
Implementing System BV of the

Calculus of Structures in Maude

Ozan Kahramanoğulları

University of Leipzig and Dresden University of Technology, ICCL

ozan@informatik.uni-leipzig.de

Abstract. System BV is an extension of multiplicative linear logic with a non-commutative
self-dual operator. We first map derivations of system BV of the calculus of structures
to rewritings in a term rewriting system modulo equality, and then express this rewriting
system as a Maude system module. This results in an automated proof search implementa-
tion for this system, and provides a recipe for implementing existing calculus of structures
systems for other logics. Our result is interesting from the view of applications, specially,
where sequentiality is essential, e.g., planning and natural language processing. In par-
ticular, we argue that we can express plans as logical formulae by using the sequential
operator of BV and reason on them in a purely logical way.

1 Introduction

The calculus of structures is a proof theoretical formalism, like natural de-
duction, the sequent calculus and proof nets, for specifying logical systems
syntactically. It was conceived in [10] to introduce the logical system BV,
which extends multiplicative linear logic by a non-commutative self-dual log-
ical operator. Then it turned out to yield systems with interesting and ex-
citing properties for existing logics such as classical logic [2], linear logic [19]
and modal logics [18], and new insights to their proof theory. In [20], Tiu
showed that BV is not definable in any sequent calculus system. Bruscoli
showed in [3] that the non-commutative operator of BV captures precisely
the sequentiality notion of process algebra, in particular CCS [16].

In contrast to sequent calculus, the calculus of structures does not rely
on the notion of main connective and, like in term rewriting, it permits the
application of the inference rules deep inside a formula (structure). In this
paper, exploiting this resemblance, we present a general procedure turning
derivations in logical systems of the calculus of structures into rewritings
in term rewriting systems modulo equality. We illustrate our procedure on

Proceedings of the Ninth ESSLLI Student Session
Paul Egré and Laura Alonso i Alemany (editors)

Chapter 1, Copyright c© 2004, Ozan Kahramanoğulları

1

system BV of the calculus of structures. Then, we encode the resulting
term rewriting system in Maude [5, 4] which results in an implementation
of an automated proof search tool for system BV. We also argue that we
can employ system BV on applications where sequentiality is essential. In
particular, we refer to our encoding of the conjunctive planning problems in
the language of BV which allows to express plans as logical formulae. Space
restrictions do not permit to present this encoding in detail, we refer to [14].

2 System BV

In this section, we will shortly present the system BV of the calculus of
structures, following [10]. Systems in the calculus of structures for other
logics [2, 19, 18] are designed by respecting the scheme in this section.

There are countably many atoms, denoted by a, b, c, . . . Structures of the
language BV are denoted by R,S, T, . . . and are generated by

S ::= ◦ | a | 〈S; . . . ;S
︸ ︷︷ ︸

>0

〉 | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S (1.1)

where a stands for any atom and ◦, the unit, is not an atom. 〈S; . . . ;S〉 is
called a seq structure, [S, . . . , S] is called a par structure, and (S, . . . , S) is
called a copar structure, S is the negation of the structure S. Structures are
considered equivalent modulo the relation ≈, which is the smallest congru-
ence relation induced by the equations shown in Figure 1.1.1 There ~R, ~T and
~U stand for finite, non-empty sequences of structures. A structure context,
denoted as in S{ }, is a structure with a hole that does not appear in the
scope of negation. The structure R is a substructure of S{R} and S{ } is its
context. Context braces are omitted if no ambiguity is possible: for instance
S [R, T] stands for S{[R, T]}. A structure, or a structure context, is said to
be in negation normal form when the only negated structures appearing in
it are atoms and no parentheses can be equivalently eliminated.

In the calculus of structures, a typical (deep) inference rule is a scheme
of the kind

S{T}
ρ

S{R}

where ρ is the name of the rule, T is its premise and R is its conclusion. Such
a rule specifies the implication T ⇒ R inside a generic context S{ }, which

1In [10] axioms for context closure are added. However, because each equational system
includes the axioms of equality, context closure follows from the substitutivity axioms.

2

Associativity

〈~R; 〈~T 〉; ~U〉 ≈ 〈~R; ~T ; ~U〉

[~R, [~T]] ≈ [~R, ~T]

(~R, (~T)) ≈ (~R, ~T)

Singleton

〈R〉 ≈ [R] ≈ (R) ≈ R

Commutativity

[~R, ~T] ≈ [~T , ~R]

(~R, ~T) ≈ (~T , ~R)

Unit

〈◦; ~R〉 ≈ 〈~R; ◦〉 ≈ 〈~R〉

[◦, ~R] ≈ [~R]

(◦, ~R) ≈ (~R)

Negation

◦ ≈ ◦

〈R;T 〉 ≈ 〈R;T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Figure 1.1: The equational system underlying BV.

◦↓
◦

S{◦}
ai↓

S [a, ā]

S([R, T], U)
s

S [(R,U), T]

S〈[R, T]; [R′, T ′]〉
q↓

S [〈R;R′〉, 〈T ;T ′〉]

Figure 1.2: System BV

is the implication being modeled in the system2. An inference rule is called
an axiom if its premise is empty. Rules with empty contexts correspond to
the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation ∆ in a
certain formal system is a finite chain of instances of inference rules in the
system. A derivation can consist of just one structure. The topmost structure
in a derivation, if present, is called the premise of the derivation, and the
bottommost structure is called its conclusion. The length of a derivation is
the number of instances of inference rules appearing in it.

The system {◦↓, ai↓, s, q↓}, shown in Figure 1.2, is denoted BV and called
basic system V, where V stands for one non-commutative operator3. The
rules of the system are called unit (◦↓), atomic interaction (ai↓), switch (s)
and seq (q↓). We consider ai↓ to be a schema for all positive atoms a.

There is a straightforward correspondence between structures not involv-
ing seq and formulae of multiplicative linear logic. For example [(a, b), c̄, d̄]
corresponds to ((a² b)O c⊥O d⊥), and vice versa. Units 1 and ⊥ are mapped

2Due to duality between T ⇒ R and R̄ ⇒ T̄ , rules come in pairs of dual rules: a
down-version and an up-version. For instance, the dual of the ai↓ rule is the cut rule. In
this paper, we only consider the down rules, which provide a sound and complete system.

3This name is due to the intuition that W stands for two non-commutative operators.

3

into ◦, since 1 ≡ ⊥, when the rules mix and mix0 are added to MELL. For a
detailed discussion on the proof theory of BV and the precise relation between
BV and multiplicative linear logic the reader is referred to [10].

3 From Derivations to Rewritings

In this paper, we assume that the reader is familiar with the notions of term
rewriting such as terms, positions, replacements, substitutions, equations and
rewrite rules as can be found in e.g. [1, 17]. However, we will recapitulate
the definition of the rewrite relation R/E that will be used extensively. This
section is partly a summary of the technical report [12].

Given terms s, t, a term rewriting system R and an equational system
E, s rewrites to t wrt R and E, denoted by s→R/E(ρ,π,σ) t if there are terms
s′, t′, a rewrite rule ρ = l → r, a position π ∈ pos(s′) and a substitution σ
such that s ≈E s′, s′|π = σ(l), t′ = s′|σ(r)|π and t′ ≈E t. In other words,
s→R/E(ρ,π,σ) t iff (∃s′, t′) s ≈E s′ →R(ρ,π,σ) t

′ ≈E t.

3.1 Replacing Equivalence Classes by Equality Steps

For this purpose, we separate the notion of a structure from the equivalence
class defined by the equations shown in Figure 1.1. From this point on, a
structure is an expression of the form delivered in (1.1) and no longer an
equivalence class of these expressions.

A structure R is a derivation from R to R. If ∆ is a derivation from
structure R to structure T , T ≈ T ′, there is an instance of an inference rule
ρ with conclusion T ′ and premise Q′, and Q′ ≈ Q then the derivation on
the left-hand-side of Figure 1.3 is a derivation from R to Q. For notational
convenience we combine two subsequent equality steps occurring in a deriva-
tion into a single equality step. The notion of a proof can be analogously
redefined, that is, ∆ is a proof of R iff ∆ is a derivation from R to T and
T ≈ ◦.

Because ≈ is the finest congruence relation generated by the equational
system shown in Figure 1.1, each derivation and each proof as defined in
Section 2 can be transformed into a derivation and a proof as defined in this
subsection, respectively. We have thus clarified the role of the equational
theory underlying derivations in BV. The same kind of changes to BV have
already been considered in [2].

4

Q
≈

Q′
ρ

T ′
≈

T

R

∆

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n22(S) =

◦ if S = ◦,

S if S is an atom,

n22(R) if S = R,

〈n22(R);n22(~T)〉 if S = 〈R; ~T 〉,

(n22(R), n22(~T)) if S = (R, ~T),

[n22(R), n22(~T)] if S = [R, ~T].

Figure 1.3: Left: A derivation from R to Q Right: Transformation n22

3.2 Replacing n-ary Operators by binary Ones

We will now restrict ourselves to binary operators. The recursive transforma-
tion on the right-hand-side of Figure 1.3 turns each structure into a structure,
where only the binary operators 〈 ; 〉, (,) and [,] are used.4 As a conse-
quence, we will also simplify the equations defining the syntactic equivalence
leading to a refined set of equations as shown in Figure 1.5, where the equa-
tions for singleton become superfluous. Because the inference rules for BV

(see Figure 1.2) use only binary seq-, par- and copar-operators, there is no
need to change them.

Because n22(S) ≈ S, derivations wrt n-ary seq-, par- and copar- operators
can be equivalently turned into derivations with only binary seq, par- and
copar-operators and vice versa. This may lead to less intelligible structures,
but the n-ary operators may be reintroduced as abbreviations (e.g. [8, 13]).

3.3 Replacing Structures by Terms

We replace the structures by terms, and consider terms over variables, thus
formalizing the concept of structures with variable occurrences. Let

ΣBV = {◦, , [,], (,), 〈 ; 〉} ∪ {a | a is a positive atom}.

Then, structures as defined in Section 2 are simply ΣBV-terms over the empty
set of variables, i.e., ground ΣBV-terms. On the other hand, by considering a
non-empty set V of variables, we obtain ΣBV-terms over V , which correspond
to structures with variables.

4While applying this transformation, due to associativity of the structures, it is impor-
tant to observe the equivalence [R, ~T] = [R, T1, . . . , Tn] = [R, [T1, . . . , Tn]] of structures
where n ≥ 1.

5

RNeg =

◦̄ → ◦

〈R;T 〉 → 〈R̄; T̄ 〉

[R, T] → (R̄, T̄)

(R, T) → [R̄, T̄]
¯̄R → R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

eq - o = o .

eq - < R ; T > = < - R ; - T > .

eq - [R , T] = { - R , - T } .

eq - { R , T } = [- R , - T] .

eq - - R = R .

Figure 1.4: Left: T. R. System RNeg Right: Corresponding Maude code

This way, we can use the notions structure and ΣBV-term synonymously
and replace the notion of context in derivations within BV by the notion of a
position, thus being precise about which substructure or subterm is replaced
in a derivation step: the notion of positions, subterms and the replacement
of a subterm by another one at a particular position take over the role of a
context in BV.

3.4 Orienting the Equalities for Negation

The inference rules of BV can be applied only to the structures which are
not under the scope of negation sign. Since these rules do not introduce any
new negation signs, neither when they are applied bottom-up nor top-down,
we can orient the equalities for negation as rewrite rules from left to right to
get the negation normal form at the beginning of a derivation:

Lemma 1 Term rewriting system RNeg on the left-hand-side of Figure 1.4
is (i.) terminating, (ii) confluent. (iii.) Let s be a ΣBV-term. The normal
form of s with respect to RNeg is in negation normal form.

Sketch of Proof (i) It suffices to take the lexicographic path order >lpo

[,] >lpo (,) >lpo 〈 ; 〉 >lpo ◦ as stated in [1]. (ii) Since RNeg is ter-
minating, the result follows from the analysis of the critical pairs. (iii) s
being in negation normal form and applicability of a rewrite rule of RNeg are
contradictory. ¤

3.5 Replacing Inference Rules by Rewrite Rules

In the final step, we define the term rewriting system RBV and the equational
theory EBV corresponding to BV such that derivations in BV correspond to
rewritings →RBV/EBV. The context occurring in inference rules is eliminated

6

Associativity

〈R; 〈S;T 〉〉 ≈ 〈〈R;S〉;T 〉

[R, [S, T]] ≈ [[R,S], T]

(R, (S, T)) ≈ ((R,S), T)

Commutativity

[R, T] ≈ [T,R]

(R, T) ≈ (T,R)

Unit

〈◦;R〉 ≈ 〈R; ◦〉 ≈ R

[◦, R] ≈ R

(◦, R) ≈ R

Figure 1.5: The equational system EBV.

[a, ā] → ◦ ai↓

[〈R;R′〉, 〈T ;T ′〉] → 〈[R, T]; [R′, T ′]〉 q↓

[(R, T), U] → ([R,U], T) s

Figure 1.6: The rewrite system RBV corresponding to BV.

and inference rules are turned into rewrite rules. Each inference rule occur-
ring in BV as shown in Figure 1.2 except ◦↓ is turned into a rewrite rule as
shown in Figure 1.6 by dropping the context S. As before, ai↓ is a schema
for all positive atoms a.

Proposition 2 Let s and t be two ΣBV-terms or structures, where t is in
negation normal form. (i) There is a derivation in BV from s to t hav-

ing length n iff there exists a rewriting s
∗
→RNeg

s′
n
→RBV/EBV t. (ii) There

is a proof of s in BV having length n iff there exists a rewriting s
∗
→RNeg

s′
n
→RBV/EBV ◦.

Sketch of Proof The proof of (i) follows immediately from the discussion in
this and the previous subsections and Lemma 1, by induction on the length
of the derivation in BV and on the number of rewrite steps in RBV/EBV,
respectively, for the if part and the only if part, respectively. (ii) follows
immediately from (i). ¤

4 Implementation in Maude

The language Maude [4] allows implementing term rewriting systems mod-
ulo equational theories due to the built in very fast matching algorithm that
supports different combinations of associative, commutative equational the-
ories, also with the presence of units. Another important feature of Maude

7

that makes it a plausible platform for implementing systems of the calculus
of structures is the availability of the search function since the 2.0 release
of Maude. This function implements breadth-first search which is vital for
complete search for derivations and proofs.

The Maude system module in Figure 1.7 implements the system RBV

modulo EBV where the equalities for associativity, commutativity and unit
become operator attributes “assoc”, “comm” and “id : o”. The module
presumes that the ΣBV-terms are in negation normal form. To get the nega-
tion normal form of a ΣBV-term, we can employ a functional module with
the Maude equations on the right-hand-side of Figure 1.4.

mod BV is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [prec 50] .

op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e : -> Atom .

var R T U V : Structure . var A : Atom .

rl [ai-down] : [A , - A] => o .

rl [s] : [{ R , T } , U] => { [R , U] , T } .

rl [q-down] : [< R ; T > , < U ; V >] => < [R,U] ; [T,V] > .

endm

Figure 1.7: The system module that implements BV.

We can then use the Maude 2 search command for searching for proofs
or derivations: search [- c,[< a ; {c,- b} >,< - a ; b >]] =>+ o .

Maude> search [- c,[< a ; {c,- b} >,< - a ; b >]] =>+ o .

search in BV : [- c,[< a ; {c,- b} >,< - a ; b >]] =>+ o .

Solution 1 (state 2229)

states: 2230 rewrites: 196866 in 930ms cpu (950ms real) (211683

rewrites/second)

empty substitution

No more solutions.

states: 2438 rewrites: 306179 in 1460ms cpu (1490ms real) (209711

rewrites/second)

8

After a successful search, we can display the proof steps by using the
command “show path <state_number_displayed> .”.

Maude> show path 2229 .

state 0, Structure: [- c,[< a ; {c,- b} >,< - a ; b >]]

===[rl [< R ; T >,< U ; V >] => < [R,U] ; [V,T] > [label q-down] .]===>

state 20, Structure: [- c,< [a,- a] ; [b,{c,- b}] >]

===[rl [A,- A] => o [label ai-down] .]===>

state 178, Structure: [b,[- c,{c,- b}]]

===[rl [U,{R,T}] => {T,[R,U]} [label s] .]===>

state 634, Structure: [b,{- b,[c,- c]}]

===[rl [A,- A] => o [label ai-down] .]===>

state 1492, Structure: [b,- b]

===[rl [A,- A] => o [label ai-down] .]===>

state 2229, Unit: o

It is also possible to display all the one step rewrites of a ΣBV-term by
using the Maude command “search <term> =>1 R .”.

5 Planning within BV

In [14], we present an encoding of the conjunctive (multiset rewriting) plan-
ning problems (see e.g. [9]) in the language of BV, where plans are not
extracted from the proof of a planning problem, but are explicit premises of
derivations, which result from bottom-up search. However, in such an encod-
ing, being restricted to BV, while going up in a derivation, the actions in the
problem structure at the conclusion of the derivation must be used precisely
once. In order to overcome this, there, we employ system NEL [11], the ex-
tension of BV with the exponentials of linear logic, to express the availability
of actions arbitrarily many times.

In [3], Bruscoli showed that there is a correspondence between system
BV and a fragment of CCS [16]: the sequential composition corresponds to
the non-commutative operator seq. Parallel composition is naturally mapped
to the commutative linear logic operator par. However, as it is the case in
CCS, there only the actions (labels) are included in the language, but not
the resources that are consumed and produced by the actions.

Similar to [3], by exploiting the non-commutative operator of system BV,
and the commutative logical operator par, we are able to observe concurrent
plans, where the parallelism between plans is respected. Since our encoding is
propositional, no unification mechanism is needed. This allows system NEL to
give the complete operational semantics of our method, and establish the first
step of a uniform formalism that connects concurrency and planning. This
way, it becomes possible to transfer methods from concurrency to planning.

9

6 Discussions

In this paper, we showed that system BV of the calculus of structures can be
expressed as a term rewriting system which can be implemented in Maude for
automated proof search and automated application of inference rules. This
way, we have also provided a tool for implementing a fragment of CCS which
was shown to be equivalent to BV in [3].

We observed that orienting the equalities for unit by modifying the infer-
ence rules to preserve completeness causes a gain in efficiency in proof search.
In [15] we present equivalent systems to system BV where equalities for unit
become redundant. Furthermore, due to the non-deterministic application
of inference (rewrite) rules, often there are several rewritings of a structure,
but in general, only a few of them lead to a proof. A similar problem was
solved in [21] by employing the conditional rules of Maude and by means of
a strategy at the meta-level [7].

The methods presented in this paper can be analogously applied to the
existing systems in the calculus of structures for classical logic [2] and lin-
ear logic [19], since these systems can also be expressed as term rewriting
systems [12]. However, termination of proof search in our implementation
is a consequence of BV being a multiplicative logic. For the logics with an
additive behavior, e.g., classical logic, some strategy must be introduced.
Different Maude modules for the systems in the calculus of structures, in-
cluding BV, classical logic and linear logic, are available for download at
http://www.informatik.uni-leipzig.de/ozan/maude_cos.html.

Carrying our results to full linear logic is of particular interest, since
the sequent calculus presentation of linear logic was previously encoded into
rewriting logic within Maude modules (see, e.g., [6]). However those mod-
ules are not directly executable, in particular due to the promotion rule: in
contrast to the calculus of structures, in the sequent calculus, promotion rule
requires a global view of the formulae, which makes it difficult to express as
an implementable rewriting rule.

Acknowledgments This work has been supported by the DFGGraduierten-
kolleg 446. I am grateful to Alessio Guglielmi, Steffen Hölldobler, Steven
Eker, Lutz Straßburger and the members of the proof theory group at the
International Center for Computational Logic at the TU Dresden. I would
like to thank anonymous referees for valuable remarks and improvements.

10

Bibliography

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That, volume 1.
Cambridge University Press, 1998.

[2] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[3] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Pe-
ter J. Stuckey, editor, Logic Programming, 18th Int. Conference, volume 2401
of Lecture Notes in Comp. Science, pages 302–316. Springer-Verlag, 2002.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. The Maude 2.0 system. In Robert Nieuwenhuis, editor, Rewriting
Techniques and Applications, Proceedings of the 14th International Confer-

ence, volume 2706. Springer, 2003.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude 2.1 manual. Technical report, Computer Science Labora-
tory, SRI International, 2004. http://maude.cs.uiuc.edu/manual/.

[6] Manuel Clavel. Reflection in Rewriting Logic: Metalogical Foundations and

Metaprogramming Applications. CSLI Publications, 2000.

[7] Manuel Clavel, Francisco Durán, Steven Eker, José Meseguer, and Mark-
Oliver Stehr. Maude as a formal meta-tool. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, FM’99 — Formal Methods, World Congress on

Formal Methods in the Development of Computing Systems, Toulouse, France,

September 20–24, 1999 Proceedings, Volume II, volume 1709 of Lecture Notes
in Computer Science, pages 1684–1703. Springer, 1999.

[8] Melvin C. Fitting. First–Order Logic and Automated Theorem Proving.
Springer, Berlin, 2nd edition, 1996.

[9] G. Große, S. Hölldobler, and J. Schneeberger. Linear deductive planning. In
Journal of Logic and Computation, volume 6 (2), pages 233–262. 1996.

[10] Alessio Guglielmi. A system of interaction and structure. Technical Report
WV-02-10, TU Dresden, 2002. to appear in ACM Transactions on Computa-
tional Logic.

[11] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of
Lecture Notes in Artificial Intelligence, pages 231–246. Springer-Verlag, 2002.

[12] S. Hölldobler and O. Kahramanoğulları. From the calculus of structures to
term rewriting systems. Technical Report WV-04-03, TU Dresden, 2004.

11

[13] Steffen Hölldobler. Logik und Logikprogrammierung. Synchron Publishers
GmbH, second, extended edition, 2001.

[14] Ozan Kahramanoğulları. Plans as formulae with a non-commutative operator.
Technical report, TU Dresden, 2004. submitted.

[15] Ozan Kahramanoğulları. System BV without the equalities for unit. Technical
report, TU Dresden, 2004.

[16] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[17] David A. Plaisted. Equational reasoning and term rewriting systems. In Dov
Gabbay, Christopher Hogger, and J. A. Robinson, editors, The Handbook of
Logic in Artificial Intelligence and Logic Programming, Volume 1: Deductive

Methodologies, pages 274–367. Oxford University Press, Oxford, 1993.

[18] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. Technical Report WV-03-08, TU Dresden, 2003. Submitted.

[19] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of

Structures. PhD thesis, TU Dresden, 2003.

[20] Alwen Fernanto Tiu. Properties of a logical system in the calculus of struc-
tures. Technical Report WV-01-06, Technische Universität Dresden, 2001.

[21] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Fabio
Gadducci and Ugo Montanari, editors, Proceeding Fourth Int. Workshop on

Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, 2002, vol-
ume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

12

