On Linear Logic Planning and Concurrency

Ozan Kahramanogullar

Imperial College London, Department of Computing
ozank@doc.ic.ac.uk

Abstract. We present an approach to linear logic planning where an
explicit correspondence between partial order plans and multiplicative
exponential linear logic proofs is established. This is performed by ex-
tracting partial order plans from sound and complete encodings of plan-
ning problems in multiplicative exponential linear logic in a way that
exhibits a non-interleaving behavioral concurrency semantics. Relying
on this fact, we argue that this work is a crucial step for establishing a
common language for concurrency and planning that will allow to carry
techniques and methods between these two fields.

1 Introduction

Planning ! and concurrency are two fields of computer science that evolved in-
dependently, aiming at solving tasks that are similar in nature but different in
perspective: while planning formalisms focus on finding a plan, if there ezists
such a plan, that solves a given planning problem; the focus in concurrency
theory is on the global behaviour of a given concurrent system, resulting in
universally quantified queries, e.g., deadlock freeness, verification of a security
protocol. In contrast to approaches to planning, in order to be able to han-
dle such queries, languages for concurrency are equipped with a rich arsenal of
mathematical methods that allow for an analysis of equivalence of processes.

In concurrency theory, parallel and sequential composition are expressed at
the same level of representation, since they are equivalently important notions
for expressing concurrent processes. However, in planning, although parallel be-
haviour between actions have been studied in partial order planners, e.g., UCPOP
[28], Graphplan [1], these investigations focused on increasing the efficiency of the
planners. In these approaches, the independence and causality between partially
ordered actions, which is crucial from a concurrency theoretic point of view, is
often specified by means of linguistic constraints (see, e.g., [19,2]). Another line
of research, which aims at capturing the concurrent behaviour of actions in the
logical AT literature, e.g., in [30], defines concurrency over the parametrised time
spans shared by the actions. 2

Linear logic is widely recognised as a logic of concurrency (see, e.g., [26])
also because of its resource conscious features. In this paper, we propose linear

L A preliminary version of this paper has been presented as short paper at the 14th
Int. Conference on Logic for Programming Artificial Intelligence and Reasoning.
2 For a survey on reasoning about actions, planning and concurrency, see [13].

logic planning (see. e.g., [25,24,17,18]) as a platform for a common language
for planning and concurrency, aiming at bringing these two fields closer and
allowing the techniques and tools in both fields to be interchanged. We establish a
strict correspondence between partial order plans and the proofs of multiplicative
exponential linear logic encodings of planning problems. The partial order plans
which we extract from the proofs by an algorithm exhibit a non-interleaving
behavioural concurrency semantics. Our result also contributes to the field of
petri nets because of the strict correspondence between the reachability problem
in petri nets and linear logic planning problems (see, e.g., [4]).

As the underlying formalism we employ the proof theoretic formalism of the
calculus of structures (see, e.g., [11,31]) instead of the sequent calculus. The
distinguishing feature of this formalism is deep inference: the inference rules
can be applied at arbitrary depths inside logical expressions. This brings about
properties of proofs and deductive systems that are interesting from the point
of view of computer science applications (see, e.g., [13]): in particular, in the
complementary work in [14], the logic that we use heavily relies on a notion of
deep inference as in the calculus of structures [11,16], and it cannot be given
as a sequent calculus system, as it was shown by Tiu [33]. Furthermore, more
possibilities in the permutability of the inference rules in the calculus of struc-
tures yield optimised presentations (decomposition) of proofs [31]. By using the
formalism of calculus of structures instead of the sequent calculus, it becomes
possible to profit from these properties and also combine the results of this paper
and the results of [14] for a common language for planning and concurrency, e.g.,
n [15]. Space restrictions do not allow to give the proofs here, we refer to [13].

2 Linear Logic Planning and Concurrency

In the following, we review multiplicative exponential linear logic in its deep
inference presentation, following [31].

2.1 MELL in the Calculus of Structures

There are countably many atoms, denoted by a, b, ¢, ... The formulae P, Q, R,
S... of multiplicative exponential linear logic are generated by

Ri=a|l|L|(R®R)|[(R®R)|IR|?R | R |,

where a stands for any atom, 1 and L, called one and bottom. A formula
(Ry ® Ry,) is a par formula, (Ry ® Ry,) is a times formula, | R is an of-course for-
mula, and ?R is a why-not formula; R is the negation of the formula R. Formulae
are considered to be equivalent modulo the relation /2, which is the smallest con-
gruence relation induced by the equations for associativity and commutativity
for par and times formulae together with the following equations.

IR (ReT)~(R®T) R =~ !

N (R®T)~ (R9T) R =~ ?

(L®R)~R 7R ~?R R R~R

(I1®R)=R 1L ~70 1

Q

jasii=eT

A formula context, denoted as in S{ 1}, is a formula with a hole that does
not appear in the scope of negation. The formula R is a subformula of S{R} and
S{ } is its context. Context braces are omitted if no ambiguity is possible.

T
An inference rule is a scheme of the kind p R where p is the name of the

rule, T is its premise and R is its conclusion. A typical deep inference rule has

the shape p and specifies a step of rewriting, by the implication T' = R

S{R}
inside a generic context S{ }, which is linear implication in our case. Rules with
empty contexts correspond to the case of the sequent calculus.

The following rules give the multiplicative exponential linear logic system
in the calculus of structures [31], or system ELS. The rules of system ELS are
called atomic interaction (ail), switch (s), promotion (pl), weakening (w]), and
absorption (b)), respectively.

S{1} S(R2T)®U) S{{(R®T)} S{Ll} b S(?’R"® R)

Wana SS(Rev)sT) " siresty “siR S{7R}

A derivation A is a finite chain of instances of these inference rules. A deriva-
tion can consist of just one formula. The top-most formula in a derivation, if
present, is called the premise, and the bottom-most formula is called its conclu-
sion. A derivation A whose premise is T', conclusion is R, and inference rules are

T
in .7 is written as all . A proof II is a finite derivation whose premise is the

R

unit 1.

2.2 Linear Logic Planning

Following [25, 9], a linear logic planning problem £ is given by (Z, G, &) where
Z: {rl, o ,rm} is a multiset ? of fluents called the initial state. The multiset
g : {gl, . ,gn} of fluents is the goal state. </ is a finite set of actions of the
form a : {cl,...,cp} — {617...,€q}, where {cl,...,cp} and {61,...,6,1}
are multisets of fluents called conditions and effects, respectively, and a is the
name of the action. Action a is applicable to a state S iff {¢y,...,¢, } CS. The
application of such an action a to a state S is defined by the function @, where
it is applicable, as ®(a,S) = (S—{c1,...,cp }) U {e1,....eq}.

A goal G is satisfied iff there is a plan P, i.e., a sequence of actions P =
(a1;...;ak) such that &(ak,...,P(a;,Z)...) = G. Then, we say P transforms the
initial state T into the state G. If there exists such a plan P then P is a solution
for the planning problem &. Then we say P solves &2. We denote the empty
plan with o. If it is more convenient, ®(ay,...,®P(a1,Z)...) is abbreviated with
®(P,T). The length of a plan is the number of actions in that plan.

Multisets are denoted by the curly brackets “{ }”. U, ~ and C denote the multiset
operations corresponding to the usual set operations U, — and C, respectively.

Ezample 1. Consider the following planning problem: the actions « and 3, re-
spectively, buy an apple for fifty cents and buy a banana for fifty cents, i.e.,
o ={a:{f}—={a}, B:{f} — {b}}. The initial state and goal state
are 7 = { Lf } and G = {a,b}, respectively. The solutions for this planning
problem are the plans (a; 3) and (§;). A plan which is executable at the initial
state, however not a solution for this problem is the plan {(a;a).

It is important to observe that the explicit representation of resources, given
by the multiset representation, demonstrates that there are no resource con-
flicts between the actions a and [in the solution plans above. This observation
permits the parallel execution of these two actions when there is no hardware
constraints. However, in the encodings of linear logic planning, e.g, in [25,9, 18],
plans are extracted by sequentially reading the proper axioms corresponding to
actions from the leaves of the proof tree, constructed by using the cut-rule. This
does not allow to observe such a parallel execution semantics and breaks the
cut-elimination property (see, e.g., [8,31]).

Let us now present our encoding of the planning problems in multiplicative
exponential linear logic, which allows the construction of cut-free proofs.

Definition 1 Let a = {cl,...,cp} — {61,...,eq} be an action. An action
formula for a (A4,) is of the form 7?7 (61 ® ... ® ¢, Q@ (e179 ...79 ¢,)) . A problem
formula is of the form (119 ... 9 rm 21 ®...Q1,)) .

Definition 2 Given a planning problem & = (Z,G, o/) whereZ = {’/‘1, ey T }
is the initial state, G = {t1,...,t, } is the goal state, and </ is a set of actions.

(P49 ... AR (r1 ... %R (L1 ®...01)))

is the planning problem formula (ppf) that corresponds to & where A1, ..., As
are action formulae for all the actions a € 7.

Example 2. When we consider the planning problem of Example 1, we obtain
the planning problem formula ?(f ® a) 2 ?(f®a)2 ! (f 2 fE (@®D)).

Lemma 1. (i.) The rule action below is derivable (sound) in ELS. (ii.) Let a :
{c1,...,¢cp} — {e1,...,eq} be an action, and S = {r1,...,rm } and 8’ =
{t1,...,tn } be states. For some formulae R, T, and E

(1 ®...8 ¢, E)R!(t179...°t,? R)®T
P(a,S)=S8" iff action ((_Cl® ®_Cp®)88, Bt R)®T)
(761®...QE)R!(re...°rm R)9T)

Lemma 2. The following rule is derivable (sound) in ELS.

1

termination — —
(P49 .9 24,% (9178 ... % gm ® (1 ® ... ® Gim)))

Theorem 3 Let P = (74179 ...0 A, 21 (r10...0rme(t1®...01%,))) bea
ppf that corresponds to a planning problem &. There is a proof with k number
of applications of the p| rule iff there is a plan p with length k that solves the
planning problem &, where T ={ry,...,rm } and G ={t1,...,t, }.

Theorem 3 states the equivalence of existence of a plan solving a planning
problem with the existence of a proof of the encoding of this planning prob-
lem. However, by resorting to this theorem, and Lemma 1 and Lemma 2, we
can use the inference rules action and termination as the operational semantics
of a planner: these inference rules can be used as machine instructions in an
implementation for searching for plans.

Ezxample 3. A proof of the planning problem of Example 1 can be constructed
bottom-up as follows. The shaded regions denote the action formula being used
at every inference step and the name of the action is displayed on the right-hand
side of the inference rules. Then the plan can be extracted by reading these
names bottom-up. Thus, the proof below reads the plan («; 3).

1
termination ——= = -
2(foa)e?(fob)e!(a9by (a

2(f®a) 2 2(f®b) %! (aw fo(a
2(f@a)22(fRb)2 ! (fofw (@@

action

action

®|lx|®

3 Independence and Causality in Plans

Given that a planning problem has a solution, the ppf of this planning problem
can be proved in many different ways. Although these different proofs are distinct
syntactic objects, they can be considered equivalent, because they share the
instances of the rule ai| applied to the same pairs of atoms. Such an equivalence
can be observed, for example, when two multiplicative linear logic proofs are
mapped to the same proof net [8] or they can be decomposed to the same proof
by permutation of the inference rules [31].

Ezxample 4. We can construct the following proof which is a different syntactic
object from the proof in Example 3, however the ai| rule instances, hidden in
the instances of the rules action and termination in the proof below (see Lemma
1 and Lemma 2), are identical in these two proofs.

1
2(f®a)2?(feb)w!(awbe (a®b)
O Nf®a)RN(fRb)S!(febe(a®b)

action — = ———— f
f®a) w2 2f@B)%!(f® [P (a®b)
In this section, by using this idea, we present an algorithm for extracting
partial order plans, which exhibit a concurrency semantics, from the proofs of
the ppf.

termination

action

1’ JELS
Definition 4 Let IT be a proof S{T} where the atoms in an action formula
S{R}
are labelled with the name of that action. Furthermore, whenever there is an
application of the rule b|, the labels of the atoms in the premise, which are
copied, are extended with a natural number that does not occur with the same
action name elsewhere in the proof. Similarly, in a problem formula, all the
positive and negative atoms are labelled with init and goal, respectively. Let Label

denote the set of all the labels occurring in II. The function p on II is defined
as follows. If I =1, then p(IT) = (). Otherwise,

— if p is the application of a rule other than ai| then p(Il) = p(Il’).
— if p is the application of the rule ai| where R is the formula (a8 ax) for an
atom a such that |,k € Label, then

m'[[ELs
W(IT) = { (LK)} U u< o) .

Given a proof IT of P, a constraint set of I for P (Cp) is given with p(II).

Proposition 1. For any proof II of a ppf, n(II) terminates in linear time in
the number of atoms in II.

The constraint sets are obtained by recording the atoms that get annihilated
by the ai| instances. This idea is very similar to using proof nets [8] as a means
for identifying classes of equivalent proofs up to permutation of inference rules, or
the ideas used to describe classes of proofs that are equivalent upto a geometric
criterion similar to proof nets [21]. Because each atom that gets annihilated is
produced and consumed by a specific action formula, a constraint set provides an
explicit record of causality between the actions producing and consuming each
atom in the execution of a plan. Thus, the actions that are partially ordered in a
constraint set are independent events in the execution because they do not have
any resource conflicts.

Ezxample 5. A proof of Example 1 that is syntactically different from the proofs
given in Example 3 and Example 4 is as follows.

1
0 0% B]
il !((aa 8 Ggoal) ® (b3’ bgoal))
ail H((finie ® fs) ® (0 ® dgoal) ® (b3 8 bgoal)))
7 F((finit @ fa) ® (finit 8 f5) ® (@ '8 Ggoal) ® (b 2 bgoal))
o2 H((fa ® aa) 2 2(f5 ® bg) 2 ! (finit @ finie 7 (agoal ® bgoal)))
5

(f_a & aa) i ?(f_ﬁ (29 bﬁ) S ! (finit i finit i (C_Lgoal & Egoal))

When we plug into the function p of Definition 4 this proof, or any of the proofs
in Example 3 or Example 4 expanded with respect to Lemma 1 and Lemma 2,
we obtain the following partial order.

init

N
g

goal

Proposition 5 Let P be a ppf defined on the action set o/ and Cp i1 be a con-
straint set of a proof II for P. (i) Cp i is antisymmetric. (i1) Cp 1 is irreflexive.

Definition 6 Let P be a ppf defined on the action set o/ and Cp z be a con-
straint set of a proof II for P. The concurrent plan of II for P is I'p iy is the
transitive reduction (cover relation) of Cp ir.

Definition 7 A plan P is induced by a strict total order < if for any pair
(x,y) €<, x appears to the left of y in P.

Theorem 8 Let P be a ppf of a planning problem &, II a proof of P and I'p 11
the concurrent plan of II for P. For any strict total order <2 I'p 7, if P is a
plan induced by < then P solves .

This theorem provides an interleaving semantics of the plans computed as
proofs of ppf. Let us now give a non-interleaving semantics for these plans.

4 Partial Order Plans with a Concurrency Semantics

In linear logic planning, states are defined over the data structure multiset, ac-
tions are considered as multiset rewriting rules. Multiset rewriting is also com-
plete for representing computations of place/transition petri nets [29] (see, e.g.,
[4,12]). In such an encoding, the multiset rewrite rules represent the possible
firings of the transitions of a petri net. The places of the net are represented by
elements of multisets. Such a view allows to consider a planning problem as the
reachability problem of the corresponding petri net and vice versa.

4.1 Planning and Concurrency

When planning problems are considered from the point of view of concurrent
computations, e.g., as those in petri nets, due to the explicit representation of
resources, multiset rewriting planning allows to observe true concurrency in the
computations: in a language with true concurrency, when two actions are par-
tially ordered, the outcome of their execution in parallel is same as the outcome
of their execution in either order. Because the explicit treatment of resources
provides a representation of independence and causality, when two actions are
partially ordered, in an execution that involves both of these actions, they are
independent in terms of the resources that they require to be executed. Thus,

their parallel composition results in an action that has the same effect as their
execution in any order. It becomes possible to define the parallel composition of
two actions by taking the multiset-union of their condition and effect multisets
[14]. Here, we speak about concurrency, in contrast to only parallelism, because
the common predecessors and successors of the two composed actions provide a
synchronisation mechanism when they are considered as points in time.

Ezample 6. In the planning problem of Example 1, we can compose the two
actions a and and obtain the action { f, f } — {a,b}, which corresponds to
concurrent executions of these two actions. These two actions are then synchro-
nised by their predecessor init and successor goal.

However, when planning problems are modelled in common Al planning for-
malisms, that are based on properties instead of resources, e.g., STRIPS [5], it
is not always possible to observe true concurrency in the partial order plans of
these languages, e.g., UCPOP [28] and Graphplan [1]. A simple modification of
the famous dining philosophers problem is helpful to see the reason for this.

Ezample 7. There are two hungry philosophers, a and b, sitting at a dinner
table. In order for a philosopher to eat, she must have a fork. However, there is
only one fork on the table. The problem consists in finding a plan where both
philosophers have eaten. The solution of this problem is a plan in which a and b
eat in either order. A plan where a and b eat concurrently cannot be a solution
for this problem, because a and b cannot have the fork at the same time. Because
the fork is a resource, which cannot be shared, eating of one is dependent on
the others finishing eating and leaving the fork. Hence, these two actions can be
executed in either order but not in parallel. A simple encoding of this scenario
as a planning problem allows to observe such a semantics: let Z = { hq, hs, f },
G=A{ewep, fland & ={a:{ha, f}—{ea f}, b:{lpf}—{ef}}.
In the encoding above, for a philosopher x, the resource h, denotes that x is
hungry and e, denotes that x has eaten. f denotes the resource fork. The actions
a and b can be executed in either order. However, their parallel composition
results in the action [a,b] : {ha, he, f, f} — {ea,ep, f, f} which requires two
instances of the resource f in order to be executed. Thus the parallel composition
of these two actions cannot be executed in the initial state Z. An encoding of
this problem by means of properties, in a propositional language, in a way which
delivers such a semantics is not straight-forward, if not impossible.

Due to the explicit treatment of resources, in contrast to the partial order plan-
ners in the literature, such as, UCPOP or Graphplan, the approach of the present
paper respects the dependency and causality between actions in a planning
domain, and results in a non-interleaving, behavioural concurrency semantics,
namely, labelled event structure semantics.

4.2 Labelled Event Structure Semantics of Planning Problems

Labelled event structures (LES) is a non-interleaving branching-time behavioural
model of concurrency [34]. An interleaving model of concurrency is equipped

with an expansion law that identifies parallel composition by means of choice
and sequential composition. In an interleaving model, parallel composition of
two events indicates that these events can take place in either order. A model
for concurrency without such an expansion law is said to be a non-interleaving
model: when two events are composed in parallel they can take place simulta-
neously or in either order. In such a view of the systems, the independence and
causality between the events of the system is central. In a LES the causality
between actions is captured in terms of their dependencies in a partial order.

Apart from the causality given by a partial order, in a LES, the nondetermin-
ism in the computation is captured by a conflict relation, which is a symmetric
irreflexive relation of events. In a planning perspective, this corresponds to ac-
tions that are applicable in the same state, but are in conflict. When two actions
are in conflict with each other, execution of one of them instead of the other
determines a different state space ahead. This provides a branching-time model
of the possible computations.

By using the operational semantics given by the rule action, in [13], we provide
a procedure for obtaining a LES from the specification of a planning problem:
for each planning problem, we obtain a labelled transition system determined
by the possible applications of the rule action. We then apply the standard tech-
niques for obtaining a LES from these transition systems (see, e.g., [34, 10]). The
LES obtained takes all the possible computations in the planning domain into
consideration and reflects the plans that are in conflict with each other. Because
of the explicit treatment of resources in linear logic, the computations in the
LES reflect the independence and causality between actions of the computation.
The concurrent plans of Definition 6 reflect this semantics.

Ezample 8. Consider the planning problem of Example 1. The computations of
this system are given as the LES depicted below, where # denotes the con-
flict relation. The four events are partially ordered because they are causally
independent. The events «; and (5 are in conflict because they cannot co-occur.
Similarly, the events as and (7 are in conflict. The events that are not in conflict
and causally independent can co-occur, e.g., a; and as or a; and (.

EV'I"""#""’/%)Q 512#%1

Ezample 9. There are two tables. On Table 1 there are four blocks which are
stacked on top of each other as shown on the left-hand side of the Figure 1. The
only available action takes a block from Table 1 and puts it on Table 2. The goal
of the problem is moving three of the blocks from Table 1 to Table 2. Because
block a is stacked on blocks ¢ and d, blocks ¢ and d cannot be moved before
block a. Similarly, block d cannot be moved before block b.

The LES displaying the causality and independence of the planning problem
is on the right-hand side of Figure 1. Each event there represents moving the cor-
responding block. Events a and b are independent, however b and c are also inde-
pendent although event ¢ causally requires event a in order to occur. The events
c and d are independent but they cannot co-occur in an execution of the system
because they are in conflict. The possible concurrent plans are the two maximal

o W

Table 1 Table 2 cTTE T ’.d

Fig. 1. A planning problem and the corresponding LES

conflict-free partial order in LES, i.e., { (init, a), (init, b), (b, goal), (a, c), (c, goal) }
and { (init, a), (init, b), (a,d), (b,d), (d, goal) }. The interleavings of these concur-
rent plans are given by the plans (a;c;b), (b;a;c), (a;b;c), (a;b;d) and (b;a;d),
which solve this problem.

5 Relation to Other Work

The reachability problem in petri nets is known to be EXPSPACE-hard [22].
Thus, the encoding of petri nets as multiset rewriting systems in multiplicative
exponential linear logic delivers the lower bound of this logic to be EXPSPACE-
hard [23]. When the complexity of a language is seen as a measure of expressive
power, this also sets the scene for the expressive power of the propositional lan-
guages based on multiset rewriting in comparison to propositional languages
based on STIRPS: given that planning in STRIPS is PSPACE-complete [3], be-
cause PSPACE is a strict subset of EXPSPACE multiset rewriting is strictly
more expressive than propositional languages based on STRIPS. In order to
achieve the same expressive power, these languages must be enriched with a
constant-only first order language, i.e., DATALOGSTRIPS. However, a charac-
terisation of STRIPS in multiset planning is possible (see, e.g., [20]).

If we consider the planning languages based on properties, e.g., ADL [27], we
see that any planning problem expressed in these languages can be expressed as
a multiset planning problem: [32] shows that multiset planning languages can be
employed to encode the domain descriptions of the action description language A
[6]. As it is stated in [7], because the action description language A is equivalent
to the propositional fragment of the planning language ADL the result of [32]
also implies that the multiset rewriting approach can be used for ADL domains.

For a more extensive survey on reasoning about actions, planning and con-
currency we refer to [13].

6 Discussion

In [14,13], we have introduced a deductive language * for multiset planning
within an extension of multiplicative exponential linear logic with a noncom-
mutative self-dual operator [11]. In this language, the sequential composition

4 Prototype implementations of planners based on this approach, mainly in Maude
language, are available at http://www.doc.ic.ac.uk/"ozank/maude_cos.html

of the actions is represented by means of the non-commutative self-dual logical
operator, whereas the parallel composition of the actions is naturally mapped to
the commutative par operator of linear logic. Thus, by means of this language
parallel and sequential composition of actions and plans can be represented at
the same logical level as in process algebra and logical reasoning can be per-
formed on these plan expressions. Ongoing work includes using the ideas of this
paper to provide an event structure semantics to this deductive language with a
proof theoretical operational semantics. This language should then benefit from
a rich arsenal of tools and techniques that are imported from the both fields
of planning and concurrency, and find applications, e.g., in modelling biological
systems as complex reactive systems [15].

Acknowledgements: The author would like to thank Alessio Guglielmi, Steffen
Holldobler, Luca Cardelli, Max Kanovich and anonymous referees for valuable
comments and improvements.

References

1. A. Blum and M. Furst. Fast planning through planning graph analysis”. Artificial
Intelligence, 90:281-300, 1997.

2. C. Boutilier and R. Brafman. Partial-order planning with concurrent interacting
actions. Journal of Artificial Intelligence Research, 14:105-136, 2001.

3. T. Bylander. Complexity results for serial decomposability. In Proc. of the Tenth
National Conf. on AI (AAAI-92), pages 729734, San Jose, 1992. AAAI Press.

4. Tliano Cervesato. Petri nets and linear logic: a case study for logic program-
ming. In Proceedings of the Joint Conference on Declarative Programming: GULP-
PRODE’95, Marina di Vietri, Ital, 1995.

5. R. E. Fikes and H. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189-205, 1971.

6. Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic
programs. Journal of Logic Programming, 17(2/3-4):301-321, 1993.

7. Michael Gelfond and Vladimir Lifschitz. Action languages. FElectronic Transactions
on Artificial Intelligence, 2 (3-4):193-210, 1998.

8. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

9. G. Grofle, S. Holldobler, and J. Schneeberger. Linear deductive planning. Journal
of Logic and Computation, 6 (2):233-262, 1996.

10. Alessio Guglielmi. Abstract Logic Programming in Linear Logic Independence and
Causality in a First Order Calculus. PhD thesis, Universita di Pisa, 1996.

11. Alessio Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 8(1):1-64, 2007.

12. K. Ishihara and K. Hiraishi. The completeness of linear logic for petri net models.
Logic Journal of IGPL, 9(4):549-567, 2001.

13. Ozan Kahramanogullari. Nondeterminism and Language Design in Deep Inference.
PhD thesis, Technische Universitdt Dresden, 2006.

14. Ozan Kahramanogullari. Towards planning as concurrency. In Proceedings of the
TASTED International Conference on Artificial Intellgence and Applications, AIA
2005, pages 387-393, Innsbruck, Austria, 2005.

15. Ozan Kahramanogullari. A deductive compositional approach to petri nets for
systems biology. Poster presentation at the CMSB Conference, submitted, 2007.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Ozan Kahramanogullari. System BV is NP-complete. Annals of Pure and Applied
Logic, 152(1-3):107-121, 2008.

M. I. Kanovich and J. Vauzeilles. The classical Al planning problems in the mirror
of horn linear logic: semantics, expressibility, complexity. Mathematical Structures
in Computer Science, 11(6):689-716, 2001.

M. I. Kanovich and J. Vauzeilles. Strong planning under uncertainty in domains
with numerous but identical elements (a generic approach). Theoretical Computer
Science, 379:84-119, 2007.

Craig A. Knoblock. Generating parallel execution plans with a partial-order plan-
ner. In Artificial Intelligence Planning Systems, pages 98-103, 1994.

Peep Kiingas. Linear logic for domain-independent AI planning (extended ab-
stract). In Proc. of Doctoral Consortium at 13th Int. Conf. on Automated Planning
and Scheduling, ICAPS 2003, pages 68-72, Trento, Italy, 2003.

Francois Lamarche and Lutz Stralburger. Naming proofs in classical propositional
logic. In Pawel Urzyczyn, editor, Typed Lambda Calculi and Applications, TLCA
2005, volume 3461 of LNCS, pages 246-261. Springer-Verlag, 2005.

R. J. Lipton. The reachability problem requires exponential space. Technical
Report 62, Yale University, 1976.

N. Marti-Oliet and J. Meseguer. From petri nets to linear logic. Mathematical
Structures in Computer Science, 1:66-101, 1991.

N. Mart’i-Oliet and J. Meseguer. Action and change in rewriting logic. In
R. Pareschi and B. Fronhofer, editors, Dynamic Worlds: From the Frame Problem
to Knowledge Management, volume 11-2, pages 1-53. Kluwer Academic, 1999.
M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic I-II.
In Foundations of Software Technology and Theoretical Computer Science, volume
472 of Lecture Notes in Computer Science, pages 63—75. Springer-Verlag, 1990.
Dale Miller. The m-calculus as a theory in linear logic: Preliminary results. In
E. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on Extensions
to Logic Programming, number 660 in LNCS, pages 242—-265. Springer-Verlag, 1992.
E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. In R. Brachmann, H. J. Levesque, and R. Reiter, editors,
Principles of Knowledge Representation and Reasoning: Proc. of the First Int.
Conf. (KR-89), pages 324-332, Toronto, ON, 1989. Morgan Kaufmann.

J. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for
ADL. In KR 92. Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Third International Conference, pages 103-114, 1992.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fir Instru-
mentelle Mathematik, Bonn, 1962.

R. Reiter. Natural actions, concurrency and continuous time in the situation cal-
culus. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, pages 2—13. Cambridge, Morgan Kaufmann, 1996.
Lutz Straflburger. MELL in the calculus of structures. Theoretical Computer
Science, 309:213-285, 2003.

Michael Thielscher. Representing Actions in Equational Logic Programming. In
P. Van Hentenryck, editor, Proc. of the Int. Conf. on Logic Programming (ICLP),
pages 207-224, Santa Margherita Ligure, Italy, 1994. MIT Press.

Alwen Tiu. A system of interaction and structure II: The need for deep inference.
Logical Methods in Computer Science, 2(2):4:1-24, 2006.

Glynn Winskel and Morgens Nielsen. Models for concurrency. In Handbook of
Logic in Computer Science, volume 4, pages 1-148. Oxford University Press, 1995.

