∆
a
→ ∆′′, then, in TSJPK, there is a transition ∆′ a

→ ∆′′′ such that
∆′′ ≈ ∆′′′ .

Proof. Because ∆′′ and ∆′′′ have the same premises, same inference rules can
be applied to the premises of these two derivations. �
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PSfrag replacements

[
S [e, h̄ ]

P

]

≈

[
S [f, f, h̄ ]

P

]

≈

[
S [f, l, h̄ ]

P

]

≈

[
S [f, c, h̄ ]

P

]

≈

[
S [l, c, h̄ ]

P

]

≈

[
S [h, h̄ ]

P

]

≈

[
S [l, l, h̄ ]

P

]

≈

[
S [c, c, h̄ ]

P

]

≈

ceuro

blem

bcandy

hlunch

slunch

bcandy

blembcandy
blem

Figure 8.3. A transition system TS≈JPK

With the following definition, we will see a new transition system associated
with a cpps that respects the equivalence of derivations induced by the relation ≈.

Definition 8.43. Given a cpps P and a TSJPK = (S, sI , A ,→), let TS≈JPK =
(S≈ , sI≈, A , →≈) be the transition system such that

(i) sI≈ = P ;
(ii) S≈ = S/≈ ;

(iii) [∆]≈
a
→ [∆′ ]≈ if and only if ∆

a
→ ∆′ where a ∈ A .

Example 8.44. Let S{ } denote the structure context

[? (ē, [f, f ]), ? (f̄, l), ? (f̄, c), ? (l̄, c̄, h), ? (l̄, c̄, e), !{ }] .

The transition system TS≈JP ′K for the cpps P ′ of Example 8.39 is in Figure 8.3.

Definition 8.45. Let P be a cpps and τ = 〈t1; . . . ; th〉 be a finite path in
TS≈JPK. τ is called an abstract path yielding δh, if, for all 1 ≤ i ≤ h, ti =
(δi−1, δi, ai). If P ′ is the premise of (all the elements of) δh and the rule termination

is applicable to P ′, then τ is a successful abstract path. If the rule termination is

not applicable to P ′ and there is no δ in TS≈JPK such that, for any a, δh
a
→ δ then

τ is a failed abstract path.

Proposition 8.46. Given a cpps P, TS≈JPK is reachable.

Proof. Because TSJPK is by definition reachable, TS≈JPK is also reachable.
�

The intuition behind the following definition is to capture the independence
and causality between actions. Informally, two actions a and a′ are independent if
their ordering does not influence the reachability of a certain state that is common
to both paths.
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Definition 8.47. Given a cpps P and TS≈JPK, let the relation ♦ ⊆ A 2 ×S 4
≈

be such that (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦ if and only if (δ, δ′, a), (δ, δ′′, a′), (δ′, δ′′′, a′),
and (δ′′, δ′′′, a) are transitions in TS≈JPK where (δ, δ′, a) 6= (δ, δ′′, a′):

δ
a a′

δ′

a′

δ′′

a

δ′′′

We will call ♦ the diamond property of TS≈JPK.

Example 8.48. Considering the cpps P of our running example, let

δ =

[
S [f, f, h̄ ]

P

]

≈

,

δ′ =

[
S [l, f, h̄ ]

P

]

≈

, δ′′ =

[
S [f, c, h̄ ]

P

]

≈

,

δ′′′ =

[
S [l, c, h̄ ]

P

]

≈

;

and let a = blem and a′ = bcandy. Then we have (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦.

Definition 8.49. Given TS≈JPK = (S≈,P , A ,→≈) and its diamond property
♦, the relation w is the least equivalence relation on its paths such that the following
holds: given two paths of the form

τ1 = 〈 t ; (δ, δ′, a) ; (δ′, δ′′′, a′) ; t′〉 and τ2 = 〈t ; (δ, δ′′, a′) ; (δ′′, δ′′′, a) ; t′〉 ,

if (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦, then τ1 w τ2.

The following proposition captures the intuition of the above definitions with
respect to equivalent paths in a TS≈JPK.

Proposition 8.50. Given finite paths τ1 and τ2 in TS≈JPK, if τ1 w τ2, then
they both yield the same state.

Proof. Follows immediately from Definition 8.47 and Definition 8.49. �

8.3.2. Labelled Event Structures of Planning Problems. In this section,
we will see how we can associate to every cpps a labelled event structure. In the
current setting, events correspond to certain instances of actions. In a LES events
are partially ordered and there is a conflict relation among the events. This conflict
relation represents the nondeterminism in the system. Events that are not in a
conflict can be freely executed in a way which respects the order determined by the
partial order. Labelled event structures provide a clear computational model which
captures the concurrent behavior of events while respecting their independence and
causality.
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Figure 8.4. The transition system TS'JP ′K

In the following, the labelled event structure for a cpps P will be obtained
from the transition system TS≈JPK and the equivalence relation w on its paths.
For this purpose, I will first define a new transition system, such that in these
transition systems all paths reaching a certain state belong to the same equivalence
class induced by w . A general exposure of these results for a class of linear logic
proofs can be found in [Gug96]. For an exposure of the relationship between
transition systems, labelled event structures, and some other models for concurrency
the reader is referred to [SNW96, WN95].

Definition 8.51. Given a cpps P and TS≈JPK = (S≈ , sI≈, A , →≈), let
TS'JPK = (S' , sI', A , →') be the transition system such that

(i) S' = T /', where T is the set of finite paths in TS≈JPK and ' is the
equivalence relation on its paths induced by the diamond property ♦ of
TS≈JPK. Elements of S' are denoted by π ;

(ii) sI' = [◦]' ;

(iii) [τ ]'
a
→' [τ ′ ]' if and only if τ ′ ' 〈 τ ; (δ, δ′, a) 〉 where (δ, δ′, a) ∈ →≈.

Example 8.52. The transition system TS'JP ′K for the running example is
shown in Figure 8.4.

Proposition 8.53. For every cpps P , TS'JPK is reachable and acyclic.

Proof. TS'JPK is obtained from TS≈JPK which is reachable. Because each
transition transforms an abstract path to a syntactically bigger abstract path,
TS'JPK is acyclic. �

Definition 8.54. A labelled event structure is a structure (E,≤, #,L, `) ,
where
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(i) E is a set of events;

(ii) ≤ ⊆ E2 is a partial order such that for every e ∈ E the set
{e′ ∈ E | e′ ≤ e } is finite;

(iii) the conflict relation # ⊆ E2 is a symmetric and irreflexive relation such
that if e # e′ and e′ ≤ e′′ , then e # e′′, for every e, e′, e′′ ∈ E ;

(iv) L is a set of labels;

(v) ` : E → L is a labeling function.

A LES of a cpps P is obtained from TS'JPK . For this purpose let me first
lift the diamond property from TS≈JPK to TS'JPK , that is, from the equivalence
classes of derivations to the equivalence classes of paths:

Definition 8.55. Given P and the diamond property ♦ of TS≈JPK , we define
♦' ⊂ A 2 × S4

' for TS'JPK as follows: For some abstract paths τ, τ ′, τ ′′ and τ ′′′,

(a, a′, [τ ]', [τ ′]', [τ ′′]', [τ ′′′]') ∈ ♦' if and only if

τ ′ ' 〈 τ ; (δ, δ′, a) 〉 , τ ′′ ' 〈 τ ; (δ, δ′′, a′) 〉 , τ ′′′ ' 〈 τ ′ ; (δ′, δ′′′, a′) 〉 ,

τ ′′′ ' 〈 τ ′′ ; (δ′′, δ′′′, a) 〉 and (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦

for some states δ, δ′, δ′′ and δ′′′ of TS≈JPK .

Example 8.56. Consider the a, a′, δ, δ′, δ′′ and δ′′′ of Example 8.48. Let τ be
an abstract path that leads to a derivation ∆ with the structure S [f, f, h̄ ] at the
premise. Then we have

τ ′ '

〈

τ ;





[
S [f, f, h̄ ]

P

]

≈

,

[
S [l, f, h̄ ]

P

]

≈

, blem





〉

,

τ ′′ '

〈

τ ;





[
S [f, f, h̄ ]

P

]

≈

,

[
S [f, c, h̄ ]

P

]

≈

, bcandy





〉

,

τ ′′′ '

〈

τ ′ ;





[
S [l, f, h̄ ]

P

]

≈

,

[
S [l, c, h̄ ]

P

]

≈

, bcandy





〉

,

τ ′′′ '

〈

τ ′′ ;





[
S [f, c, h̄ ]

P

]

≈

,

[
S [l, c, h̄ ]

P

]

≈

, blem





〉

.

Thus, we have (blem, bcandy, [τ ]', [τ ′]', [τ ′′]', [τ ′′′]') ∈ ♦'

Definition 8.57. Given TS'JPK = (S',P , A ,→') and its diamond property
♦' , let ∼ be the least equivalence relation on t, t′ ∈ →' such that

t ∼ t′ if and only if t = (π, π′, a) , t′ = (π′′, π′′′, a)

and there exists a′ ∈ A such that (a, a′, π, π′, π′′, π′′′) ∈ ♦' .

Intuitively, two transitions are in ∼ if they represent the same event. Let us
see this on an example:
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Example 8.58. Consider the relation ♦' of Example 8.56 where we have

(blem, bcandy, [τ ]', [τ ′]', [τ ′′]', [τ ′′′]') ∈ ♦'.

If π = [τ ]', π′ = [τ ′]', π′′ = [τ ′′]' and π′′′ = [τ ′′′]', as in Definition 8.57, then
we have t ∼ t′ where

t =





[
S [f, f, h̄ ]

P

]

≈

,

[
S [l, f, h̄ ]

P

]

≈

, blem



 and

t′ =





[
S [l, f, h̄ ]

P

]

≈

,

[
S [l, c, h̄ ]

P

]

≈

, blem



 .

Definition 8.59. Given a cpps P and TS'JPK = (S',P , A , `), let LESJPK =
(E,≤, #, A , `) be the labelled event structure such that

(i) E =→' /∼ ;

(ii) ≤ is the reflexive closure of <, which is defined as follows: for all e, e′ ∈ E,
e < e′ if and only if e = [t]∼ and e′ = [t′ ]∼, and for every path τ in
TS'JPK and for every t′′′ ∈ →' such that 〈 τ ; t′′′ 〉 is a path and t′′′ ∼ t′,
there exists t′′ ∼ t such that τ = 〈 τ ′; t′′; τ ′′ 〉 for some τ ′, τ ′′ ;

(iii) [t]∼ # [t′ ]∼ if and only if for every path τ in TS'JPK and for every
t′′, t′′′ ∈→' such that t ∼ t′′ and t′ ∼ t′′′, if t′′ appears in τ , then t′′′

does not appear in τ ;

(iv) `([(π, π′, a)]∼) = a .

Example 8.60. The labelled event structure LESJP ′K for the cpps P ′ of Example
8.39 is as in Figure 8.5. The nodes of the graph are delivered by the function ` such
that `([(π, π′, a)]∼) = a

The relation ≤ of Definition 8.59 is a partial order relation which provides a
representation of independence and causality between different events. The events
that are not ordered with respect to ≤ are independent, thus they can co-occur.
The events that are ordered follow a chain of causality, that is, for an event e,
all events e′ < e, the execution of e is impossible without the prior execution
of e′. Thus, the relation ≤ succeeds in presenting the independence and causality
between events when different actions are concerned. However, due to the condition
(δ, δ′, a) 6= (δ, δ′′, a′) in Definition 8.47, when identical actions are concerned we can
not observe their independence in the relation ≤. In other words, with the above
definitions, it is impossible to observe parallelism whenever two identical actions
are applied to two different branches of a derivation which both have the same
premise.

Example 8.61. Consider the LESJP ′K of Example 8.60. For some transitions
δ 6= δ′ 6= δ′′, we have that (δ, δ′, blem) < (δ′, δ′′, blem) although these two actions can
be executed in parallel.

The following definition modifies the relation ≤ in a way that allows to observe

a parallelism such that whenever there is a transition δ
a
→ δ′

a
→ δ′′ in TSJPK then

the two actions involved may be exchanged.
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Figure 8.5. The labelled event structure LESJP ′K

Definition 8.62. Given LESJPK = (E,≤, #, A , `), for an event e ∈ E, let

‖e‖= {e′ ∈ E | e′ < e, ∀e′′ ∈ E : ( e′ ≤ e′′ < e ⇒ `(e′′) = `(e) ) } .

Then the relation ≤? is defined as follows:

≤? = ≤ \
⋃

e∈E

{ (e′, e) | e′ ∈‖e‖ }

By using the relation ≤?, we obtain a new LES:

Definition 8.63. Given a cpps P and LESJPK = (E,≤, #, A , `), let

LES?JPK = (E,≤?, #, A , `) .

Example 8.64. The labelled event structure LES?JP ′K for the cpps P ′ of Ex-
ample 8.39 is as in Figure 8.6. It is important to observe that the two events with
the actions blem (bcandy), which were previously ordered in LESJP ′K, are not ordered
with respect to ≤? in LES?JP ′K.

A labelled event structure of a conjunctive planning problem gives a concurrent
model of all the possible executions of plans for this planning problem. With the
definition below, I will give a formal characterization of these executions:

Definition 8.65. Given a LES (E,≤, #, A , `), for an event e ∈ E, bec denotes
the set {e′ ∈ E | e′ < e } of causes of event e.

Definition 8.66. Given a LES (E,≤, #, L, `), C ⊆ E is a configuration if and
only if

(i) for all e ∈ C we have that b e c ⊂ C ;

(ii) for all e, e′ ∈ C , it is not the case that e # e′.



184 8. A COMMON LANGUAGE FOR PLANNING AND CONCURRENCY

PSfrag replacements

#

#

ceuro

blem

blem bcandy

bcandy

hlunch slunch

ceuro

blem

blem

bcandy

bcandy

hlunch slunch

Figure 8.6. The labelled event structure LES?JP ′K

Definition 8.67. Given a LES (E,≤, #, L, `), and one of its configurations C ,
we say that event e is enabled at C (denoted by C B e) if and only if

(i) e /∈ C ;

(ii) bec ⊆ C ;

(iii) e′ # e implies e′ /∈ C .

Definition 8.68. Given a LES (E,≤, #, L, `) and a finite sequence of events
S = 〈e1; . . . ; eh〉 , S is a securing for C if and only if C = {e1, . . . , eh} is a configu-
ration and, for all 1 ≤ i ≤ h, {e1, . . . , ei−1} B ei .

Example 8.69. Consider LES?JP ′K of Example 8.64 that is depicted in Figure
8.6. From the fragment of LES?JP ′K which is depicted on the right-hand side of
Figure 8.7, we obtain a configuration C = { ceuro, blem, bcandy }. We observe that C

enables the event hlunch, i.e., C B hlunch . We obtain the securing

〈 ceuro; blem; bcandy; hlunch 〉

as it is depicted in Figure 8.7.

The following results are special cases of more general results in [Gug96]. Their
proofs can be found in [Gug96]. They demonstrate the formal correspondence
between the transition systems TSJPK and the LES?JPK of a cpps P .

Theorem 8.70. Given a cpps P, LES?JPK = (E,≤?, #, A , `) and a securing

S in LES?JPK, there is a path P
`(S)
� ∆ in TSJPK.

Theorem 8.71. Given a cpps P and a path P
a1→ ∆1

a2→ · · ·
ah→ ∆h in TSJPK,

there is a securing S in LES?JPK = (E,≤?, #, A , `) such that `(S) = 〈a1; . . . ; ah〉 .
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8.3.3. Partial Order Plans, Plans, and Securings. A partial order plan
with an LES semantics, which I presented in the previous subsection, can be ex-
tracted from the proof (or the derivation) of a conjunctive planning problem struc-
ture. This can be done by writing down constraints for atoms that get annihilated
in a par structure by the application of the rule ai↓ during the proof construction.
This is possible because the instances of this rule carries the information about the
interactions, thus the dependencies, between actions. In the following, I will present
an algorithm, i.e., recursive function that extracts this information. The intuition
behind this algorithm is as follows: We mark each atom in an action structure with
the name of that action. We also mark the atoms in the problem structure, i.e., the
positive atoms in the par structure with the label init and the negative atoms in the
times structure with the label goal. Furthermore, with each bottom-up application
of the rule b↓, we extend the label of the produced action with a natural number
that was not previously used. This way, we make sure that each bottom-up appli-
cation of the rule b↓ to an action structure results in atoms with distinct labels,
also in the case when the rule b↓ is applied to the same action structure more than
once. We then read the constraints, containing the desired information, as follows:
Whenever the rule ai↓ is applied bottom-up to a par structure, this results in a
constraint that states that the label of the positive atom is ordered less than the
label of the negative atom with respect to an ordering relation. Putting all these
constraints together, we get a partial order. Now, let me express the above ideas
formally.

Definition 8.72. Let <⊆ A × A be a binary relation on a set A . < is
a strict partial order if and only if it is irreflexive and transitive(, which implies
asymmetry). A partially ordered set is also called a poset. The transitive reflexive
reduction of a (strict) partial order is called the cover relation. An element z of a
poset covers another element of x provided that there is no y in the poset for which
x < y < z. In this case, z is called an upper cover of x and x a lower cover of z.

Definition 8.73. Let Π be the proof

S{T}
ρ

S{R}

ELSΠ′

of a cpps where the atoms in every action structure are labelled with the name of
that action. Furthermore, whenever there is an instance of the rule b↓, the labels of
the atoms in the premise, that are copied, are extended with a natural number that
does not occur with the same action name elsewhere in the proof. Similarly, in a
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problem structure, all the positive and negative atoms are labelled with init (i) and
goal (g), respectively. Let Label denote the set of all the labels occurring in Π. The
function µ on Π is defined as follows.

• If ρ is an instance of the rule ai↓ where R is the structure [al, āk ] for an
atom a such that l, k ∈ Label, then

µ(Π) = { (l, k) } ∪ µ

(

S{1}

ELSΠ′

)

.

• If ρ is an instance of a rule other than ai↓ and 1↓, then µ(Π) = µ(Π′) .
• If ρ is the axiom 1↓, then µ(Π) = ∅ .

Given a proof Π of P, a constraint set of Π for P, denoted by CP,Π, is given with
µ(Π). We will drop the subscripts when it is obvious from the context which cpps
and proof we mean.

Let us see the above definition on an example:

Example 8.74. Consider the conjunctive planning problem P of Example 8.5.
The cpps P for P has a proof, which can be decomposed, by Corollary 8.25, as the
following proof:

1↓
1

ai↓
! [cbcandy

, c̄hlunch
]

ai↓
! ( [lblem

, l̄hlunch
] , [c̄hlunch

, cbcan
])

ai↓
! ( [hhlunch

, h̄goal ] , [ l̄hlunch
, lblem

], [c̄hlunch
, cbcan

])
ai↓

! ( [fceuro
, f̄bcandy

] , [h̄goal, hhlunch
], [ l̄hlunch

, lblem
], [c̄hlunch

, cbcan
])

ai↓
! ( [fceuro

, f̄blem
] , [f̄bcandy

, fceuro
], [h̄goal, hhlunch

], [ l̄hlunch
, lblem

], [c̄hlunch
, cbcan

])
ai↓

! ( [dinit, d̄ceuro
] , [f̄blem

, fceuro
], [f̄bcandy

, fceuro
], [h̄goal, hhlunch

], [ l̄hlunch
, lblem

], [c̄hlunch
, cbcan

])

P

{s,p↓,b↓,w↓}

After plugging this proof into the function µ, we get the following constraint set:

{(init, ceuro) , (ceuro, blem) , (ceuro, bcandy) , (blem, hlunch) , (bcandy, hlunch) , (hlunch, goal)} .

Observe that this constraint set gives the cover relation of a partial order of actions.
This relation can be depicted as the following diagram, which overlaps with the di-
agram in the middle of Figure 8.7 when the nodes init and goal are disregarded:
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Remark 8.75. It is important to note that although I used a decomposed proof
of a cpps to extract a plan in the above example, this is not necessary to extract a
constraint set. Thus, any proof of a cpps can be plugged into the function µ. Dif-
ferent proofs with the same instances of the rule ai↓ will deliver the same constraint
set.

A constraint set C is not necessarily a cover relation.

Example 8.76. Consider the planning problem given with

A = { a1 : {̇ a }̇ → {̇ c }̇ , a2 : {̇ b, c }̇ → {̇ d }̇ } ,

initial state I = {̇ a, b }̇ and the goal world state G = {̇ d }̇. The cpps for this
planning problem results in the constraint set

C = { (init, a1), (a1, a2), (a2, goal), (init, a2) }

which is not a cover relation. The cover relation of C is the set C ′ ⊂ C given by

C′ = { (init, a1), (a1, a2), (a2, goal) } .

Let me now state some properties of constraint sets:

Proposition 8.77. Let CP,Π be a constraint set of a proof Π for a cpps P.

(i) There is no label x ∈ Label, such that (goal, x) ∈ C.
(ii) There is no label x ∈ Label, such that (x, init) ∈ C.

Proof. The result follows from the observation that (i) all the atoms that are
labelled with goal are negative atoms, and (ii) all the atoms that are labelled with
init are positive atoms. �

Proposition 8.78. Let P be a cpps and CP,Π be the constraint set of a proof
Π of P.

(i) CP,Π is antisymmetric.
(ii) CP,Π is irreflexive.

Proof. (i) Assume that C is not antisymmetric, that is, for some p, q ∈ A ,
(p, q) ∈ C and (q, p) ∈ C. From Corollary 8.25, for some structure R, we must have
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that Π decomposes to the following proof.

1↓
1

ai↓
[bq, b̄p ]

ai↓
([ap, āq ], [bq, b̄p ])

ai↓
...

ai↓
([ap, āq ], [bq, b̄p ], R)

s
( [ap, (āq, [bq, b̄p ])] , R)

s
( [ [ap, b̄p ], (āq, bq)] , R)

P

ELS∆

This can be the case if the structure [ap, b̄p ] is produced by a conjunctive action
structure corresponding to an action p, which contradicts with the definition of the
conjunctive action structures.
(ii) Assume that there is a pair (p, p) ∈ C. Because two atoms can have the same
label only if they are produced by the same conjunctive action structure by an
application of the b↓ rule, where R = (c̄1, . . . , c̄m) and T = [e1, . . . , en ], there must
be an action structure (āp, R, [ap, T ]), such that

1↓
1

ai↓
[ap, āp ]

[(āp, R, [ap, T ]), R̄, T̄ ]

∆

which is the case when

there is a derivation ∆′

such that

[ap, āp ]

(ap, āp) .

∆′

Because there cannot be such a derivation ∆′, there cannot be a pair (p, p) ∈ C. �

Remark 8.79. Because a cpps P may have proofs that differ in the instances
of the rule ai↓, it does not necessarily have a unique constraint set:

Example 8.80. Consider the cpps P1 for the planning problem given with

A = { a1 : {̇a }̇ → {̇ c }̇ ,

a2 : {̇ b }̇ → {̇ c }̇ ,

a3 : {̇ c }̇ → {̇ d }̇ ,

a4 : {̇ c }̇ → {̇ e }̇ } ,

initial state I = {̇a, b }̇ and the goal world state G = {̇ d, e }̇. Then the cpps P1

of this planning problem results in the two distinct constraint sets, which can be
depicted as the two following diagrams:
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However, as a consequence of Corollary 8.25, it is easy to observe that two
different proofs of a cpps P have the same constraint set if they decompose to the
same proof by permuting the rules, because they have the same instances of the ai↓
rule.

Definition 8.81. Let P be a cpps and CP,Π be a constraint set of a proof Π
for P.

(i.) The concurrent plan order of Π for P, denoted by ConP,Π, is the transitive
reduction of CP,Π.

(ii.) The securing order of Π for P, denoted by SecP,Π, is the transitive closure
of CP,Π.

Proposition 8.82. ConP,Π is a cover relation.

Proof. By Proposition 8.78, CP,Π is an antisymmetric irreflexive relation, thus
the transitive reduction of CP,Π delivers a cover relation. �

Proposition 8.83. SecP,Π is a strict partial order.

Proof. By Proposition 8.78, CP,Π is an antisymmetric irreflexive relation, thus
the transitive closure of CP,Π delivers a strict partial order. �

Definition 8.84. A linearization Lin of a securing order Sec is a strict total
order defined on Label, such that Sec ⊆ Lin. Then a plan P induced by Lin is the
sequence of actions that obeys the order defined by a linearization Lin of Sec so that,
from left to right, the actions are sequenced from init to goal, excluding these two
labels.

Example 8.85. Returning to our running example, the concurrent plan order
is Con = C , given in Example 8.74, and the securing order Sec is the set

C ∪ {(init, goal), (init, bcandy), (bcandy, goal), (init, hlunch),

(ceuro, goal), (ceuro, hlunch), (init, blem), (blem, goal) } .

Then we get the two plans

P1 = 〈 ceuro; blem; bcandy; hlunch 〉 and P2 = 〈 ceuro; bcandy; blem; hlunch 〉 .

Lemma 8.86. Let C be the constraint set of a proof Π for a cpps P and Lin be a
linearization of the securing order SecP,Π. For an action a ∈ Label, if (init, a) ∈ Lin

and a is the upper cover of init in Lin, then (init, a) ∈ C and a is the upper cover of
init in C.



190 8. A COMMON LANGUAGE FOR PLANNING AND CONCURRENCY

Proof. Observe that C ⊆ Sec ⊆ Lin. Assume that (init, a) ∈ Lin and (init, a) /∈
Sec. This would imply that in Sec a and init are partially ordered, that is, there
must be an action a′ ∈ Label such that (a′, a) ∈ Sec and (a′, init) ∈ Sec. This
contradicts with Proposition 8.77, so we have that (init, a) ∈ Sec. Because a is the
upper cover of init in Lin, it follows that a is an upper cover of init also in Sec.
Because Sec is the transitive closure of C, it follows that (init, a) ∈ C and a is the
upper cover of init in C, because otherwise a would not be the upper cover of init

in Sec. �

Theorem 8.87. Let P be a cpps for a planning problem P such that there is a

proof
P

ELSΠ
. A plan P solves P if and only if plan P is induced by a linearization

Lin of SecP,Π.

Proof. Proof by induction on the length k of P.

(⇒:) If k = 0 then it must be that I = {̇ r1, . . . rm }̇ = G. Thus, the proof Π consists
of an instance of the rule termination and C is {(init, goal)}.

Turning to the induction step, for an action a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇,
let P = 〈 a ; P′ 〉. With Corollary 8.28, we can assume the proof Π to be of the form

[?A1, . . . , ?As, ! [r′1, . . . , r
′
m′(ḡ1, . . . , ḡn)] ]

action
[?A1, . . . , ?As, ! [r1, . . . , rm(ḡ1, . . . , ḡn)] ]

ELSΠ′

= P ′
action

P

ELSΠ′

where P ′ is the cpps for the planning problem that is solved by P′. It follows that

CP′,Π′ =
(
CP,Π ∪ {(init, x) | (a, x) ∈ CP,Π }

)
\
(
{(init, a)} ∪ {(a, x) | (a, x) ∈ CP,Π }

)
.

Because SecP,Π and Sec′P′,Π′ are transitive closures of CP,Π and CP′,Π′ , respectively,
we have that

SecP′,Π′ = SecP,Π \
(
{(init, a)} ∪ {(a, x) | (a, x) ∈ SecP,Π }

)
.

From the induction hypothesis, we have that P′ is induced by a linearization Lin′

of SecP′,Π′ . Lin is obtained by adding pairs (x, y) to SecP,Π such that partially
ordered nodes in SecP,Π become totally ordered in Lin. Thus, we can take

Lin = Lin′ ∪ {(init, a)} ∪ {(a, x) | (x, y) ∈ Lin′}

that induces 〈 a ; P′ 〉.
(⇐:) If k = 0, then the constraint set C must be of the form {(init, goal)}. This
implies that P is of the form

[?A1, . . . , ?As, ![r1, . . . rm, (r̄1, . . . r̄m)] ]

where I = {̇ r1, . . . rm }̇ = G. Thus, the empty plan ◦ with length 0 solves P .
Turning to the induction step, let P = 〈 a ; P′ 〉 and Label denote the actions in

P and Label′ denote the actions in P′. That is, Label = Label′ ∪ {a} and a /∈ Label′.
If P is induced by Lin, it must be that

Lin = {(init, a), (a, goal)} ∪ {(a, x) |x ∈ Label′} ∪ Lin′

where Lin′ is a total order on Label′ ∪ {init, goal} such that P′ is the plan induced by
Lin′. This implies that there are two partitions L1, L2 of Label′ such that L1 ∪ L2 =
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Label′ and L1 ∩ L2 = ∅ so that the following holds:

SecP,Π = {(init, a), (a, goal)} ∪ {(a, x) |x ∈ L2} ∪ Sec′

where Sec′ is a strict partial order such that

{(init, x) |x ∈ L1} ⊆ Sec′ ⊆ Lin′ .

With Lemma, 8.86 we have that (init, a) ∈ C and a is the upper cover of init

in C. Thus, there must be instances of the rule ai↓ in Π from which (init, a) is

extracted. This can only be the case when, for the action a : {̇ c1, . . . , cp }̇ →

{̇ e1, . . . , eq }̇, there is an action structure A in P that interacts with the problem

structure and for the initial state I we have that {̇ c1, . . . , cp }̇ ⊆̇ I. Assume that

I = {̇ c1, . . . , cp, r1, . . . , rm }̇. It follows from Proposition 8.10 that we can construct
a planning problem P ′ given with the same action set and goal state as P and the

initial state I ′ = {̇ r1, . . . , rm }̇. Let P ′ be the cpps for P ′. Observe that the proof
Π′ of P ′ can be obtained from proof Π, by Corollary 8.28, as follows:

[?A1, . . . , ?As, ! [r1, . . . , rm(ḡ1, . . . , ḡn)] ]
action

[?A1, . . . , ?As, ! [c1, . . . , cp, r1, . . . , rm(ḡ1, . . . , ḡn)] ]

ELSΠ′

Because all the instance of the rule ai↓ in Π′ are also instances of this rule in Π, it
follows that SecP,Π ⊃ SecP′,Π′ = Sec′ ⊆ Lin′, and, with induction hypothesis, P ′

induced by Lin′ solves P ′. Thus, P = 〈 a ; P′ 〉 solves P . �

Corollary 8.88. Given a securing order SecP,Π of Π for the cpps P, if P is a

plan induced by a linearization Lin of SecP,Π, then there is a securing S in LES?JP K
such that P = `(S).

Proof. It follows from Theorem 8.87 that P solves P . From Corollary 8.28,
there is a proof where the rule action for those actions that appear in the plan are
applied in the same order and there is a successful path in TSJP K where exactly
these actions are applied in order. It follows from Theorem 8.71 that this successful
path provides a securing S in LES?JP K such that P = `(S). �

Corollary 8.89. Let S be a securing in LES?JP K such that P
`(S)
� ∆ in TSJPK

is a successful path. Then there is a proof Π of P with the instances of the rule b↓
as in ∆ and there is a linearization Lin of SecP,Π that induces `(S).

Proof. From Corollary 8.28 we have that every successful path in TSJPK
corresponds to a plan P that solves the planning problem. It follows from Theorem
8.87 that there is a linearization Lin of SecP,Π that induces `(S) = P. �

Remark 8.90. So far, the notion of a securing order for a cpps P is defined
on proofs that correspond to successful paths in TSJP K. However, it is possible to
generalize the notion of securing order to other derivations that correspond to ar-
bitrary paths in TSJP K. This can be done by modifying the premise of a derivation
∆, that is, by replacing the problem structure in the premise of ∆ with a pseudo
problem structure on which the rule termination can be applied. Applying the func-
tion µ of Definition 8.73 to this modified derivation delivers a securing order that
is analogous to the securing order for successful paths.
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8.4. The Language K

In this section, I will present the language K. The language K is obtained by
encoding the conjunctive planning problems in system NEL, similar to the encoding
of the conjunctive planning problems in system ELS. However, in language K, the
parallel and sequential composition of the plans, respectively, are mapped to the
commutative par operator and the non-commutative seq operator of this system.
Thus, in a purely logical framework, without resorting to function symbols, this
language brings sequential and parallel composition of the plans to the same level
as in process algebras. This way, the structure of the planning problems and plans
which solve these problems is captured by the logical connectives. Because the
causality is expressed by means of resources as in the linear logic approach, the
plans computed in the language K respect the LES semantics, also at the level
of syntax. The structure of the plans captured by the logical operators makes it
possible to perform logical reasoning on these plans.

8.4.1. The Syntax. In this subsection, I will present the syntax of the lan-
guage K by means of an encoding of the conjunctive planning problems in system
NEL.

Definition 8.91. Given an action a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ , the se-
quential action structure for a, denoted by Q (possibly indexed), is a structure of
the form

〈(c̄1, . . . , c̄p); a; [e1, . . . , eq ]〉 .

An encoding of the conjunctive planning problems in NEL is as follows:

Definition 8.92. Given a conjunctive planning problem P = 〈R, A , I,G〉,
let Q1, . . . , Qs be the sequential action structures for all the actions a1, . . . , as ∈ A

and K be the problem structure for I and G. The sequential conjunctive planning
problem structure (scpps) for P, denoted by R, is defined as follows:

[?Q1, . . . , ?Qs, K]

Analogous to the encoding of the conjunctive planning planning problems in
multiplicative exponential linear logic in Section 8.2, because an action can be
executed arbitrarily many times, I employ the exponential “ ? ”. This retains a
controlled contraction and weakening on the action structures. Thus, an action
structure can be duplicated by applying the rule b↓ or annihilated by applying the
rule w↓ during the search for the plans.

Example 8.93. The scpps for the planning problem of Example 8.5 is as fol-
lows:

[? 〈 ē ; ceuro; [f, f ]〉, ? 〈 f̄ ; blem; l〉, ? 〈 f̄ ; bcandy; c〉, ? 〈 (l̄, c̄) ; hlunch; h〉, e, h̄ ] .

The structures 〈 ē ; ceuro; [f, f ]〉, 〈 f̄ ; blem; l〉, 〈 f̄ ; bcandy; c〉 and 〈 (l̄, c̄) ; hlunch; h〉, re-
spectively, are the sequential action structures for the actions ceuro, blem, bcan, hlunch,
respectively. The atom e denotes the initial state, and the atom h̄ denotes the goal
state.

The non-commutative operator seq allows to capture the sequential composition
of actions, thus it suffices to express plans which consist of sequentially composed
actions. In the following, I will show that searching for certain kind of derivation
of a scpps for a planning problem is equivalent to searching for a solution for this
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planning problem. In such derivations, a plan solving the planning problem is
delivered at the premise of the resulting derivation representing the computation.
In these plans, it is possible to observe the parallel composition of the actions,
which is mapped to the commutative par operator, at the same syntactic level
as the sequential composition. Before presenting the operational semantics of the
language K by means of the inference rules of system NEL, I would like to conclude
the discussion on the syntax of this language. For this purpose, let me now formally
define the plans where sequential and parallel composition of actions co-exist.

Definition 8.94. A concurrent plan structure is a structure generated by

Pc ::= ◦ | a | 〈Pc ; Pc 〉 | [ Pc , Pc ]

where a denotes atoms representing actions.

8.4.2. Operational Semantics. Analogous to the rules action and termination

of Section 8.2, the inference rules in the below definitions give the operational se-
mantics of the language K for plans consisting of sequences of actions:

Definition 8.95. The following rule is called sequential action:

S [ ?〈 (c̄1, . . . , c̄p); a; E〉, 〈P; a; [E, R]〉]
actionseq

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]

Lemma 8.96. The rule actionseq is derivable for system NEL.

Proof. Take the following derivation where the instance of the rule i↓ is as
given in Proposition 4.46:

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; a; [E, R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [〈a; E〉, R]〉]
i↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [〈 [c1, . . . , cp, (c̄1, . . . , c̄p)] ; a; E〉, R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, 〈 (c̄1, . . . , c̄p); a; E〉, R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]
b↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]
�

Definition 8.97. The following rule is called sequential termination:

P
terminationseq

[?Q1, . . . , ?Qs, 〈P; [g1, . . . , gm, (ḡ1, . . . , ḡm)]〉]

Lemma 8.98. The rule terminationseq is derivable for system NEL.

Proof. Take the following derivation where the instance of the rule i↓ is as
given in Proposition 4.46:

P
w↓

[?Qs , P]
w↓

...
w↓

[?Q1 , . . . , ?Qs, P]
i↓

[?Q1, . . . , ?Qs, 〈P; [g1, . . . , gm, (ḡ1, . . . , ḡm)]〉]
�
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By applying the rules action and termination bottom-up to scpps, it is possible
to search for plans.

Example 8.99. Consider the scpps for the planning problem of Example 8.5.
Let S{ } denote the structure context

[? 〈 ē ; ceuro; [f, f ]〉, ? 〈 f̄ ; blem; l〉, ? 〈 f̄ ; bcandy; c〉, ? 〈 (l̄, c̄) ; hlunch; h〉, { }] .

The below derivation corresponds to a successful search for a plan:

〈ceuro; blem; bcandy; hlunch〉
terminationseq

S〈ceuro; blem; bcandy; hlunch; [h, h̄ ]〉
actionseq

S〈ceuro; blem; bcandy; [l, c, h̄ ]〉
actionseq

S〈ceuro; blem; [l, f, h̄ ]〉
actionseq

S〈ceuro; [f, f, h̄ ]〉
actionseq

S [e, h̄ ]

The plan at the premise of this derivation is a solution for the corresponding plan-
ning problem.

In the following, I will prove a theorem that justifies the correctness of the
above encoding with respect to (sequential) plans solving a conjunctive planning
problem. Before this, let me collect some results which will be useful in the proof
of this theorem. Let me first state a result which Straßburger proved in [Str03a].

Theorem 8.100. (decomposition) For every proof
R

in system NEL, there

are derivations ∆1,∆2, and ∆3, such that there is a derivation

R2

{ai↓,s,q↓,p↓}∆3

R1

{w↓}∆2

R

{b↓}∆1

for some structures R1 and R2.

Proposition 8.101. For every derivation
T

R
NEL∆ , there is a proof

[R, T̄ ]

NEL
.

Proof. Take the proof

◦↓
◦

i↓
[T, T̄ ]

[R, T̄ ]

NEL∆

.

�
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Corollary 8.102. Let R = [?Q1, . . . , ?Qs, K] be a scpps and P be a plan that

solves R. For every derivation
P

R
NEL there are derivations ∆1, ∆2, ∆3, such that

[Q1, . . . , Qk, K, P̄]

BV∆3

[?Q1, . . . , ?Qs, Q1, . . . , Qk, K, P̄]

{w↓}∆2

[?Q1, . . . , ?Qs, K, P̄]

{b↓}∆1

where for all Q ∈ {̇Q1, . . . , Qk }̇, it holds that Q ∈ {Q1, . . . , Qs}, and there are k
number of atoms in P that denote actions.

Proof. Follows immediately from Theorem 8.100 and Proposition 8.101. �

Proposition 8.103. Let R = [S{ā}, a] be a BV structure that consists of
pairwise distinct atoms. R has a proof in system BV if and only if S{◦} has a
proof.

Proof. (⇒:) Construct a proof of S{ ◦} from the proof of R by replacing a
and ā with ◦. (⇐:) The proof follows from the derivation

S{◦}
ai↓

S [ā, a]

[S{ā}, a]

{s}
.

�

Proposition 8.104. Let R = [〈ā; P 〉, 〈a; Q〉, U ] be a BV structure that consists
of pairwise distinct atoms. R has a proof in system BV if and only if [P, Q, U ] has
a proof.

Proof. (⇒:) Construct a proof of [P, Q, U ] from the proof of R by replacing
a and ā with ◦. (⇐:) The proof follows from the derivation

[P, Q, U ]
ai↓

[〈[a, ā]; [P, Q]〉, U ]
q↓

[〈ā; P 〉, 〈a; Q〉, U ] .

�

Theorem 8.105. Let P = 〈I,G, A ,F〉 be a conjunctive planning problem and

R be the scpps for P. A plan P solves P if and only if there is a derivation
P

R
NEL∆ .

Proof. Proof by induction on the length k of plan P.
(⇒:) Analogous to the proof of Theorem 8.27: for the base case apply Lemma 8.98,
and for the inductive case apply Lemma 8.96.
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(⇐:) For the base case, if k = 0, then from Corollary 8.102, there must be a proof
of the following form:

[r1, . . . , rm, (ḡ1, . . . , ḡn)]

BV

[?Q1, . . . , ?Qs, r1, . . . , rm, (ḡ1, . . . , ḡn)]
{w↓,b↓}

In order for such a proof to exist, it must be that {̇ r1, . . . , rm }̇ = {̇ g1, . . . , gn }̇.
Thus, the empty plan solves the planning problem P .

Turning to the induction step we assume that the result holds for all plans with
length k. Suppose that there is a planning problem P = 〈R, A , I,G〉 where

I = {̇ r1, . . . , rm }̇ , G = {̇ g1, . . . , gn }̇ ,

R = [?Q1, . . . , ?Qs, K] is the scpps for P , and there is a derivation
P

R
NEL where

P is a plan. From Corollary 8.102, it follows that there must be a proof of the
following form:

[Q1, . . . , Qk, K, P̄]

BVΠ

[?Q1, . . . , ?Qs, Q1, . . . , Qk, K, P̄]

{w↓}∆2

[?Q1, . . . , ?Qs, K, P̄]

{b↓}∆1

Let Π′ be the following proof obtained from the proof Π above by renaming the
atoms in a way such that there are only structures that consist of pairwise distinct
atoms at the premise and conclusion of each instance of the inference rules (and
there are k + 1 number of atoms in P denoting actions).

[Q1, . . . , Qk, Qk+1, r1, . . . , rm, (ḡ1, . . . , ḡn), P̄]

BVΠ′

Then there must be an action a ∈ A such that, for a plan P′, P = 〈a; P′〉 and

(3) a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ .

Further, for every r ∈ {̇ r1, . . . , rm }̇, there must be action structures

Qi = 〈(c̄i,1, . . . , c̄i,pi
); ai; [ei,1, . . . , ei,qi

]〉 ∈ {̇Q1, . . . , Qk, Qk+1 }̇

such that r ∈ {̇ ci,1, . . . , ci,pi
}̇. Without loss of generality assume that r /∈ {̇ g1, . . . , gn }̇.

Because there cannot be a provable BV structure of the form

[〈(c̄, . . . , c̄); a; [e, . . . , e]〉, . . . , 〈(c̄, . . . , c̄); a; [e, . . . , e]〉, (ḡ, . . . , ḡ), P̄]

it follows from Proposition 8.103 that there must be an action structure

Q ∈ {̇Q1, . . . , Qk, Qk+1 }̇ such that

Q = 〈(c̄1, . . . , c̄p); a; [e1, . . . , eq ]〉 and {̇ c1, . . . , cp }̇ ⊆̇ {̇ r1, . . . , rm }̇ .
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For p ≤ m, let {̇ r1, . . . , rp }̇ = {̇ c1, . . . , cp }̇ such that

{̇ r1, . . . , rm }̇ = {̇ c1, . . . , cp, rp+1, . . . , rm }̇ and

{̇ r′1, . . . , r
′
m′ }̇ = {̇ rp+1, . . . , rm }̇ ∪̇ {̇ e1, . . . , eq }̇ where m′ = m− p + q.

Because of commutativity and associativity we can assume that Q = Qk+1. By
applying Proposition 8.103 we get the following proof:

[Q1, . . . , Qk, 〈a; [e1, . . . , eq ]〉, rp+1, . . . , rm, (ḡ1, . . . , ḡn), 〈ā; P̄′〉]

BVΠ′′

[Q1, . . . , Qk, 〈(c1, . . . , cp); a; [e1, . . . , eq ]〉, r1, . . . , rm, (ḡ1, . . . , ḡn), 〈ā; P̄′〉]
BV

By applying Proposition 8.104 to proof Π′′ above we obtain the following proof:

[Q1, . . . , Qk, e1, . . . , eq, rp+1, . . . , rm, (ḡ1, . . . , ḡn), P̄′ ]

BV

It follows from the induction hypothesis that P′ solves the planning problem P
′ =

〈R, A , I ′,G〉 where

I ′ = {̇ r′1, . . . , r
′
m′ }̇ = {̇ e1, . . . , eq, rp+1, . . . , rm }̇ .

Thus, from (3), it follows that 〈a; P′〉 solves P . �

Remark 8.106. Similar to the encoding of conjunctive planning problems in
ELS, presented in Section 8.2, the encoding in NEL requires the state reached at the
end of the computation to be strictly equal to the goal state. However, similar to
the ideas stated in Remark 8.30, this condition can be relaxed by introducing action
structures that consume the excessive resources without producing any new resource.
For instance, for each resource r ∈ R, one can define an action that has only this
resource as the condition and an empty effect. In the encoding, such an action is
represented by a negated atom r̄ for each r ∈ R.

Example 8.107. Consider the planning problem of Example 8.31. We get the
following scpps for this planning problem

[? 〈ē; ceuro; [f, f ]〉, ? 〈f̄; blem; l〉, ? f̄, e, l̄ ]

which results in the following derivation:

〈ceuro; blem〉
terminationseq

[?〈ē; ceuro; [f, f ]〉, ?〈f̄; blem; l〉, ?f̄, 〈ceuro; blem; [l, l̄ ]〉 ]
actionseq

[?〈ē; ceuro; [f, f ]〉, ?〈f̄; blem; l〉, ?f̄ , 〈ceuro; blem; [l, f, l̄ ]〉 ]
actionseq

[?〈ē; ceuro; [f, f ]〉, ?〈f̄; blem; l〉, ?f̄, 〈ceuro; [f, f, l̄ ]〉 ]
actionseq

[?〈ē; ceuro; [f, f ]〉, ?〈f̄; blem; l〉, ?f̄, e, l̄ ]

8.4.3. Concurrent Plans. So far we have seen that for plans consisting of
sequences of actions the operational semantics of language K can be given by means
of the inference rules of system NEL. In the following, we will see that the infer-
ence rules of system NEL provide also the operational semantics of language K for
concurrent plans: By means of the inference rules of system NEL, we can compute
a concurrent plan as the premise of a derivation representing the computation.
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Definition 8.108. The following rule is called sequential composition:

S〈C; P1; P2; [E1, E2 ]〉
sequential

S [〈C; P1; [r1, . . . , rm, E1 ]〉, 〈(r̄1, . . . , r̄m); P2; E2〉]

Lemma 8.109. The rule sequential is derivable for system BV.

Proof. Take the following derivation where the instance of the rule i↓ is as
given in Proposition 4.46:

S〈C; P1; P2; [E1, E2 ]〉
q↓

S〈C; P1; [〈P2; E2〉, E1 ]〉
i↓

S〈C; P1; [〈 [r1, . . . , rm, (r̄1, . . . , r̄m)] ; P2; E2〉, E1 ]〉
q↓

S〈C; P1; [r1, . . . , rm, 〈(r̄1, . . . , r̄m); P2; E2〉, E1 ]〉
q↓

S [〈C; P1; [r1, . . . , rm, E1 ]〉, 〈(r̄1, . . . , r̄m); P2; E2〉]

�

Definition 8.110. The following rule is called parallel composition:

S〈(C1, C2); [P1, P2 ]; [E1, E2 ]〉
parallel

S [〈C1; P1; E1〉, 〈C2; P2; E2〉]

Lemma 8.111. The rule parallel is derivable for system BV.

Proof. Take the following derivation:

S〈(C1, C2); [P1, P2 ]; [E1, E2 ]〉
s
S〈 [C1, C2 ] ; [P1, P2 ]; [E1, E2 ]〉

q↓
S〈[C1, C2 ]; [〈P1; E1〉, 〈P2; E2〉]〉

q↓
S [〈C1; P1; E1〉, 〈C2; P2; E2〉]

�

Definition 8.112. A concurrent plan Pc solves a planning problem P if, for

all the derivations
P

Pc

{q↓} where P is a plan, P solves P.

Example 8.113. Consider the following derivation with the sccps R of the
planning problem of Example 8.5:

〈ceuro ; [blem , bcandy ]; hlunch〉

[e, 〈 ē ; ceuro; [blem, bcandy ]; hlunch; h〉, h̄ ]
sequential

[e, 〈 ē ; ceuro; [blem, bcandy ]; [l, c ]〉, 〈 (l̄, c̄) ; hlunch; h〉, h̄ ]
sequential

[e, 〈 ē ; ceuro; [f, f ]〉, 〈 (f̄, f̄)〉 ; [blem, bcandy ]; [l, c ] , 〈 (l̄, c̄) ; hlunch; h〉, h̄ ]
parallel

[e, 〈 ē ; ceuro; [f, f ]〉, 〈 f̄ ; blem; l〉, 〈 f̄ ; bcandy; c〉, 〈 (l̄, c̄) ; hlunch; h〉, h̄ ]

BV

[? 〈 ē ; ceuro; [f, f ]〉, ? 〈 f̄ ; blem; l〉, ? 〈 f̄ ; bcandy; c〉, ? 〈 (l̄, c̄) ; hlunch; h〉, e, h̄ ]

{w↓,b↓}

The premise of this derivation is the concurrent plan structure

〈ceuro ; [blem , bcandy ]; hlunch〉
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which solves this planning problem.

In the following, I will show that searching for a concurrent plan structure that
solves a conjunctive planning problem is equivalent to searching for a derivation as
in the above Example. Let me first state a lemma that will be useful for showing
this formally.

Lemma 8.114. Let I1 = {̇ r1, . . . , rm }̇, I2 = {̇ r′1, . . . , r
′
m′ }̇, Z1 = {̇ g1, . . . , gn }̇,

Z2 = {̇ g′1, . . . , g
′
n′ }̇, and Z = Z1 ∪̇ Z2 be states, and P1 = 〈a1; . . . ; ak〉, P2 =

〈a′1; . . . ; a′k′〉 be plans. Furthermore, let Q1, . . . , Qk, Q′
1, . . . , Q

′
k′ be the sequential

action structures for the actions a1, . . . , ak, a′1, . . . , a
′
k′ .

(i) Φ(P1, I1) = Z1 and Φ(P2, I2) = Z2.

(ii) Φ( P1, Φ( P2, I1 ∪̇ I2 ))= Φ( P2, Φ( P1, I1 ∪̇ I2 ))= Z .

(iii) There are the following derivations:

P1

[r1, . . . , rm, Q1, . . . , Qk, (ḡ1, . . . , ḡn)]
BV

P2

[r′1, . . . , r
′
m′ , Q′

1, . . . , Q
′
k′ , (ḡ′1, . . . , ḡ

′
n′)]

BV

Proof.

(i)⇒ (ii) : Follows immediately from Proposition 8.11.
(ii)⇒ (iii) : Follows immediately from Theorem 8.105.
(iii)⇒ (i) : The following derivations together with Theorem 8.105 prove
the result.

〈P1; P2〉
q↓

[P1, P2 ]

〈P2; P1〉
q↓

[P1, P2 ]

�

Theorem 8.115. Let P be a planning problem and R be the scpps for a plan-
ning problem P. Pc is a concurrent plan that solves P if and only if there is a
derivation of the following form:

Pc

R
NEL

Proof. (⇒:) Let P = 〈a1; . . . ; ak〉 be a plan such that there is a derivation

P

Pc

{q↓} . Let Q1, . . . , Qk be the sequential action structures for the actions a1, . . . , ak.

From Theorem 8.105 there is a derivation
〈a1; . . . ; ak〉

R
NEL . From Corollary 8.102, it

follows that there is a derivation of the form

〈a1; . . . ; ak〉

[Q1, . . . , Qk, r1, . . . , rm, (ḡ1, . . . , ḡn)]
BV∆1

R
{w↓,b↓}∆2

.
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From ∆1, let us construct a derivation ∆ such that we have a derivation of the
following form:

Pc

i↓
〈Pc; [g1, . . . , gn, (ḡ1, . . . , ḡn)]〉

i↓
〈 [r1, . . . , rm, (r̄1, . . . , r̄m)] ; Pc; [g1, . . . , gn, (ḡ1, . . . , ḡn)]〉

q↓
[〈[r1, . . . , rm, (r̄1, . . . , r̄m)]; Pc; [g1, . . . , gn ]〉, (ḡ1, . . . , ḡn)]

q↓
[r1, . . . , rm, 〈(r̄1, . . . , r̄m); Pc; [g1, . . . , gn ]〉, (ḡ1, . . . , ḡn)]

[r1, . . . , rm, Q1, . . . , Qk , (ḡ1, . . . , ḡn)]

BV∆

We will construct the derivation ∆ with structural induction on Pc. Base case
where Pc = ◦ or Pc = a being trivial let us consider the inductive cases:

– If Pc = [Pc
1, P

c
2 ] then there must be two concurrent plans 〈Pc

1; P
c
2〉 and

〈Pc
2; P

c
1〉 that solve P . This implies that there are sequential plans P1 and

P2 with
P1

Pc
1

{q↓} and
P2

Pc
2

{q↓} such that P = 〈P1; P2〉 or P = 〈P2; P1〉. From

Lemma 8.114 and Corollary 8.102, it follows that there exists planning
problems with the following derivations:

P1

[r1, . . . , rm′ , Q1, . . . , Qk′ , (ḡ1, . . . , ḡn′)]
BV

P2

[rm′+1, . . . , rm, Qk′+1, . . . , Qk, (ḡn′+1, . . . , ḡn)]
BV

Then, with the induction hypothesis, we get the derivations

〈(r̄1, . . . , r̄m′); Pc
1; [g1, . . . , gn′ ]〉

[Q1, . . . , Qk′ ]
BV∆1

and 〈(r̄m′+1, . . . , r̄m); Pc
2; [gn′+1, . . . , gn ]〉

[Qk′+1, . . . , Qk ]
BV∆2

.

With Lemma 8.111, we can then construct the derivation ∆ as follows:

〈(r̄1, . . . , r̄m); [Pc
1, P

c
2 ]; [g1, . . . , gn ]〉

parallel
[〈(r̄1, . . . , r̄m′); Pc

1; [g1, . . . , gn′ ]〉, 〈(r̄m′+1, . . . , r̄m); Pc
2; [gn′+1, . . . , gn ]〉]

[Q1, . . . , Qk ]

BV[∆1,∆2 ]

– If Pc = 〈Pc
1; P

c
2〉 then there must be sequential plans P1 and P2 with

P1

Pc
1

{q↓} and
P2

Pc
2

{q↓} such that P = 〈P1; P2〉.

From Proposition 8.10 and Corollary 8.102, it follows that, for some
f1, . . . , fs ∈ R, there exists planning problems with the following deriva-
tions:

P1

[r1, . . . , rm, Q1, . . . , Qk′ , (f̄1, . . . , f̄s)]
BV

P2

[f1, . . . , fs, Qk′+1, . . . , Qk, (ḡ1, . . . , ḡn)]
BV
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Then, with the induction hypothesis, we get the derivations

〈(r̄1, . . . , r̄m); Pc
1; [f1, . . . , fs ]〉

[Q1, . . . , Qk′ ]
BV

and 〈(f̄1, . . . , f̄s); P
c
2; [g1, . . . , gn ]〉

[Qk′+1, . . . , Qk ]
BV

.

With Lemma 8.109, we can then construct the derivation ∆ as follows:

〈(r̄1, . . . , r̄m); 〈Pc
1; P

c
2〉; [g1, . . . , gn ]〉

sequential
[〈(r̄1, . . . , r̄m′); Pc

1; [f1, . . . , fs ]〉, 〈(f̄1, . . . , f̄s); P
c
2; [g1, . . . , gn ]〉]

[Q1, . . . , Qk ]

BV[∆1,∆2 ]

(⇐:) Follows immediately from Definition 8.112 and Theorem 8.105. �

8.4.4. Labeled Event Structure Semantics of Language K. The sim-
ilarities between the systems ELS and NEL and the encoding of the conjunctive
planning problems in these systems allow to carry the results of Section 8.3 to the
language K. In particular, we can observe the LES semantics of the plans computed
in this language by carrying the LES semantics of the cpps to scpps.

Remark 8.116. We can associate a LES to the scpps R of a conjunctive plan-
ning problem P by applying the procedure for the cpps, described in Section 8.3,
analogously to scpps: by replacing the rule action in Definition 8.33 with the rule
actionseq of Definition 8.95, we obtain a transition system TSJRK for the scpps R.
Similarly, by replacing the rule termination in Definition 8.36 and Definition 8.45
with the rule terminationseq of Definition 8.97, we carry the discussions of Section
8.3 to scpps. This way, we obtain a labelled event structure LES?JRK for a scpps
R that is isomorphic to the LES?JPK for the cpps P of P. Thus, from now on,
for a conjunctive planning problem P with the cpps P and scpps R, I will use the
expressions LES?JPK and LES?JRK synonymously.

Definition 8.117. Let R be a scpps and Pc be a concurrent plan such that
there is a derivation

Pc

R
NEL∆ .

Let Π be the proof obtained from ∆ by replacing each atom a representing an action,
in ∆, with the unit ◦. The constraint set of ∆ for R, denoted by CR,∆, is given by
µ(Π).

Definition 8.118. Let R be a scpps and CR,∆ be a constraint set of a derivation
∆ for R.

(i.) The concurrent plan order of ∆ for P, denoted by ConR,∆, is the transitive
reduction of CR,∆.

(ii.) The securing order of ∆ for R, denoted by SecR,∆, is the transitive closure
of CR,∆.

Theorem 8.119. Let R be a scpps for a planning problem P such that there is

a derivation
Pc

R
NEL∆ . There is a derivation

P

Pc

{q↓} if and only if plan P is induced

by a linearization Lin of SecR,∆.
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Proof. Analogous to the proof of Theorem 8.87. �

Corollary 8.120. Given a securing order SecR,∆ of ∆ for the scpps R, if
P is a plan induced by a linearization Lin of SecR,∆, then there is a securing S in

LES?JP K such that P = `(S).

Proof. Analogous to the proof of Corollary 8.88. �

Corollary 8.121. Let S be a securing in LES?JR K such that R
`(S)
� ∆ in

TSJRK is a successful path. There is a derivation
P

R
NEL∆ and a linearization Lin

of SecR,∆ that induces P = `(S).

Proof. Analogous to the proof of Corollary 8.89. �

Definition 8.122. Given a securing order Sec, two plans P1 and P2 are Sec-
equivalent if P1 and P2, respectively, are plans induced by linearizations Lin1 and
Lin2 of Sec.

Corollary 8.123. Let Sec be a securing order. For any state Z, if plans P1

and P2 are Sec-equivalent then Φ(P1,Z) = Φ(P2,Z).

Proof. Follows immediately from Theorem 8.87 and Theorem 8.119. �

8.4.5. Concurrent Computations in Language K. So far, we have seen
that there is a strict correspondence between the plans computed in language K
and securings in the labelled event structures of the conjunctive planning problems.
We have also seen that the securing orders (and the concurrent plan orders which
are transitive reductions of securing orders) give canonical representations of sets of
securings that correspond to plans solving planning problems. Further, we have seen
that, analogously, a concurrent plan structure Pc gives a canonical representation

of a set of plans P, determined by all the derivations
P

Pc

{q↓}∆ .

Definition 8.124. A partial order ≤ ⊆ A × A is N-free (series-parallel) if
and only if, for all a, b, c, d ∈ A , {(a, b), (c, d), (c, b) } ⊆ ≤ implies (a, d) ∈ ≤. The
N-free closure of a partial order ≤ is the smallest N-free partial order containing
≤.

A concurrent plan structure provides a syntactical representation of a partial
order of actions for alternative plans that solve a planning problem. In contrast to
the securing orders, such a representation sets boundaries to the computations being
modeled. These boundaries are meaningful from the point of view of concurrent
computations: A partial order which is represented by a concurrent plan structure
is an N-free partial order.

Example 8.125. Consider the partial orders denoted by the graphs below: The
one on the left is an N-free partial order, whereas the one on the right is not.
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Figure 8.8. A planning problem

From the point of view of concurrent computations, a representation of compu-
tations as N-free partial orders is meaningful: When meet and join of two processes
are considered as points in time, these N-free partial orders provide a representation
of synchronization of processes. That is, because the representation of resources
provides a model of dependencies, processes with a common meet and join can
be executed concurrently. However, such an observation is impossible in a par-
tial order that is not N-free. A securing order is not necessarily an N-free order.
Thus, although a securing order provides a canonical representation of a class of
plans which solve a planning problem, N-free closures of securing orders needs to
be considered when modeling concurrent computations. Because the concurrent
plan structures allow the representation of only N-free partial orders, they are well
suited for modeling concurrent computations.

Example 8.126. Consider the following modification of the example planning
problem of Chapter 1. As before, on Table 1 there are four blocks, which are stacked
on top of each other, as shown on the left-hand side of the Figure 8.8. An action
takes a block from Table 1 and puts it on Table 2. Because block a is stacked on
blocks c and d, blocks c and d cannot be moved before block a. Similarly, block
d cannot be moved before block b. However, this time the goal of the problem is
moving all the four blocks from Table 1 to Table 2. We can express this scenario
as the conjunctive planning problem P = 〈R, A , I,G〉 where

I = {̇ cl, al, ar, bl, br }̇ , G = {̇ g, g, g, g }̇ and

A = { a : {̇al, ar }̇ → {̇ cr, dl, g }̇ , c : {̇ cl, cr }̇ → {̇ g }̇ ,

b : {̇ bl, br }̇ → {̇ dr, g }̇ , d : {̇ dl, dr }̇ → {̇ g }̇ } .

For a block x, the resource xl and xr, respectively, denote that the left-hand side
and the right-hand side, respectively, on top of the block x is free. Thus, in order
for a block x to be moved, on top of this block both left-hand side and right-hand side
must be free, i.e., both of the resources xl and xr must be available. The resource
g denotes a block on Table 2. When we consider the scpps R of this problem, for
any derivation ∆ that delivers a solution for this problem, the constraint set CR,∆

of ∆ for R is depicted as follows:
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In this graph, we observe that the actions a and b are partially ordered because
they are independent from each other due to the resources that they require to be
executed. Similarly the pairs c, d and b, c are partially ordered. Because such par-
tially ordered actions can be executed in any order, this graph provides a canonical
representation of the following plans:

〈a; b; c; d〉 〈a; b; d; c〉 〈a; c; b; d〉 〈b; a; c; d〉 〈b; a; d; c〉

However, if one considers the concurrent executions, we observe that if the actions
a and b are executed concurrently, then b and c cannot be executed concurrently
because c requires a to be executed. In this system, the possible concurrent executions
are the ones that are given by the below concurrent plan structures. The sccps
R provides derivations that result in these two concurrent plan structures in the
premise.

〈a; [b, c]; d〉 〈[a, b]; [c, d]〉

It is important to observe that these concurrent plan structures denote N-free clo-
sures of the partial order that is given by the constraint set CR,∆ above. (These
N-free partial orders are that of relation /〈a;[b,c];d〉 and /〈[a,b];[d,c]〉.) Their graphical
representations are depicted as the following Hasse-diagrams, respectively:
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Given that a concurrent plan structure gives a canonical representation of a
set of plans solving a conjunctive planning problem, we can consider such a set of
plans as an equivalence class of plans: A member of an equivalence class can be
replaced with another one in any planning context, because all the members of such
an equivalence class consumes and produces the same multiset of resources.

Definition 8.127. Given a concurrent plan structure Pc, plans P1 and P2 are

Pc-equivalent if there are the derivations
P1

Pc

{q↓}∆ and
P2

Pc

{q↓}∆ .

Lemma 8.128. For BV structures which do not contain any copar structures,
the rule ai↓ permutes over the rule q↓.
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Proof. It suffices to check the cases excluded by the conditions of Remark
5.49. The case where the redex of q↓ is inside an active structure of the contractum
of ai↓ is impossible because the contractum of the rule ai↓ is ◦. If the contractum
of ai↓ is inside an active structure of the redex of q↓, then we permute as follows:

S〈[〈R′; R′′〉, U ]; [T, V ]〉
q↓

S [〈R′; R′′; T 〉, 〈U ; V 〉]
ai↓

S [〈R′; [a, ā]; R′′; T 〉, 〈U ; V 〉]

;

S〈[〈R′; R′′〉, U ]; [T, V ]〉
ai↓

S〈[〈R′; [a, ā]; R′′〉, U ]; [T, V ]〉
q↓

S [〈R′; [a, ā]; R′′; T 〉, 〈U ; V 〉]

�

Remark 8.129. As we have seen in Example 5.56, for BV structures in general,
the rule ai↓ cannot be permuted over the other rules.

Theorem 8.130. For a concurrent plan Pc and a plan P there is a derivation

P

Pc

{q↓}∆ if and only if there is a proof
[Pc, P̄]

{◦↓,ai↓,q↓}Π
.

Proof. (⇒:) Analogous to the proof of Proposition 8.101. (⇐:) Let P =
〈a1; . . . ; an〉. In proof Π, starting from the top-most instance of the rule ai↓, which
appears below an instance of the rule q↓, permute all the instances of the rule ai↓
over the instances of the rule q↓ inductively to obtain a proof of the following form
for some structure R:

R

{ ai↓ }

[Pc, P̄]

{ q↓ }∆′

From Proposition 5.9, it R must be of the form 〈[a1, ā1 ]; . . . ; [an, ā1 ]〉, because for
each ai, it must be that ai ↓ āi, and ai and āi must be in the same context in order
for an instance of the rule ai↓ to annihilate them. Thus, the derivation obtained
from the derivation ∆′ by replacing P̄ with 〈◦; . . . ; ◦〉 delivers the derivation ∆. �

Corollary 8.131. For a concurrent plan structure Pc, plans P1 and P2 are

Pc-equivalent if and only if there are proofs
[Pc, P̄1 ]

{◦↓,ai↓,q↓}
and

[Pc, P̄2 ]

{◦↓,ai↓,q↓}
.

Proof. Follows immediately from Theorem 8.130. �

Corollary 8.132. Let Pc be a concurrent plan structure. For any state Z, if
plans P1 and P2 are Pc-equivalent then Φ(P1,Z) = Φ(P2,Z).

Proof. Follows immediately from Theorem 8.115 and Theorem 8.130. �

Remark 8.133. Let Pc be a concurrent plan structure. At an instance of the

rule q↓ of the form
R

q↓
Pc

the structure R is a concurrent plan structure. It follows

from Remark 5.13 and Proposition 5.14 that the length of a derivation
P

Pc

{q↓} is

bounded by O(|occ Pc|2).
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8.5. Relation to Other Work

Reasoning about actions and planning, also from the point of view of conjunc-
tive planning, has been studied by various authors. In this section, I will discuss
the approach of this thesis in comparison to related work.

8.5.1. Expressive Power. In conjunctive planning, states are defined over
the data structure multiset. Actions are considered as multiset rewriting rules. Also
in the context of linear logic, it was previously shown that the multiset rewriting
approach is complete for representing computations of certain classes of Petri nets
[Pet62] (see, e.g., [Asp87, GG89, MOM91, EW94, Cer95, IH01]). In such an
encoding, the multiset rewrite rules represent the possible firings of the transitions
of a Petri net. The places of the net are represented by elements of multisets.
Such a view allows to consider a conjunctive planning problem as the reachability
problem of the corresponding Petri net and vice versa.

Example 8.134. The planning problem of Example 8.39 is depicted as the fol-
lowing Petri net. The token • represents the initial state and the token • represents
the goal state.
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Example 8.135. Similarly, the planning problem of Example 8.126 is depicted
as the following net:PSfrag replacements
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The reachability problem in Petri nets is known to be EXPSPACE-hard [Lip76].
Thus, the encoding of Petri nets in multiplicative exponential linear logic delivers
the lower bound of this logic to be EXPSPACE-hard [MOM91]. When the com-
plexity of a language is seen as a measure of expressive power, this also sets the
scene for the expressive power of the propositional languages based on multiset
rewriting in comparison to propositional languages based on STRIPS: Given that
planning in STRIPS is PSPACE-complete [Byl92], because PSPACE is a strict
subset of EXPSPACE the language K is strictly more expressive than propositional
languages based on STRIPS. In order to achieve the same expressive power, the
STRIPS language must be enriched with a constant-only first order language, i.e.,
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DATALOG-STRIPS. The reason for this can be seen as follows: In the STRIPS lan-
guage, the so called pre-condition-lists, add-lists, and delete-lists of an action are
sets. However, in conjunctive planning, conditions and effects of an action are
multisets. Multisets allow multiple occurrences of resources in the conditions and
effects of the actions. In a propositional setting, such a representation cannot be
achieved by sets over a finite set of constant symbols. For instance, consider the
action ceuro of Example 8.39:

ceuro : {̇ e }̇ → {̇ f, f }̇

Such an action cannot be represented in STRIPS unless we define a constant for
one f , a constant for two f , another for three f , and so on.

However, a characterization of STRIPS in conjunctive planning is possible. In
[Kün03], Küngas gives an encoding of the STRIPS planning problems within lin-
ear logic planning domains: A STRIPS action with the pre-condition-list PRE,
delete-list DEL, and add-list ADD is translated into a multiset rewriting rule of the
following form:

PRE → ADD ∪ ( PRE \ DEL )

Because STRIPS lacks a clear logical semantics (see, e.g., [Lif86]), this translation
assumes that for all the actions it holds that DEL ⊆ PRE.

If we consider the planning languages based on the situation calculus seman-
tics, where worlds are described by means of properties, we see that any planning
problem expressed in these languages can be expressed as a conjunctive planning
problem: In [Thi94], Thielscher shows that conjunctive planning languages can
be employed to encode the domain descriptions of the action description language
A [GL93]. In this language, because the representation scheme is based on prop-
erties rather than resources, states are given by sets instead of multisets. Atomic
properties of the world are represented by fluents. Because conjunctive planning do-
mains do not support explicit negation, the translation of the domain descriptions
is achieved by using two different resources for each fluent name, once representing
the fluent affirmatively and once negatively. Consistency of the states and actions
is guaranteed by disallowing the resources for a fluent to occur both negatively and
affirmatively in a multiset. In these multisets, a resource is not allowed to occur
more than once.

As it is stated in [GL98], because the action description language is equivalent
to the propositional fragment of the planning language ADL [Ped89], the result of
[Thi94] also implies that the language K can be used for ADL domains.

When planning problems are considered from the point of view of concurrent
computations, due to the explicit representation of resources, the language K allows
to observe true concurrency in the computations: In a language with true concur-
rency, when two actions are partially ordered, the outcome of their execution in
parallel is same as the outcome of their execution in either order. As we have seen
in Section 8.3, the explicit treatment of resources provides a representation of in-
dependence and causality. When two actions are partially ordered in a LES, in an
execution that involves both of these actions, they are independent in terms of the
resources that they require to be executed. Thus, their parallel composition results
in an action that has the same effect as their execution in any order. The inference
rule parallel of Definition 8.110 implements such a parallel composition.
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Example 8.136. Consider the conjunctive planning problem of Example 8.126.
We have seen that the concurrent plan structure 〈[a, b]; [c, d]〉 solves this planning
problem. Let us consider the parallel composition of the actions a and b (or simi-
larly, the actions c and d):

〈(al, ar, bl, br); [a, b]; [cr, dl, dr, g, g ]〉
parallel

[〈(al, ar); a; [cr, dl, g ]〉, 〈(bl, br); b; [dr, g ]〉]

The actions a and b are independent, in the sense that output of one action is not
the input of the other. Thus, the execution of the resulting action in the premise of
the above derivation is equivalent to executing these two actions in either order.

In the light of the above observations, it is easy to see that a concurrent plan
structure provides a model of a true-concurrent computations of the corresponding
Petri net.

Example 8.137. For the concurrent plan structure 〈[a, b]; [c, d]〉, which solves
the conjunctive planning problem of Example 8.126, the nets on the left-hand side
and right-hand side below, respectively, demonstrate the state of the net before and
after the execution of the concurrent action α = [a, b], respectively:
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However, when planning problems are modeled by means of properties as in
STRIPS or ADL, it is not always possible to observe true concurrency in the partial
order plans computed by the planners for these languages, e.g., UCPOP [PW92],
and Graphplan [BM97]. A simple modification of the famous dining philosophers
problem is helpful to see the reason for this:

Example 8.138. There are two hungry philosophers, a and b, sitting at a
dinner table. In order for a philosopher to eat, she must have a fork. However,
there is only one fork on the table. The problem consists in finding a plan where
both philosophers have eaten. The solution of this problem is a plan in which a and
b eat in either order. A plan where a and b eat concurrently cannot be a solution for
this problem, because a and b cannot have the fork at the same time. Because the
fork is a resource, which cannot be shared, eating of one is dependent on the other’s
finishing eating and leaving the fork. Hence, these two actions can be executed in
either order but not in parallel. A simple encoding of this scenario as a conjunctive
planning problem allows to observe such a semantics:

I = {̇ha, hb, f }̇ , G = {̇ ea, eb, f }̇

A = { a : {̇ha, f }̇ → {̇ ea, f }̇ , b : {̇hb, f }̇ → {̇ eb, f }̇ }

In the above encoding, for a philosopher x, the resource hx denotes that x is hungry
and ex denotes that x has eaten. f denotes the resource fork. The actions a and b
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can be executed in either order. However, their parallel composition results in the
action

[a, b] : {̇ha, hb, f, f }̇ → {̇ ea, eb, f, f }̇

which requires two instances of the resource f in order to be executed. Thus the
parallel composition of these two actions cannot be executed in the initial state I.
An encoding of this problem by means of properties, in a propositional language, in
a way which delivers such a semantics is not straight-forward, if not impossible.

For an indepth exposure and related references on the relationship between the
partial order characterization of process expressions, process algebras, and Petri
nets, the reader is referred to [BB00], i.e., Chapter 13 of [BPS01].4

The relationship between conjunctive planning and Petri nets has been studied
by various authors: In his PhD thesis [Leh02], Heiko Lehmann establishes a re-
lationship between the conjunctive planning version of the fluent calculus [HS90]
and the Petri nets in order to address decidability issues related to fluent calculus.
There models of the fluent calculus domains are characterized as labelled transition
systems. These transition systems are then used to introduce bisimulation on the
models of fluent calculus domains. The computations that are modeled in [Leh02]
are interleaving computations. In contrast, the LES semantics of the language K,
together with the concurrent plan structures, provides a model of non-interleaving
(true-concurrent) computations.

By resorting to the correspondence between the Petri net reachability problem
and the conjunctive planning problems, in [Kün03], Küngas presents an imple-
mentation for linear logic planning. He compares the performance of his planner,
called RAPS, on STRIPS planning domains with several state-of-the-art domain-
independent planners, provides experimental results, and gives references to related
work. In [Kün05], Küngas uses the conjunctive planning to carry the abstraction
techniques from planning to Petri nets. He shows that the upper computational
complexity bound for Petri net reachability checking can be made polynomial by
using abstraction hierarchies.

8.5.2. Other Approaches to Conjunctive Planning. Resource conscious
deductive planning, based on multisets, has been elaborated both in the lines of
fluent calculus and linear logic. [BHS+93] extends the conjunctive planning prob-
lems to handle disjunction of facts and this way express nondeterministic actions.
There it is shown that this extended approach and the approach based on linear
logic augmented by employing additives of linear logic in [MTV90] are equivalent
with respect to the semantics of so called disjunctive planning problems.

In [HT93], Hölldobler and Thielscher study the specificity of the actions such
that a more specific description of an action is preferred over a less specific descrip-
tion when it is applicable and whenever an applicable and most specific description
is executed in a consistent situation then the resulting situation is also consistent.
In [EHT96], the conjunctive planning approach was extended to cover hierarchical
planning where actions are treated as resources that can be consumed at differ-
ent levels of the planning process. This approach resorts to a chemical metaphor,
adapted from concurrency theory, in which situations are represented as solutions
in which floating molecules can interact freely according to interaction rules. Dur-
ing a reaction two such molecules are consumed and a new one is produced. A

4[Bae04] is an excellent survey on the history of process algebras.
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planning problem is then formalized by a solution modeling the initial situation, a
goal situation and the question of whether there exists a sequence of interactions
(plan) transforming the initial situation into a solution satisfying the goal situation.

In [HS96], Hölldobler and Schneeberger discuss least commitment partial order
planning within the declarative setting of the fluent calculus. In this approach,
similar to computation of the constraint sets discussed in Section 8.3, if the goal
can be reached then the deductive reasoning process yields a partially ordered set
of actions.

[HK00, Leh02] address decidability issues related to conjunctive planning
problems within the fluent calculus. [HS00] extends the language of fluent calculus
to complex plans including conditional and recursive actions.

The approach in [MOM99] offers rewriting logic and its implementation lan-
guage Maude [CDE+03] as a platform for conjunctive and disjunctive planning
problems.

Conjunctive planning problems have been studied also from the point of view
of linear logic: In [Jac93], Jacopin presents an implementation of proof search
in multiplicative linear logic with respect to conjunctive planning problems. He
addresses two points as drawbacks, namely, the nondeterministic behavior of the
context management rules, which requires a lot of backtracking, and the absence
of expressing partial goal situations. However, both of these points are due to his
representation of the planning problems.

[KY93b] presents the linear logic programming language ACL, and applies it
to conjunctive planning problems. [BG94] discusses the conjunctive planning prob-
lems and concurrency in the context of the abstract logic programming language
Forum. [CSR99] extends the linear logic approach to cover complex and recursive
plans. In [KV01], Kanovich et al. study the complexity of planning problems
within Horn linear logic and show that complexity of conjunctive planning prob-
lems can be reduced to PSPACE. [KV03] discusses a technique for contracting the
exponential search space in conjunctive planning problems to a polynomial one by
means of abstractions.



CHAPTER 9

Open Problems and Future Work

In this chapter, I collect some problems which follow from the investigations
discussed in this thesis and I consider interesting and worthy of further research.

9.1. Reducing Nondeterminism

In Chapter 5, we have seen a proof theoretical technique in the calculus of
structures for reducing nondeterminism in proof search. By exploiting an interac-
tion schema on the structures, this technique allows to redesign the inference rules
by means of restrictions. The resulting inference rules act on the structures only in
those ways that promote the interactions between dual atoms and reduce the inter-
action between atoms which are not duals of each other. These restrictions on the
inference rules reduce the breadth of the search space drastically while preserving
the shorter proofs that are available due to deep inference.

We have seen that by replacing the switch rule in system BV with the rule lazy
interaction switch, we obtain an equivalent deep inference system where nondeter-
minism in proof search is reduced in comparison to system BV. The techique that I
employed for this purpose exploits a scheme of inference rules which is common to
the systems of the calculus of structures without sacrificing from proof theoretical
purity. In all the systems of the calculus of structures the switch rule is responsible
for the commutative context management.

9.1.1. Reducing Nondeterminism Further in System BV. The rule s

and q↓ manage the context of the commutative and non-commutative contexts,
respectively, in proof construction in a similar way. In fact, Guglielmi obtained
these two rules in [Gug07] as the instances of the same rule in different contexts.
However, the non-commutative context has a quite different behaviour in contrast
to the commutative contexts. For instance, on BV structures consider the rule

S([R, U ], [T, V ])

S [(R, T ), (U, V )]

which is unsound. However, when we replace the copar operators in this instance
with the seq operators, we obtain the rule q1↓ which is sound. Because of this,
it becomes difficult to carry the ideas on rule s to the rule q↓. In particular,
the equivalence of systems BV and BVi remain an open problem. In this respect,
Conjecture 5.55 remains to be investigated.

As we have seen in Section 5.3, the rule q2↓ is responsible for a great redundant
nondeterminism in system BV. However, removing this rule from system BVi results
in an incomplete system (see Example 5.58). I believe that redesigning this rule
as described in Definition 5.60 would control this redundant nondeterminism in
system BV. In this respect, Conjecture 5.62 deserves further investigation.
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9.1.2. Nondeterminism in System NEL. System NEL is a conservative ex-
tension of system BV. All the rules of system BV are common to system NEL.
The splitting technique, which I used to prove the completeness of system BVsl,
was used also by Guglielmi and Straßburger in [GS02] to prove cut elimination
for system NEL in combination with a decomposition theorem. I believe that by
combining the ideas in [GS02] and in Chapter 5, it should be plausible to reduce
nondeterminism in proof search also in system NEL analogously as in system BV.

Apart from the rules s and q↓ which are common to systems BV and NEL,
there is another rule in system NEL which has a potential for the application of the
technique of this thesis: From the point of view of the notion of interaction that
was considered while desinging system BVsl, in the promotion rule

S{![R, T ]}
p↓

S [!R, ?T ]

the interaction between the structures R and T is stronger in the premise than in
the conclusion. By exploiting this observation, I conjecture that this rule can be
replaced in, system NEL, with the rule interaction promotion which requires R and
T to interact to be applied, that is, the interaction promotion can be applied only
if at R̄ ∩ at T 6= ∅.

9.1.3. Nondeterminism in Other Logics. The technique of this thesis for
reducing nondeterminism exploits a scheme which is common to all the systems
of the calculus of structures. As we have seen in Chapter 5, this technique can
be applied to calculus of structures systems KSg and KS for classical logic. By
carrying these ideas to linear logic system LS in combination with the splitting
argument in [Str03a], it should be possible to obtain deep inference systems for
linear logic where nondeterminism is reduced by means of interaction rules. The
above mentioned conjecture for the promotion rule in the context of system NEL

applies also to the promotion rule in system LS because this rule is common to
both systems. Exploring the interaction schema in the additive rules of system LS

is another problem that I consider worthy for further investigation.
In [SS05], Stewart and Stouppa present calculus of structures systems for a

class of modal logics. These systems extend the classical logic system KSg with the
modal rules. For instance, a system for modal logic K is obtained by extending
system KSg with the following rule:

S{2[R, T ]}
k↓

S [2R, 3T ]

It is important to observe the similarity between this rule and the rule p↓ above.
Thus, the conjecture of Subsection 9.1.2 can be carried to this rule. Then, by
applying the technique of this thesis for reducing nondeterminism to these systems
for modal logics, it should be possible to obtain deep inference systems also for
modal logics where nondeterminism is reduced.

9.1.4. Deepest Deep Inference Rules. The interaction rules succeed in
reducing nondeterminism in proof search while preserving the shorter proofs that
are available due to deep inference. However, when these rules are applied during
proof search to structures of arbitrary size, performing the check of the condition
of the interaction rules becomes computationally expensive. On the other hand,
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when the application of the interaction rules is restricted to the redexes which
are deep inside, the check of these conditions must be performed on the ”smaller”
substructures. This observation gives rise to questions regarding a plausible notion
of deeper inference rules.

Deep instances of the inference rules act on the structure at the deeper con-
texts and this way serve to annihilate the substructures at arbitrary depths. This
results in shorter proofs in contrast to the proofs constructed by means of shal-
lower instances of the inference rules. Due to this observation, the idea of giving
higher priority to the deeper instances of the inference rules can be used as a search
strategy that gives a higher priority to deeper instances of the interaction rules.
However, the completeness of the systems which are designed with respect to a
plausible notion of deepness remains an interesting research problem. For instance,
in [Str03a], Straßburger introduces a rule called deep switch

S([R, U ], T )
ds

S [(R, T ), U ]

where the structure R is not a proper copar structure. This and other notions
of deeper inference rules, in combination with interaction rules, should provide a
further proof theoretic reduction in nondeterminism in proof search without losing
the shorter proof that were previously available.

9.1.5. The Relationship between System BV and Pomset Logic. There
is a strict correspondence between the structures of system BV and the formulae
of pomset logic [Ret97]. Guglielmi and Straßburger have conjectured in [Gug07]
and [Str03a], respectively, that these logics are equivalent. I consider it worthy to
investigate if system BVi provides any simplifications for addressing the equivalence
of pomset logic and system BV.

9.1.6. Relationship with the Connection Method. Bibel’s connection
method [Bib83, Bib87] is a proof procedure which was originally developed for
classical logic. Connection method can be seen as computing complementary con-
nections in matrix representations of logical expressions. In [KO99], Kreitz and
Otten argue that proofs in connection method can be seen as compact representa-
tions of sequent calculus proofs, because, being driven by complementary connec-
tions, connection method avoids the usual redundancies contained in the sequent
calculus proofs. In other words, connection method focuses on possible leaves in
a sequent calculus proof, instead of the logical connectives of the formula being
proved. Kreitz and Otten extend the connection method, as a uniform procedure,
for proof search in classical logic, intuitionistic logic, a class of modal logics, and
multiplicative fragment of linear logic.

Because the calculus of structures is more general than the sequent calculus, the
above mentioned observations can be easily carried over from the sequent calculus
to the calculus of structures. However, because of the feature of deep inference,
the rule ai↓ gives a more immediate characterization of the connections of the
connection method. In particular, because connection method proofs are rather
algorithmic than deductive, and the interaction rules can be applied in only those
ways that takes these connections into considerations, the calculus of structures
can provide a deductive interpretation for the connection method proofs. In this
respect, the relationship between the calculus of structures and the connection
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method deserves further investigation. In [LS05], Lamarche and Straßburger give
a geometric characterization of classical proofs in a way which resembles proof nets
of MLL, which, in my opinion, can provide a starting point for these investigations.

9.2. Implementations

9.2.1. Complexity of Proofs. Deep inference feature of the calculus of struc-
tures provides shorter proofs than in the sequent calculus for some classes of for-
mulae, as it was shown by Guglielmi in [Gug04c]. A thorough comparison of deep
inference proofs, also when the technique of Chapter 5 is used, with proofs in the
sequent calculus and in other formalisms in terms of proof complexity remains as
future work.

9.2.2. Implemeting Different Search Strategies. In the implementations
of the calculus of structures systems presented in this thesis, mainly breadth-first
search strategy has been employed. Breadth-first search is a complete search strat-
egy. However, for the proofs consisting of more than several steps, proof search by
using this strategy results in a search that does not terminate in a plausible amount
of time. In particular, for the systems with inference rules that copy structures, e.g.,
contraction rule, performing breadth-first search without taking the application of
such rules under control is not plausible even for very short proofs.

Different search strategies that implement controlled applications of the infer-
ence rules, e.g., which copy structures such as contraction, can provide a much bet-
ter performance in proof search in these systems. Furthermore, randomized search
strategies, e.g., random-restart hill climbing [RN02], can provide more efficient
proof procedures with the price of loss of completeness. Then, by integrating proof
theoretic results on these systems in combination with experiments performed with
different search strategies can provide more efficient performance in proof search
for different classes of structures. Exploiting the meta-level features of the language
Maude for implementing such strategies can provide interesting results. The im-
plementation of system DKSg in Subsection 4.3.4 provides an example for the use
of meta-level features of Maude in this respect. Similarly, the expressive power of
the imperative programming languages can be used to implement different search
strategies when the calculus of structures systems are implemented in imperative
languages, similar to those presented in Chapter 7.

9.2.3. Automated Proof Manipulation. Apart from the interest in proof
search and proof construction, the implementations of the calculus of structures
systems can be further developed in a way to accommodate proof manipulation
facilities. Cut elimination results in the calculus of structures systems, e.g., in
[Gug07, Str03a, Brü03b], as well as permutation of the inference rules and
transformation of derivations into derivations in normal forms, e.g., decomposition
results in [Str03a] and [Brü03b], can be automatized by means of implementa-
tions. Along these lines, in [Sch06], Schäfer extends the Maude implementations
of this thesis by defining a data structure for representing derivations. He then
provides a proof manipulation functionality that replaces the rule instances in a
derivation with derivations with the same premise and conclusion as the replaced
rule instance. This way, he implements the automated elimination of the rules c↑
in system SKS [Brü03b] for classical logic as the first step of the cut-elimination
procedure which modularly eliminates the up rules of system SKS. In my opinion,
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the work by Schäfer provides the basis for implementing more complex proof ma-
nipulation tools which can perform tasks such as cut-elimination, permutation of
rules in a derivation, or transforming a given derivation into a normal form.

Guglielmi defines two formalisms, called formalism A [Gug04a] and formalism
B [Gug04b], that are more general than the calculus of structures, where the
concurrency in the proofs can be represented explicitly at different syntactic levels
as parallel derivations. Automatic transformations from the derivations in the
calculus of structures into derivations in formalism A and formalism B is another
potential direction for further developing the implementations of this thesis.

9.2.4. Implementing Systems with Quantifiers. In contrast to the propo-
sitional systems, systems that involve quantifiers is a less studied topic in the con-
text of deep inference so far 1. In [Brü06], Brünnler gives a deep inference system
for classical predicate logic together with a cut-elimination proof. In [Str03a],
Straßburger describes potential quantifier rules which can be used to extend sys-
tems for linear logic, leaving their proof theoretic study as an open problem.

In this thesis, I have discussed only the implementation of propositional deep
inference systems, leaving out the treatment of the quantifiers in deep inference
systems. A possible direction to proceed along these lines is by means of explicit
substitutions [ACCL91]. In [MOM96], Marti-Oliét and Meseguer give encodings
of the sequent calculus systems with quantifiers by resorting to explicit substitutions
in an older version of the language Maude than the one I employed in this thesis.
It remains to investigate if the methods of [MOM96] can be used to implement
the deep inference systems with quantifiers in Maude.

9.3. Language Design

In Chapter 8, I have introduced a common language for planning and concur-
rency, called K. In language K, the sequential and parallel composition of actions
can be expressed at the same logical level, and this way logical reasoning can be
performed on these plans. In Section 8.4, I have introduced a notion of plan equiv-
alence which can be used to verify if two plans can be replaced with each other in
a given context. The equivalence of two such plans with respect to this notion can
then be checked by proof search in the systems being used.

9.3.1. Equivalence of Plans. In [Leh02], Lehmann studies the planning
problems of this thesis as interleaving processes to study their bisimilarity in order
to address decidability issues related to fluent calculus. A natural question to ask
is if a plan equivalence result based on bisimilarity can be established for language
K similar to the one in [Leh02]. Carrying over results from the study of labeled
event structures or petri nets for a better understanding of the planning problems
in the context of language K is another direction of research.

9.3.2. Verification of Security Protocols. The relationship between mul-
tiset rewriting and verification of security protocols with respect to the Dolev-
Yao model [DY83] has been studied by various authors (see, e.g., [DLJS04,

BCLM05]). In such a context, verification of a security protocol can be easily
put as a planning problem: “Is there a sequence of actions that an intruder can

1http://alessio.guglielmi.name/res/cos/
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undertake so that he can break a security protocol?”. The plausibility of language
K for such concurrency theoretic queries, and others, remains to be investigated.
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[Jac93] Éric Jacopin, Classical AI planning as theorem proving: The case of a fragment of
linear logic, AAAI Fall Symposium on Automated Deduction in Nonstandard Logics
(Palo Alto, California), AAAI Press Publications, 1993, pp. 62–66.
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[KT03] Ozan Kahramanoğulları and Michael Thielscher, A formal assessment result for flu-
ent calculus using the action description language Ak , Proceedings of the German
Annual Conference on Artificial Intelligence (KI) (Hamburg, Germany) (R. Kruse,
ed.), Lecture Notes in Artificial Intelligence, vol. 2821, Springer, 2003, pp. 209–223.
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global search, 150
goal state, 163

hereditary Harrop formulae, 4

imperative languages, 141
independence, 153

independent for, 103, 131
initial state, 163

labelled event structures, 13, 173, 180
labelled transition relation, 174
Lambek calculus, 6
language K, 192
lemonade, 163
length of a path, 174

length of a plan, 164
linear logic, 6, 26, 162

planning, 162
linearization, 189
local search, 150
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