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Abstract. We introduce the language CP, a compositional language for
place transition petri nets for the purpose of modelling complex biolog-
ical systems. The language CP is especially well suited for modelling
signalling pathways, where possibly interdependent events with different
durations can co-occur. We give the operational semantics of the lan-
guage CP by means of a proof theoretical deductive system which extends
multiplicative exponential linear logic with a self-dual non-commutative
logical operator. This makes it possible to compose petri nets at the
same level and as nested abstractions, while allowing to do deductive
reasoning on the biological systems being modelled by these nets. We
demonstrate the use of the language on a model of a signalling pathway
for Fc receptor-mediated phagocytosis.

1 Introduction

The view of biological systems as complex reactive systems is becoming increas-
ingly wide-spread. As new techniques emerge, their applications shed light to
behaviour and interrelations of the components of complex biological systems.
By means of abstractions from biological data, these computational methods
allow to formally represent interactions and reactions of the components of a
biological system. This way, it becomes possible to build computational models
for hypothesis generation and analysis. 1

Symbolic computational methods, with different representation schemes, ex-
pressive capabilities, and tools, have been proposed by various authors. Stochas-
tic π-calculus [24, 25, 23, 4] and PEPA [3] are examples to process algebra ap-
proaches. Others include the PRISM language [13], petri nets [21, 8, 14], and
K-calculus [7, 6]. Pathway logic [32, 34] is another approach based on petri nets.

One of the main advantages of symbolic computational methods in modelling
of biological systems is their compositionality: in the context of modelling, from
an analytic bottom-up point of view, compositionality is the idea of considering
parts of a complex biological system in isolation, and this way building models

1 Preliminary versions of this paper had been presented at the Workshop on Rule-
Based Modeling of Biochemical Systems at the Santa Fe Institute (June 2007) and
as poster at the Computational Methods in Systems Biology Conference, 2007.



and composing parts gradually to build more complex models. From a dual top-
down point of view, compositionality allows to add detail to the components of
a model so that models can be considered at lower levels of abstraction, while
moving from greater parts of building blocks towards smaller components. An
example for this would be moving from protein complexes to proteins, then to
amino-acids, and then to chemical compounds, etc. The combination of these
two perspectives of modelling (top-down and bottom-up) then results in the so
called middle-out approach to modelling.

Petri nets was originally conceived as a language for studying complex infor-
mation systems. Petri nets have been being used also to model biological systems.
Petri nets have a graphical representation which resembles conventional repre-
sentations of biochemical networks. Thus, they can communicate the biological
data in a way that is natural for biologists while remaining in formal grounds.
Because petri nets are akin to chemical reactions, they can be used to model bi-
ological systems that can be expressed in terms of chemical reactions. They can
thus be used as a graphical interface to ordinary differential equation models of
biological systems (see, e.g., [14]). Petri nets have been used to model signalling
pathways and simple genetic networks (see, e.g., [27]). 2

Petri nets are well suited for analysing causality and independence of compo-
nents in biological systems such as those involved in a signalling cascade. How-
ever, petri nets lack a broadly accepted formal compositional semantics which
would allow to model and analyse biological systems compositionally. In this pa-
per, we introduce a compositional language, called CP, for place transition petri
nets. The language CP is equipped with sequential and parallel composition and
a proof theoretical operational semantics. This way, concurrent signals in a bio-
logical pathway can be represented as in process algebra at the same syntactic
level and logical deductive reasoning can be performed on these processes. Be-
cause biological signals have durations the synchronisation is not performed by
means of a hand-shake operation as in process algebra, but by means of com-
mon successors and predecessors of concurrent processes due to the causality
relation between processes. The non-deterministic choice is embedded into the
operational semantics of the underlying logic.

As an example for an application of the language CP, throughout the paper
we consider a signalling cascade which occurs during phagocytosis where cells
engulf particles of greater size: in Fc receptor mediated phagocytosis (see, e.g.,
[30]), cells engulf particles by means of membrane protrusion around the inter-
nalised particle. This protrusion is due to the growth of the actin meshwork in
the cytoskeleton, as a result of the signal originating from the interactions be-
tween the Fc receptors and the internalised particle on the cell membrane; the
Rho GTP binding proteins Cdc42 and Rac get activated by means of a signalling
cascade that results in two concurrent pathways of actin polymerisation [30, 4].
The Rac signal results in a branching structure of actin, whereas Cdc42 results in
a linear actin structure. These two processes act in concert and this way extend
the cytoskeleton around the engulfed particle. These two processes are initiated

2 For surveys on petri nets in systems biology, see [19, 22, 12].



by a common signalling pathway, however Cdc42 signal is more dominant at the
early stages of actin polymerisation, whereas Rac signal becomes more dominant
at the later stages [30]. Thus, although their initiation is synchronised, because
they have durations, this synchronisation does not occur in a handshake-manner,
but instead by means of their common successors and predecessors.

The language CP is obtained by encoding the petri nets in a proof theoreti-
cal deductive system, called system NEL [10, 11]. System NEL is an extension of
multiplicative exponential linear logic with a self-dual non-commutative logical
operator. System NEL cannot be designed in a standard sequent calculus, be-
cause a notion of deep rewriting is necessary in order to derive all the provable
formulae of system NEL [33]. System NEL is designed within the proof theoretical
methodology of deep inference (see, e.g., [9, 28]) which allows such a deep rewrit-
ing. System NEL enjoys the cut elimination property. From a proof theoretical
point of view, the cut elimination property can be considered as a certificate of
mathematical rigour. Although it is unknown whether multiplicative exponential
linear logic is decidable or not, in [29], Straßburger showed that system NEL is
Turing-complete.

The self-dual non-commutative operator of system NEL, called seq, resembles
the prefixing of the process algebra. In language CP, while parallel composition
of transitions is mapped to the par operator of linear logic, their sequential com-
position is naturally mapped to the operator seq. Thus, in language CP, parallel
and sequential composition of the processes are expressed at the same logical
level. However, system NEL is not only an elegant interface for encoding the
transitions of petri nets as processes: the underlying deductive system can be
used to do logical reasoning in an interesting and useful way without sacrificing
from mathematical purity. While parallel and sequential composition of transi-
tions and their firings correspond to derivations of system NEL, the availability
of deep inference makes it possible to do reasoning locally on components of the
considered petri net. This allows to work on the parts of the biological system
in isolation to build models of larger systems or to add more detail to a model
at will. Our implementations of deep inference deductive systems provide the
reasoning tools for the proposed approach [15]. Space restrictions do not permit
us to give the proofs of the results here, we refer to [16].

2 P/T Petri Nets

We represent the petri nets as multiset rewriting systems (see, e.g., [5]).

Definition 1. A multiset rewriting system M over a set F is a set of multiset
rewrite rules of the form a : a.pre → a.post where a is the name of the rule, and
a.pre and a.post are multisets over F , called preset and postset of a 3. Given a
multiset M , a rule a is enabled at M if a.pre is a submultiset of M . If a is enabled

3 Multisets are denoted by the curly brackets “ {̇” and “ }̇”. The empty multiset is

denoted by ∅̇ . ∪̇ , −̇, and ⊆̇ denote the multiset operations corresponding to the
usual set operations ∪ , − , and ⊆ , respectively.
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N1 = { rac : {̇ rac }̇ → {̇ ba }̇ ,

cdc : {̇ cdc }̇ → {̇ la }̇ ,

pha : {̇ ba, la }̇ → {̇ ph }̇ }

Fig. 1. A model of branching (ba) and linear (la) actin polymerisation resulting in
phagocytosis (pha).

at M , the application of a on M produces the multiset M ′ = M −̇ a.pre ∪̇ a.post.
We write in this case M

a
→ M ′.

In the multiset rewriting representation of petri nets, each multiset rewriting
rule denotes a petri net transition. The bold lower case names of the multiset
rewriting rules are the transition names. Italic lower case names denote the place
names. Thus, presets of multiset rewriting rules are the tokens consumed by a
transition and the postsets are the tokens that are produced by a transition
when that transition is enabled and it fires.

Definition 2. A place/transition petri net (P/T net) is a pair N = (F ,M),
where F is a set of places and M is a multiset rewriting system over F . The
elements of M are called transitions. A P/T net system is a pair (N ,M) where
M is a multiset over F called marking. The application of an enabled transition
to a marking is referred to as the firing of that transition.

Example 1. Consider the petri net depicted in Figure 1 which models phagocy-
tosis (ph) as an outcome of branching (ba) and linear (la) actin polymerisation,
represented by the transition pha. The polymerisation of actin along these two
pathways causes the extension of cytoskeleton around the engulfed particle. The
branching and linear actin polymerisation result from activation of the Rho GTP
binding proteins Rac (rac) and Cdc42 (cdc), respectively [31]. In Figure 1, the
activation of these proteins are represented by the transitions rac and cdc, re-
spectively. A state of this net where these two transitions are enabled can be
given by the marking M = {̇ cdc, rac }̇ which is depicted as the left-most net
in Figure 3. Firing of the enabled transition cdc then results in the marking
M ′ = {̇ la, rac }̇.

3 System NEL

In the following sections, we define the language CP and its operational seman-
tics, by means of an encoding in the proof theoretical deductive system NEL

(non-commutative exponential linear logic) [10, 11]. 4 In a deductive setting pro-
vided by the underlying proof theoretical operational semantics, computations
are performed by means of proof constructions.

4 By resorting to the proof theoretical convention, we use the terms deductive system
and logic synonymously.



The language CP could be defined independently without resorting to system
NEL. However, our encoding in system NEL profits from the deductive reasoning
provided by this logic. This way, also because system NEL is Turing-complete
[29], the language CP remains prone to extensions, which can address other as-
pects of biological systems such as the structure of gene strands or representation
of compartments, within the formal setting of this logic.

System NEL is a conservative extension of multiplicative exponential linear
logic with the rules mix and mix0 (see, e.g., [1]) and a non-commutative self-dual
logical operator, resembling prefixing in the process algebra. In our encoding,
we use this self-dual non-commutative operator for encoding sequential compo-
sition of the transitions of the petri nets. This way, we are able to encode the
sequential composition at the same logical level as parallel composition which is
encoded as the commutative par operator of linear logic. Furthermore, extending
multiplicative linear logic with the rules mix and mix0 makes it possible to map
the units 1 and ⊥ of multiplicative linear logic to a single unit ◦ (see, e.g., [9]).
Because of this, we are able use the unit ◦ to denote both the empty transition
and the empty place.

The logical expressions of system NEL are called structures. Structures are
entities which share properties of formulae and sequents, and they are written
in a notation which highlights their algebraic properties. In particular, we con-
sider the structures equivalent modulo equational theories such as associativity
and commutativity. The structure notation becomes useful while exploiting the
associativity and commutativity of the logical operators to encode different data
structures such as multisets and lists as it is the case in this paper.

Definition 3. There are infinitely many atoms, denoted with a, b, a, b, ab, ab, . . .
NEL structures are generated by

R ::= ◦ | a | [ R , R ] | ( R , R ) | 〈R ; R 〉 | ?R | !R | R

Every atom is a structure. ¯ denotes the negation of a structure. [ , ] and ( , )
are called par and copar and they denote the operators O and � of linear logic,
respectively. Par and copar are De Morgan duals of each other. 〈 , 〉 is called
seq, it is self-dual, i.e., 〈R, T 〉 = 〈R̄, T̄ 〉. Par and copar are associative and
commutative, whereas seq is associative but not commutative. ◦ is the unit for
par and copar, and it is left-unit and right-unit for seq. The exponentials ! and
? of linear logic are De Morgan duals of each other. On the NEL structures, we
also impose the equalities ??R =?R, !!R =!R, ?◦ = ◦ and !◦ = ◦.

All NEL structures can be equivalently considered in normal form by always
pushing the negation inwards to atoms and removing all the units.

Example 2. The structure 〈ā; (b, c̄)〉 is a normal form of 〈a; ◦; [c, b̄, ◦]〉 modulo
associativity and commutativity of the structures. In order to see the relationship
between system NEL and multiplicative exponential linear logic consider the
structure ! [(?a, b), ā, ! b̄] which corresponds to ! ( (?a � b) O ā O ! b̄). However,
the logical operator seq, which we use to model sequential composition, does not
have an equivalent in multiplicative exponential linear logic.



S{◦}
ai↓

S [a, ā]

S([R, U ], T )
s

S [(R, T ), U ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

S{![R, T ]}
p↓

S [!R, ?T ]

S{◦}
w↓

S{?R}

S [?R, R]
b↓

S{?R}

Fig. 2. System NEL

Definition 4. A structure context, denoted as in S{ }, is a structure with a
hole that does not appear in the scope of negation. The structure R is a sub-
structure of S{R} and S{ } is its context. Context braces are omitted if no
ambiguity is possible.

Definition 5. The system in Figure 2 is called non-commutative exponential
linear logic, or system NEL.

In our encoding, we use the negation to give a logical meaning to the in-
teraction between a transition which produces a token at a place and another
transition which consumes this token. This production/consumption relation-
ship is represented by the annihilation of dual atoms at an instance of the rule
ai↓ (atomic interaction) given in Figure 2. This is similar to the notion of in-
teraction in process algebra where an input and an output process synchronise
over a name. Also here, this interaction is used to implement a synchronisation
mechanism for the signals, however this synchronisation is not a hand-shake syn-
chronisation as in process algebra, but a synchronisation via common predecessor
and successor transitions (see Section 7).

Definition 6. A derivation ∆ is a finite chain of instances of inference rules. A
derivation can consist of just one structure. The top-most structure in a deriva-
tion, if present, is called the premise, and the bottom-most structure is called its
conclusion. A derivation ∆, whose premise is T , conclusion is R, and inference

rules are in S , is written as
T

R
S∆ .

System NEL is equipped with the notion of deep inference, which is useful to
implement a local form of reasoning on the structures: deep inference, realised
by means of structure contexts, is the capability of applying the inference rules
at arbitrary depths inside the logical expressions in a way that is similar to the
application of term rewriting rules. The substructures to which the inference
rules are applied are determined by the structure contexts. Because the hole of
a structure context can be at an arbitrary depth inside the structure, inference
rules can be used to do reasoning locally on the substructures inside a context
without considering the whole structure.



Example 3. Consider the structure [a, (ā, 〈[b, b̄]; [c, c̄]〉)]. For the following two
instances of the rule ai↓ where it is applied bottom-up, there are the struc-
ture contexts [a, (ā, 〈{ }; [c, c̄]〉)] and [a, (ā, 〈[b, b̄]; { }〉)]. Below, the holes are
marked with grey shades.

[a, (ā, [c, c̄])]
ai↓

[a, (ā, 〈 [b, b̄] ; [c, c̄]〉)]

[a, (ā, [b, b̄])]
ai↓

[a, (ā, 〈[b, b̄]; [c, c̄]〉)]

For a detailed discussion on proof theory of NEL and the precise relation
between NEL and MELL (multiplicative exponential linear logic), the reader is
referred to [10, 11, 9, 18].

4 Syntax of the Language CP

In this section, we introduce the syntax of the language CP. We first define
process structures, which are expressions denoting the transition histories of a
given net. They are similar to process expressions of process algebra, however
built from atomic petri net transition names.

Definition 7 (process structure). A process structure is generated by

P ::= ◦ | a | [ P , P ] | 〈P ; P 〉

where ◦ denotes the empty process and a denotes atoms representing transition
names. [ , ] and 〈 ; 〉 denote parallel and sequential composition, respectively.

Example 4. Consider the process structure P = 〈[cdc, rac]; pha〉. In P, following
the concurrent firing of the transitions cdc and rac, the transition pha fires.

The meaning of concurrent and sequential composition of transitions is de-
fined in Subsection 5 where we discuss the operational semantics of the language
CP. However, the intuition behind the compositions of transitions is that the
concurrent firing of two transitions that are composed in parallel produces an
effect that is consumed by their successors, composed to them sequentially. The
concurrent effect of two transitions is same as their simultaneous firing when
there are no resource conflicts between the two transitions. Let us now define
our encoding of transitions and nets in the language of system NEL.

Definition 8 (transition structure). Given a transition a : {̇ c1, . . . , cp }̇ →

{̇ e1, . . . , eq }̇ , the transition structure (denoted with Q) of a, is a structure of
the following form:

〈(c̄1, . . . , c̄p); a; [e1, . . . , eq ]〉

Definition 9 (net structure). Given a P/T system (N ,M) where M =

{̇ r1, . . . , rn }̇, let Q1, . . . ,Qs be the transition structures for all the transitions
in N . Let P be a process structure that we call history. The net structure (de-
noted with R) for (N ,M) with history P is defined as follows:

[?Q1, . . . , ?Qs, 〈P; [r1, . . . , rn ]〉]



In the language CP, the net structures provide a syntactic representation of
petri nets together with a history of previous transitions: in the definition of
net structures above, process P, which can be the empty process ◦, keeps the
information on the history of the previous firings of the net.

Example 5. The net structure for the petri net depicted in Figure 1, where the
initial marking is M = {̇ cdc, rac }̇ and the history P = ◦, is as follows:

[?〈 ¯cdc; cdc; la〉, ?〈 ¯rac; rac; ba〉, ?〈(l̄a, b̄a); pha; ph〉, [cdc, rac] ]

5 Operational Semantics

In this subsection, we define the operational semantics of the language CP as
analytic bottom-up proof constructions in system NEL. In a bottom-up 5 proof
construction, derivations and proofs are constructed by starting from the con-
clusion, and by going up by applications of the inference rules.

Definition 10 (securing). A securing, denoted with S, is a structure of the
form 〈a1; . . . ; an 〉 where n ≥ 1. For a net N , we say that M ′ results from ap-
plying S = 〈a1; . . . ; an〉 to marking M if there are transitions a1, . . . , an ∈ N and

markings M1, . . . ,Mn such that M
a1→ M1

a1→ . . .
an→ Mn and Mn = M ′. We then

write Φ(S,M) = M ′.

Example 6. Consider the net structure in Example 5. 〈cdc; rac; pha〉 is a securing.

Definition 11 (firing). The following rule is called firing:

S [ ?〈 (c̄1, . . . , c̄p); a; E〉, 〈P; a; [E,R]〉]
firing

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]

In an instance of the rule firing, 〈 (c̄1, . . . , c̄p); a; E〉 is called the active transition
structure.

For any pair (N ,M) and securing S, we can compute the marking resulting
from applying the securing to the marking by applying the rule firing bottom-up.

Example 7. The net structure given in Example 5 is the conclusion of the deriva-
tion below. By means of bottom-up proof construction, we compute the marking
resulting from applying the securing 〈cdc; rac; pha〉 to M = {̇ cdc, rac }̇ as follows:

[?〈 ¯cdc; cdc; la〉, ?〈 ¯rac; rac; ba〉, ?〈( ¯cdc, ¯rac); pha; ph〉, 〈cdc; rac; pha; [ph]〉]
firing

[?〈 ¯cdc; cdc; la〉, ?〈 ¯rac; rac; ba〉, ?〈( ¯cdc, ¯rac); pha; ph〉, 〈cdc; rac; [la, ba]〉]
firing

[?〈 ¯cdc; cdc; la〉, ?〈 ¯rac; rac; ba〉, ?〈( ¯cdc, ¯rac); pha; ph〉, 〈cdc; [la, rac]〉]
firing

[?〈 ¯cdc; cdc; la〉, ?〈 ¯rac; rac; ba〉, ?〈( ¯cdc, ¯rac); pha; ph〉, [cdc, rac] ]

The bottom-up reading of this derivation describes the situation depicted in
Figure 3, where the left-most net corresponds to conclusion of this derivation
and the right-most net corresponds to the premise.
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[cdc, rac] 〈cdc; [la, rac]〉 〈cdc; rac; [la, ba]〉 〈cdc; rac; pha; [ph]〉

Fig. 3. Firings of the net in Figure 1 that correspond to the derivation in Example 7.

Definition 12. A rule
T

ρ
R

is derivable for S if there is a derivation
T

R
S∆ .

Lemma 1. The rule firing is derivable for system NEL.

Proof. Take the following derivation:

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; a; [E,R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [〈a; E〉, R]〉]
i↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [〈 [c1, . . . , cp, (c̄1, . . . , c̄p)] ; a; E〉, R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, 〈 (c̄1, . . . , c̄p); a; E〉, R]〉]
q↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]
b↓

S [ ?〈 (c̄1, . . . , c̄p); a; E〉 , 〈P; [c1, . . . , cp, R]〉]

Composition of Processes By composing the transitions with each other by
means of parallel and sequential composition, we can treat processes as atomic
transitions. This way, we can treat transitions and processes compositionally.

Definition 13 (sequential). The following rule is called sequential composition:

S〈C;P1;P2; [E1, E2 ]〉
sequential

S [〈C;P1; [r1, . . . , rm, E1 ]〉, 〈(r̄1, . . . , r̄m);P2;E2〉]

Definition 14 (parallel). The following rule is called parallel composition:

S〈(C1, C2); [P1,P2 ]; [E1, E2 ]〉
parallel

S [〈C1;P1;E1〉, 〈C2;P2;E2〉]

Lemma 2. The rules sequential and parallel are derivable for system NEL.

Proof. Take the following derivations, respectively:

S〈C;P1;P2; [E1, E2 ]〉
q↓

S〈C;P1; [〈P2;E2〉, E1 ]〉
i↓

S〈C;P1; [〈 [E, Ē ] ;P2;E2〉, E1 ]〉
q↓

S〈C;P1; [E, 〈Ē;P2;E2〉, E1 ]〉
q↓

S [〈C;P1; [E,E1 ]〉, 〈Ē;P2;E2〉]

S〈(C1, C2); [P1,P2 ]; [E1, E2 ]〉
s
S〈 [C1, C2 ] ; [P1,P2 ]; [E1, E2 ]〉

q↓
S〈[C1, C2 ]; [〈P1;E1〉, 〈P2;E2〉]〉

q↓
S [〈C1;P1;E1〉, 〈C2;P2;E2〉]

5 The use of the word “bottom-up” here is purely mechanical, and should not be
confused with the conceptual use of this word in the introduction.
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Fig. 4. The transformations of the transitions of the petri net in Figure 1 with respect
to the derivation given in Example 8.

The definitions of sequential and parallel composition of processes allow to lift
the notion of firing from transitions to processes. By composing the transitions of
a petri net by means of bottom-up applications of the rules parallel and sequential

we transform a set of transitions of a net a to a single composed transition.

Example 8. Consider the petri net depicted in Figure 1. We can now compose the
causally independent transitions cdc and rac in parallel, and obtain the process
in the premise of the following derivation. Because the postsets of these two
transitions provide the resources required by the preset of the transition pha, we
can then compose this transition sequentially. This results in the transformation
depicted in Figure 4.

〈( ¯cdc, ¯rac); 〈[cdc, rac]; pha〉; ph〉
sequential

[〈( ¯cdc, ¯rac); [cdc, rac]; [ba, la]〉, 〈(b̄a, l̄a); pha; ph〉 ]
parallel

[〈 ¯cdc; cdc; ba〉, 〈 ¯rac; rac; la〉, 〈(b̄a, l̄a); pha; ph〉]

In the process given in the premise of this derivation, the transitions cdc and
rac fire concurrently, because they are synchronised by the transition pha, which
requires the resources these two transitions produce in order to fire. In [31], it is
reported that the Cdc42 signal is more dominant at the early stages of phago-
cytosis, whereas Rac signal becomes more dominant in later stages. Because the
biological signals that these two transitions model have different durations, such
a model of synchronisation by means of common successors and predecessors is
well suited for modelling such signalling pathways (see Section 7).

Theorem 1 (soundness). Let R be a net structure of a P/T system (N ,M).

For a marking M ′ = {̇ r1, . . . , rn }̇ and transitions a1, . . . , ak ∈ N , if M ′ results
from applying 〈a1; . . . ; ak〉 to M then there is a derivation

〈a1; . . . ; ak; [r1, . . . , rn ]〉

R
NEL∆ .

Theorem 2 (completeness). Let R be a net structure. If there is a process P

and a derivation
〈P; [r1, . . . , rn ]〉

R
NEL∆ then for any securing S such that there is a

derivation
S

P

{q↓}∆ , we have that {̇ r1, . . . , rn }̇ results from applying S to M .



By resorting to Theorem 2 and Theorem 1, we can search for processes by
exploring a search space that is constructed by applications of the rules firing,
sequential and parallel. This allows to formulate petri net reachability queries as
proof search for a given P/T net, i.e., “for two markings M and M ′, is there a
process P such that M ′ results from applying P to M?”.

6 Composition of Petri Nets

Previously, we have seen how process can be composed. However, it is often
desirable to study subsystems of a larger system as separate petri nets, and
then compose the knowledge on the components at will to obtain systems of
desired size and complexity without committing to a particular process of a
subsystem. In this section, we define a notion of composition of petri nets which
makes it possible to build models of a larger systems by composing the models
of subsystems. We then define a notion of nesting which allows to replace the
model of a subsystem in a petri net with a less abstract more detailed model.

Definition 15 (net composition). Let R1 and R2 be the two net structures
[?Q1, . . . , ?Qs, 〈P; [r1, . . . , rn ]〉] and [?Q′

1
, . . . , ?Q′

k, 〈P′; [r′
1
, . . . , r′m ]〉]. Their com-

position is defined as the structure given by the premise of the inference rule
below where the two structures to be composed are given in the conclusion in a
par structure.

S [?Q1, . . . , ?Qs, ?Q
′
1
, . . . , ?Q′

k, 〈[P,P′ ]; [r1, . . . , rn, r′
1
, . . . , r′m ]〉]

compose .
S [ [?Q1, . . . , ?Qs, 〈P; [r1, . . . , rn ]〉], [?Q′

1
, . . . , ?Q′

k, 〈P′; [r′
1
, . . . , r′m ]〉] ]

Proposition 1. The rule compose is derivable for system NEL.

Proof. Take the following derivation.

S [?Q1, . . . , ?Qs, ?Q
′
1
, . . . , ?Q′

k, 〈[P,P′ ]; [r1, . . . , rn, r′
1
, . . . , r′m ]〉]

q↓
S [?Q1, . . . , ?Qs, ?Q

′
1
, . . . , ?Q′

k, 〈P; [r1, . . . , rn ]〉, 〈P′; [r′
1
, . . . , r′m ]〉 ]

=
S [ [?Q1, . . . , ?Qs, 〈P; [r1, . . . , rn ]〉], [?Q′

1
, . . . , ?Q′

k, 〈P′; [r′
1
, . . . , r′m ]〉] ]

From the point of view of the standard graphical representation of petri nets,
the notion of net composition above could be seen as merging the places with
the same names of two nets in order to obtain a new petri net.

Example 9. Consider the net depicted in Figure 5: in Fc receptor-mediated
phagocytosis [31], the binding of the Fc receptor (fcr) with the Fc (fc), while re-
sulting in FcR-Fc complex (fcc), initiates a cascade (fcc) that activates the Rho
GTP binding protein Rac. However, the activation of Rac (rac) is also causally
dependent on the prior activation of Syk (syk) as a result of phosphorylation
of the two tyrosine residues (s) on the ITAM (immunoreceptor tyrosine-based
activation motif) located on the cytoplasmic tail of the Fc receptor. Active Syk
then activates a guanosine-nucleotide exchange factor (GEF) (vav) which acti-
vates Rac (rac). Furthermore, another Rho GTP binding protein Cdc42 (cdc)



s

x
fcr

fc
fcc

rac

cdc

syk

fcc

sk

x

vav

N2 = { fcc : {̇ fcr, fc }̇ → {̇x, fcc }̇ ,

sk : {̇ s, s }̇ → {̇ syk }̇ ,

x : {̇x }̇ → {̇ cdc }̇ ,

vav : {̇ fcc, syk }̇ → {̇ rac }̇ }

Fig. 5. A model of signalling during phagocytosis which is initiated by the binding of
the Fc receptor with Fc.

becomes activated by an unknown GEF (x) as a result of Fc receptor and Fc
binding [31]. Let R1 and R2 be the net structures of the petri nets given in
Figure 1 and Figure 5, respectively.

R1 = [?〈 ¯cdc; cdc; ba〉, ?〈 ¯rac; rac; la〉, ?〈(b̄a, l̄a); pha; ph〉]

R2 = [?〈( ¯fcr, f̄c); fcc; [x, fcc]〉, ?〈(s̄, s̄); sk; syk〉, ?〈x̄; x; cdc〉, ?〈( ¯fcc, ¯syk); vav; rac〉]

Both R1 and R2 are not instantiated by any markings and they do not have
a history of previous firings of transitions. Thus, their composition is given by
[R1,R2 ] which is the net structure of the petri net given in Figure 6.

Another notion of compositionality emerges when we want to study a sub-
system in more detail. The following definition serves this purpose.

Definition 16 (nesting). Let Q = 〈(c̄1, . . . , c̄p); a; [e1, . . . , eq ]〉 be a transition
structure and let R be the net structure [?Q1, . . . , ?Qs ]. The nesting of R in Q

is defined as 〈(c̄1, . . . , c̄p); [?Q1, . . . , ?Qs, c1, . . . , cp ]〉 . We say R is well nested in
Q by ∆ if there is a process structure P, a structure [r1, . . . , rn ] and a derivation

〈(c̄1, . . . , c̄p);P; [e1, . . . , eq, r1, . . . , rn ]〉

〈(c̄1, . . . , c̄p); [?Q1, . . . , ?Qs, c1, . . . , cp ]〉

NEL∆ .

We can replace any transition structure in a net structure with a well nested
nesting. This corresponds to adding more detail to a transition in a petri net.

s

x
fcr

fc
fcc

rac

cdc

syk

fcc

sk

x

vav

cdc

rac

ba

la

pha
ph

Fig. 6. The petri net resulting from composing the nets given in Figures 1 and 5.



s sykp
src syk

•
• N3 = { src : {̇ s }̇ → {̇ p }̇ ,

syk : {̇ p, p }̇ → {̇ syk }̇ }

Fig. 7. A model of the activation of the protein Syk as a result of the phosphorylation
of two tyrosine residues on the immunoreceptor tyrosine-based activation motif.

Example 10. Let us consider the transition sk of Example 9 in Figure 5 given
with the transition structure 〈(s̄, s̄); sk; syk〉. This transition models the phos-
phorylation of the two tyrosine residues on the ITAM located on the cytoplasmic
tail of the Fc receptor. When we consider this process in more detail, we learn
that protein Src, anchored to the cell membrane, performs the phosphorylation,
and then the protein Syk binds to these two phosphorylated domains and trans-
mits the signal further [31]. We can model this scenario as the petri net depicted
in Figure 7 with the net structure R3 = [?〈s̄; src; p〉, ?〈(p̄, p̄); syk; syk〉]. By nest-
ing the net structure in sk, we obtain 〈(s̄, s̄); [?〈s̄; src; p〉, ?〈(p̄, p̄); syk; syk〉, s, s]〉
which is well nested, because we have the following derivation:

〈(s̄, s̄); [src, src]; syk; syk〉
firing

〈(s̄, s̄); [〈(s̄, s̄); [src, src]; syk; syk〉, s, s ]〉
sequential

〈(s̄, s̄); [〈(s̄, s̄); [src, src]; [p, p]〉, 〈(p̄, p̄); syk; syk〉, s, s]〉
parallel

〈(s̄, s̄); [〈s̄; src; p〉, 〈s̄; src; p〉, 〈(p̄, p̄); syk; syk〉, s, s]〉

〈(s̄, s̄); [?〈s̄; src; p〉, ?〈(p̄, p̄); syk; syk〉, s, s]〉
{b↓, w↓}

.

We can then replace the transition sk with the nesting of R3 in sk in any context,
thus give a more detailed model in comparison with the model of Figure 6 by
replacing the transition sk with the net N3 depicted in Figure 7.

The notions of petri net composition and nesting introduced above reflect
the two complimentary approaches to composition of models. On one hand,
petri net composition allows to consider the parts of a complex biological system
in isolation, and this way build models by composing these parts gradually at
the same level to build more and more complex models. On the other hand,
nesting allows to add more and more detail to components so that models can
be considered at lower and lower levels of abstraction, while moving from greater
parts of building blocks towards smaller components.

7 Process Structures Revisited

The proof theoretical operational semantics of language CP provides a platform
for using the underlying deductive system to perform logical reasoning on the
petri nets being studied. Apart from petri net reachability queries, the underly-
ing deductive system can be used to check if process structures which are same in
terms of their input and output are interleavings of the same process structure.



This is because a process structure P gives a canonical representation of secur-

ings, determined by all the derivations
S

P

{q↓}∆ where the rule q↓ serves as the

expansion law in process algebra. In other words, a process structure provides
a syntactical representation of a partial order of transitions. This observation
allows to define a notion of equivalence on the process structures.

Definition 17. Given a process structure P, two process structures P1 and P2

are P-equivalent if there are the derivations

◦

[P, P̄1 ]

{ai↓, q↓}∆ and

◦

[P, P̄2 ]

{ai↓, q↓}∆ .

Proposition 2. If process structures P1 and P2 are P-equivalent then for any
marking M such that P is enabled at M , Φ(P1,M) = Φ(P,M) = Φ(P2,M).

Example 11. Let P = 〈[cdc, rac]; pha〉, then the process structures 〈cdc; rac; pha〉
and 〈rac; cdc; pha〉 are P-equivalent, because we have the two proofs below.

◦
ai↓

[rac, ¯rac]
ai↓

[rac, 〈 [cdc, ¯cdc] ; ¯rac〉]
ai↓

[cdc, rac, 〈 ¯cdc; ¯rac〉]
ai↓

〈[cdc, rac, 〈 ¯cdc; ¯rac〉]; [pha, ¯pha]〉
q↓

[〈[cdc, rac]; pha〉, 〈 ¯cdc; ¯rac; ¯pha〉]

◦
ai↓

[cdc, ¯cdc]
ai↓

[cdc, 〈 [rac, ¯rac] ; ¯cdc〉]
ai↓

[cdc, rac, 〈 ¯rac; ¯cdc〉]
ai↓

〈[cdc, rac, 〈 ¯rac; ¯cdc〉]; [pha, ¯pha]〉
q↓

[〈[cdc, rac]; pha〉, 〈 ¯rac; ¯cdc; ¯pha〉]

Proposition 3. For any process structure P,P1,P2; P1 and P2 are P-equivalent

if there are derivations
P1

P

{q↓}∆ and
P2

P

{q↓}∆ .

When we examine the graphical structure of the petri nets, we can also ob-
serve partial orders of the transitions which demonstrate the possible firings of
the petri net. However, the syntactic representation of process structures sets a
boundary which is meaningful from the point of view of concurrent messages as,
for example, those in the signalling pathways in Fc receptor mediated phagocy-
tosis. A partial order which is represented by a process structure is an N-free
partial order, which is defined as follows:

Definition 18. A partial order ≤ ⊆ A × A is N-free (series-parallel) if and
only if, for all a, b, c, d ∈ A , {(a, b), (c, d), (c, b) } ⊆ ≤ implies (a, d) ∈ ≤. N-free
closure of a partial order ≤ is the smallest N-free partial order containing ≤.

Example 12. Consider the partial orders denoted by the graphs below, which
are given in the notation of event structures (see, e.g., [35]), where nodes denote
events and arrows denote dependencies with respect to causality between events:
the one on the left is an N-free partial order, whereas the one on the right is not.



• •

• •

• •

• •

From the point of view of concurrent messages as those in signalling path-
ways, a representation of signalling as N-free partial orders is meaningful: when
the common predecessor (meet) and the common successor (join) of two pro-
cesses are considered as points in time, these N-free partial orders provide a
representation of synchronisation of processes while taking their duration into
consideration: because the representation of resources provides a model of depen-
dencies, processes with a common meet and join can be executed concurrently.
However, such an observation is impossible in a partial order that is not N-free.
Although a partial order of transitions of a petri net can provide a canonical
representation of a class of securings, N-free closures of such partial orders need
to be considered when modelling concurrent transitions. Because the process
structures allow the representation of only N-free partial orders, they are well
suited for modelling concurrent transitions as those in signalling pathways, also
because of their capability of capturing the duration of processes.

Example 13. Let us consider the petri net depicted in Figure 5. The partial
order of the transitions of this net in terms of their dependencies is depicted
in the following graph where nodes denote transitions and arrows denote causal
dependencies in the event structures notation [35].

fcc sk

x vav

• fcc • sk

• x • vav

In this graph, we observe that the transitions fcc and sk are partially ordered
because they are independent from each other due to the resources that they
require to fire. Similarly the pairs x, vav and sk, x are partially ordered. Because
such partially ordered transitions can fire in any order, this graph provides a
canonical representation of the following securings:

〈fcc; sk; x; vav〉 〈fcc; sk; vav; x〉 〈fcc; x; sk; vav〉 〈sk; fcc; x; vav〉 〈sk; fcc; vav; x〉

However, if one considers the concurrent firings, we observe that if the transitions
fcc and sk fire concurrently, then sk and x cannot fire concurrently because x

requires fcc to fire. In this system, the possible concurrent firings are the ones
that are given by the process structures 〈fcc; [sk, x]; vav〉 and 〈[fcc, sk]; [x, vav]〉.
It is important to observe that these process structures denote N-free closures
of the partial order depicted above. Their graphical representations are depicted
as the following Hasse-diagrams, respectively.

• fcc

• sk • x

• vav

fcc

sk x

vav

• fcc • sk

• x • vav

fcc sk

x vav



These two process structures indicate two equally possible flows of the signal
in this model with the same presets and postsets, however the latter process
structure is more parallelised, thus less restricted, than the former.

Example 14. Let us consider the net structure R2 of the petri net depicted in
Figure 5 together with the marking M = {̇ s, s, fc, fcr }̇. We can construct the
derivation ∆1 below with the process structure 〈[fcc, sk]; [x, vav]〉 of Example 13
at the premise. By composing R1 and R2 as in Example 9, we can then construct
the derivation ∆2 below on the right.

[R2, 〈[fcc, sk]; [x, vav]; [cdc, rac]〉]

[R2, s, s, fc, fcr]

NEL∆1

[R1,R2, 〈[fcc, sk]; [x, vav]; [cdc, rac]; pha; ph〉]

[R1,R2, 〈[fcc, sk]; [x, vav]; [cdc, rac]〉]

NEL∆2

Let us then consider the net structure R3 of the petri net depicted in Figure 7.
We nest R3 in the transition structure 〈(s̄, s̄); sk; syk〉 of the transition sk as in
Example 10. Thus, by nesting we replace the well nested structure

〈(s̄, s̄); [?〈s̄; src; p〉, ?〈(p̄, p̄); syk; syk〉, s, s]〉

with the shaded region in the structure

R2 = [?〈( ¯fcr, f̄c); fcc; [x, fcc]〉, ?〈(s̄, s̄); sk; syk〉, ?〈x̄; x; cdc〉, ?〈( ¯fcc, ¯syk); vav; rac〉]

and obtain a structure that we call R′
2
. Then, by using the derivation in Example

10, we obtain the following net structure.

[?〈( ¯fcr, f̄c); fcc; [x, fcc]〉, ?〈(s̄, s̄); [src, src]; syk; syk〉, ?〈x̄; x; cdc〉, ?〈( ¯fcc, ¯syk); vav; rac〉]

We call this net structure R′′
2
, and we use ∆3 to denote the net structure of

Example 10. We can then construct the following derivation which delivers at its
premise a model of the signalling cascade in Fc receptor mediated phagocytosis.

[R′′
2
,R1, 〈[fcc, 〈[src, src]; syk〉]; [x, vav]; [cdc, rac]; pha〉; ph]

[R′′
2
,R1, 〈[fcc, 〈[src, src]; syk〉]; [x, vav]; [cdc, rac]〉]

[R′′
2
,R1, s, s, fc, fcr]

[R′
2
,R1, s, s, fc, fcr]

NEL∆3

NEL∆1

NEL∆2

When we consider the process structure in the premise of this derivation
graphically, we obtain the Hasse-diagram depicted on the left below. In this
diagram, we see that the transition cdc appears causally dependent on vav

as well as x. Similarly, the transition rac appears causally dependent on both
vav and x. However, although it is known that Vav (vav) is a GEF for Rac



(rac) [31], there is no biological evidence for causal dependency between Vav
(vav) and Cdc42 (cdc) and the unknown GEF (x) of Cdc42 and Rac. Based
on this data, we check in our model if we can relax this causality by logi-
cal reasoning. We observe that the process structures P1 = [〈x; cdc〉, 〈vav; rac〉]
and P2 = 〈[x, vav]; [cdc, rac]〉 are P1-equivalent. Because P1 is enabled at M =

Φ([fcc, 〈[src, src]; syk〉], {̇ s, s, fc, fcr }̇), by Proposition 2, we can replace P1 with
P2 in the process structure without changing the final marking.

• src • src • fcc

• syk

• vav • x

• rac • cdc

• pha

 

〈[x, vav]; [cdc, rac]〉
q↓

[〈x; cdc〉, 〈vav; rac〉]
 

• src • src • fcc

• syk

• vav • x

• rac • cdc

• pha

This way, we obtain the process structure corresponding to Hasse-diagram
on the right, which delivers a model of the signalling pathway in Fc receptor-
mediated phagocytosis.

8 Discussion

We introduced a compositional language, called CP, for place transition petri
nets for modelling biological signalling pathways. The language CP is equipped
with parallel and sequential composition and a proof theoretical deductive oper-
ational semantics that allows to perform logical reasoning on the processes which
are being analysed. The operational semantics is obtained by encoding the mul-
tiset rewriting representation of the place transition petri nets in an extension
of multiplicative exponential linear logic with a self-dual non-commutative op-
erator called seq. While parallel composition of processes is naturally mapped
to the par operator of linear logic, the seq operator serves as a data structure to
represent sequential composition at the same logical level with parallel composi-
tion. This allows the models to be built by starting from any level of abstraction
and extending the model compositionally, also by adding more data at lower
levels of abstraction at will. Our implementations of deep inference deductive
systems provide the reasoning tools for the proposed approach [15]. 6

The notion of parallel and sequential composition that we define on petri
nets originally emerged in [16]. Similar to our notion of parallel and sequential
composition of transitions, in [2], Breitling et al. give a notion of composition
on petri net models which they call horizontal and vertical composition. In[14],
Heiner et al. study the petri nets as a unifying framework for the qualitative,

6 Implementations of tools, mainly in Maude language, are available for download at
http://www.doc.ic.ac.uk/~ozank/maude cos.html.



stochastic and continuous paradigms for modelling and analysing biological sys-
tems. The authors also adapt the multiset rewriting approach in their qualitative
analysis while emphasising the partial order semantics. They address behavioural
properties of the qualitative models and relate the quantitative and qualitative
aspects of petri net models. We believe that a stochastic semantics of our ap-
proach can be obtained analogously by considering tokens as discrete quantities,
and by resorting to the isomorphism between continuous time Markov chains
and securings which are interleavings of process structures.

In language CP, the process structures which are obtained by composing pro-
cesses are N-free partial orders. These N-free partial orders provide an explicit
representation of possible signalling pathways, and a platform for analysis, where
the transitions can be composed in different ways. Because of the causal depen-
dencies captured by the petri nets due to the resources which enable transitions,
the common predecessors and successors of processes provide a synchronisation
mechanism. Such a view of language CP is also in agreement with the event
structure [35] view of the processes, which is a topic of ongoing work [17].

When the synchronisation mechanism of language CP is compared with the
synchronisation in process algebra, e.g., π-calculus [20], in language CP we are
not restricted to binary interactions, because more than two processes can share
predecessors and successors. Furthermore, such a synchronisation mechanism
also captures the modelling of possibly different durations of concurrent signals.
However, binary reactions as hand-shake synchronisation can be simulated by
extending the definition of transition structures with a synchronisation token as
in the following example.

Example 15. Consider the two transitions p : {̇ a }̇ → {̇ c }̇ and q : {̇ b }̇ → {̇ d }̇.
We synchronise these two transitions over the name x as follows:

〈(ā, b̄); [p, q]; [c, d]〉
ai↓

〈(ā, b̄); [p, q]; [x, x̄] ; [c, d]〉
q↓

〈(ā, b̄); [〈p;x〉, 〈q; x̄〉] ; [c, d]〉
parallel

[〈ā; p;x; c〉, 〈b̄; q; x̄; d〉]

The petri net formalism is well developed with a variety of languages and
tools, including those for quantitative analysis. Directions of future investigation
include integrating and adapting these ideas, and also considering more involved
data structures without departing from mathematical rigour by exploiting the
logical operators and exponentials of system NEL, e.g., for representing compart-
ments as in [26], or to represent the DNA by means of sequential composition.
Acknowledgements: The author acknowledges the support of the UK Biotech-
nology and Biological Sciences Research Council through the Centre for Integra-
tive Systems Biology at Imperial College (grant BB/C519670/1). The author
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