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ABSTRACT
We present a purely logical framework to planning where
we bring the sequential and parallel composition in the
plans to the same level, as in process algebras. The prob-
lem of expressing causality, which is very challenging for
common logics and traditional deductive systems, is solved
by resorting to a recently developed extension of multi-
plicative exponential linear logic with a self-dual, non-
commutative operator. We present an encoding of the con-
junctive planning problems in this logic, and provide a con-
structive soundness and completeness result. We argue that
this work is the first, but crucial, step of a uniform deduc-
tive formalism that connects planning and concurrency in-
side a common language, and allows to transfer methods
from concurrency to planning.
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1 Introduction

Concurrency and planning are two fields of computer sci-
ence that evolved independently, aiming at solving tasks
that are similar in nature, but different in perspective: while
planning formalisms focus on finding a plan (process), if
there exists such a plan, that solves a given planning prob-
lem; the focus in process algebra is on queries with the
same nature, but universally quantified, such as dead-lock
freeness or verification of security protocols. This requires
an arsenal of mathematical methods, e.g., bisimulation,
which respects the parallel behavior of actions and allows
for an analysis of equivalence of processes.

In a process algebra parallel and sequential composition
are at the same level since they are equivalently important
notions for expressing concurrent processes. However, in
planning the emphasis is on sequential composition. Al-
though, the parallel behavior1 of actions have been stud-
ied in partial order planners, e.g., [22], and Graph-plan ap-
proach, e.g.,[2], aiming at performance improvement, these
investigations remained distant from the underlying logical
framework. In [18], Kautz et. al. presented a planner,
called Blackbox, which combines features of Graph-plan

1Our intention by parallel behavior is different then the approaches to
concurrent actions in the logical AI literature, e.g., in [24], where concur-
rency is defined over the parametrized time spans shared by the actions.

and planning as logical satisfiability. This approach re-
sulted in a better computational performance, but did not
provide a logical analysis of plans. [11] is an overview of
these approaches, and also others.

In this paper we establish the first, but crucial, step of our
long term goal of providing a purely logical common lan-
guage to planning and concurrency inside a uniform deduc-
tive formalism. This way it will be possible to import the
techniques of concurrency to planning which will provide
a structural analysis of plans. Similar ideas were previ-
ously brought by Pym et. al. in [23] where, abstracting
away from the conditions and effects of actions, they pro-
pose a process algebra like method for reasoning about ac-
tions, and argue that their method can be used to compare
plans. However, in a perspective that captures the condi-
tions and effects of actions resources are crucial from a
concurrency point of view. Linear logic, which is a re-
source conscious logic, is a natural candidate for this task:
weakening and contraction are controlled, i.e., the multi-
plicative conjunction

�
is not idempotent (“ � � ����� ”

is not provable), whereas conjunction � in classical logic
is idempotent. Furthermore, linear logic is widely recog-
nized as a logic of concurrency (see, e.g., [21]). However,
although, parallel composition can be mapped to the com-
mutative par operator of linear logic, sequential composi-
tion does not find a natural interpretation.

With respect to resource consciousness, the relation be-
tween logic, actions and causality has been studied by var-
ious authors: in [1], Bibel imposes a syntactical condition
called linearity on proofs, which requires that each literal
is engaged in at most one connection. In [12], based on
multiset rewriting, Hölldobler and Schneeberger introduce
an equational Horn logic where states are represented by
an AC1 function symbol. In [20], Masseron et al. applies
multiplicative fragment of Girard’s linear logic [6] to re-
source conscious planning by axiomatizing the actions as
proper axioms. Linear logic approach to planning is stud-
ied further by various authors [13, 19, 5]. In [7], it is shown
to be equivalent to the approaches in [1] and [12].

In this paper, we further elaborate on the linear logic ap-
proach to planning, aiming at providing a common lan-
guage for planning and concurrency. For this purpose
we employ system ���
	 of the calculus of structures [9].
The calculus of structures is a proof theoretical formalism,
which is a generalization of the one-sided sequent calculus



with the gain of interesting proof theoretical properties. It
was conceived to represent the logical system ��� , which is
a conservative extension of multiplicative linear logic with
a self-dual, non-commutative operator, called seq. System
� �
	 [10] is an extension of ��� with the exponentials of
linear logic. In other words, system � �
	 is an extension of
multiplicative exponential linear logic with the self-dual,
non-commutative operator seq. These systems can not be
designed in the sequent calculus, as was shown by Tiu [27].

In [3], Bruscoli showed that there is a correspondence be-
tween system ��� and a fragment of the process algebra�����

: the sequential composition corresponds to the non-
commutative operator seq. Parallel composition is natu-
rally mapped to the commutative linear logic operator par.
Every terminating computation in the process algebra cor-
responds to a proof, and for every process expression prov-
able, there is a corresponding terminating computation.
However, as it is the case in

�����
, there only the actions

(labels) are included in the language, but not the resources
that are consumed and produced by the actions.

In the following, we present an encoding of the conjunc-
tive (multiset rewriting) planning problems in the language
of ���
	 , where plans are not extracted from the proof of a
planning problem, but become explicit premises of deriva-
tions which are analogous to the process expressions of [3]:
by exploiting the non-commutative operator seq, and the
commutative logical operator par of system ���
	 , we are
able to observe plans, where the parallel behavior of plans
is respected. This allows system � �
	 to give the com-
plete operational semantics of our method. This way we
establish the first step of a uniform formalism that connects
concurrency and planning, and make it possible to transfer
methods from concurrency to planning.

The rest of the paper is organized as follows: we begin with
recapitulating notions and notations of conjunctive plan-
ning problems and system � �
	 . We then present an encod-
ing of the conjunctive planning problems in the language
of � �
	 and show that our encoding is correct for plans that
are sequences of actions. Following this, we extend our
correctness result to plans which include parallel composi-
tion. We elaborate further on our approach and conclude
with future work and discussions. Space restrictions do not
permit us to give the complete proof of the theorems, we
refer to [16].

2 Planning Problems

Following [7, 20], a planning domain is given by: �
	�� a
set of constants representing atomic properties of the world
which we call fluents and denote by small letters; ��
�� a
set of transition rules (actions) 2 that are multiset3 rewrite

2We consider only propositional actions.
3Multisets are denoted by the curly brackets “ ��� ” and “ � � ”. �� , �� and�� denote the multiset operations corresponding to the usual set operations�

, � and
�

, respectively.

rules; ����� states which are multisets of fluents. A conjunc-
tive planning problem � is then given by ��� �"!#�%$&�
')(
where �+*),.-0/212�4353436�
/�78- 9 is a multiset of fluents called
initial state. The multiset !:*;,.-=<>1��4353435�.<@?A- 9 of fluents
is the goal state. $ is a finite set of actions of the form
�B*;,0-
C41D�4353534�%C"EF- 9HGI,.-.JK1��4353534�%J2LM- 9�� where ,.-.C�1D�4353436�%C"EF- 9
and ,.-.JK12�5343536�"JDLM- 9 are multisets of fluents called conditions
and effects, respectively, and � is the name of the action.
'ONP,DQ 1 �5353435�RQKS>9 is the set of all the fluents that appear in
� , ! and $ .

An action is applicable in a state T iff ,.-.C 1 �4353435�%C E - 9VUW T .
The application of an action � to a state T is defined by the
function X as follows.

XH� �Y�
TZ�[N&�2T U\ ,0-
C 1 �4353435�%C E - 9�� U] ,0-
J 1 �5353435�"J L - 9
A goal ! is satisfied iff there is a plan (structure) ^ ,
i.e., a sequence of actions ^_N � � 1D` 35353 ` �baK( , which
transforms the initial state into a state T Uc ! such that
XH� �ba>�4353435�RXH� � 1 ���#��35343 �dNeT . If there exists such a plan
^ , then ^ is a solution for the planning problem � . Then
we say ^ solves � . We denote the empty plan with f . If it
is more convenient, XH� � a �4353534�RXH� �b12���g�h35353i� will be abbre-
viated with XH�j^k�l�g� . The length of a plan is the number of
actions in that plan.

Now, to illustrate the above theory on a planning problem,
let us look at the following example which is a modifica-
tion of an example from [7]. Suppose Bert is thirsty and
wants to get some lemonade ( m ) from a vending machine.
The lemonade costs 50 cents ( Q ). Bert has a dollar bill
( n ) in his pocket. Because the vending machine accepts
only 50 cents coins, Bert has to get change for his dollar.
The problem of getting the lemonade can be described as
a planning problem with the initial state �o*�,.-.nH- 9g� the ac-
tions C4pq*r,.-.nH- 9;Gs,.-
QY�RQr- 9 and tvuV*w,0-%Qr- 9xGs,0-
my- 9 that
allow him to change a dollar for two 50 cents coins, and to
buy a lemonade, respectively. The goal state in which Bert
got the lemonade is given by !z*b,.-.my- 9{3
Clearly, the solution to the problem is the plan in which at
first Bert changes the dollar and then buys the lemonade:
applying this plan to the initial state yields, first, the state
,.-
QY�"Qw- 9 , and then ,.-
QY�"m>- 9 . As the goal is contained in the
last state, the planning problem is solved.

3 The Calculus of Structures and |w}Z~

In this section, we present the calculus of structures [9] and
system ���
	 [10] which is a conservative extension of mul-
tiplicative exponential linear logic with a non-commutative
operator.

There are countably many atoms, denoted by �Y�"tD�"C2�534353 The
structures4 of the language � �
	 are denoted by � , � , � ,

4The notion of a structure is similar to the notion of a formula or a
sequent of the sequent calculus. However, a structure denotes an equiva-
lence class of structures. Fore a formal elaboration of this notion, we refer
the reader to [9].



Associativity

���� � �������� N ����w� ��	�
� �� ��� �� �"�[N&� ��w� �� �
� �� ` � �� (
([N � �� ` �� (

Commutativity

����r� ���� N ���� � �� �
� ��r� �� �#NP� �� � ��A�

Singleton

� � � N&���A�[N ��� ([N �

Units

� f>�%� � N �
�=f>�%� �[N �
�=f ` � ([N �
��� ` f2(gN �

Exponentials


�
 � N 
 ��
� � N � �
 foN f� fqN f

Negation

�f Nqf� �w� �	� N � �w� � �
���w� � �MN � �w� �	�
��� ` � (MN � � ` � (
 �qN � �� �oN 
 �

�qN �

Figure 1. The equational system underlying System � �
	 .

� 35343 and are generated by

� :: N � - f - � � - 
 � - �� -
� �w�5343536�"�� ��� ����

� -w�K�w�5353435�"�� ��� ����
� -d�K� ` 35343 ` �� ��� ����

(

where � stands for any atom and f , the unit, is not an atom.
A structure

� � 1K�5343536�"� S � is a par structure, ��� 1D�4353435�%� S �
is a times structure, ��� 1D` 35353 ` �AS�( is a seq structure,

� �
is called an of-course structure, and


 � is called a why-
not structure;

�� is the negation of the structure � . Struc-
tures are considered to be equivalent modulo the relation
N , which is the smallest congruence relation induced by
the equations shown in Figure 1. A structure context, de-
noted as in

� , 9 , is a structures with a hole that does not
appear in the scope of negation. The structure � is a sub-
structure of

� ,��r9 and
� , 9 is its context. Context braces

are omitted if no ambiguity is possible.

In the calculus of structures, an inference rule is a scheme

of the kind

�
�
� � where � is the name of the rule,

�
is its

premise and � is its conclusion. A typical (deep) inference

rule has the shape

� , � 9� � ,D� 9 and specifies a step of rewriting

by the implication
��� � inside a generic context

� , 9 ,
which is linear implication5 in our case. An inference rule
is called an axiom if its premise is empty. Rules with empty
contexts correspond to the case of the sequent calculus.

A (formal) system � is a set of inference rules. A deriva-
tion � in a certain formal system is a finite chain of in-
stances of inference rules in the system. A derivation can
consist of just one structure. The topmost structure in a
derivation, if present, is called the premise of the deriva-
tion, and the bottommost structure is called its conclusion.

5Due to duality between � �"! and #!$�%#� , rules come in pairs
of dual rules: a down-version and an up-version. For instance, the dual
of the &�')( rule is the cut rule. In this paper, we only consider the down
rules, since the up rules, including the cut rule, are admissible.

� ,Kf�9&*',+ � �
�Y� �� �

� � � �w� �	� �.- �/ � � ���w�.- �6� �	�
� � � �w� �	� ` � - �10 � (2 + � � ��� ` - (6�4� � ` 0{( �

f*+ f

� , � � �w� ��� 93 + � � � �w� 
 �	�
� ,2f�94 + � , 
 �r9

� � 
 �w�"� �5 + � , 
 � 9

Figure 2. System � �
	

A derivation � whose premise is
�

, conclusion is � , and

inference rules are in � will be written as

�

�
67 3 Simi-

larly,
�
68

will denote a proof 9 which is a finite deriva-

tion whose topmost inference rule is an axiom.

The system in Figure 2 is called Non-commutative Ex-
ponential Linear logic, or system � �
	 . The rules of the
system are unit ( f*+ ), atomic interaction ( &:',+ ), ;:<>=@?.CBA ( / ),
seq ( 2 + ), promotion (3 + ), weakening (4 + ), and absorption
(
5 + ).

For system � �
	 , the cut rule has the shape

� ���w� ��A�',C � ,Kf�9 3

Theorem 1 (Cut Elimination). [10] The rule ',C is ad-
missible for system � �
	 , in other words, for every proof

�
DFEBG�H�I,JLKBM8

� there is a proof
�
DFEBG8ON

3

Theorem 2 (Decomposition). [26] For every derivation �
in system � �
	 , there is a derivation �QP where, seen bottom-
up, first system , 5 +b9 , then , 4 +y9 , and then , 3 +y� / � 2 + �B&*',+>9
are applied.

There is a straightforward correspondence between struc-
tures not involving seq and formulae of multiplica-
tive exponential linear logic ( R �
	 	 ). For example� � � 
 �Y�"t6�6� �C2� � �n � corresponds to

� �y� 
 �TS t6�VUxC:WXU � nFWM� , and
vice versa. Units 	 and Y are mapped into f , since 	�Z[Y ,
when the rules \Q'@] and \Q'@]�^ are added to R �
	 	 . For a
proof of the above results, a more detailed discussion on
the proof theory of ���
	 and the precise relation between
� �
	 and R �
	 	 , the reader is referred to [26].

4 Planning with |w} ~

In this section, we present our encoding of the planning
problems in the language of � �
	 and show that it is correct
with respect to conjunctive planning problems.

Definition 3. The sequential action structure for an action,
� *M,.-.C�1D�5343536�"C"E - 9 Gs,.-.JK1D�4353436�%J2LM- 9 , denoted by _ , is the
structure � � �C412�5343535� �C"E � ` � ` � JK1D�4353534�%J2L � ( .



Definition 4. The simple problem structure ��� for an
initial state � N_,.-0/ 1 �4353534�
/ 7 - 9 and a goal state ! N
,.-=<�1��4353534�.<@? - 9 is the structure

� /21K�5353436�
/�7w� �<�1��4353534� �<@? � .

Because an action can be executed arbitrarily many times,
we employ the exponential “



” which retains a controlled

contraction and weakening on the action structures. This
way, we can duplicate an action structure by applying the5 + rule, or annihilate it by applying the 4 + rule during the
search for the plans. This also allows us to make the inter-
action between the planning problems and actions explicit
by prefixing a planning problem structure with “

�
”: by ap-

plying the 3 + rule in proof search we allow an action struc-
ture to get inside and interact with a problem structure.

We can now define a planning problem in the language of
� �
	 .

Definition 5. Let �sN � � �R!#�%$P�%'d( be a planning prob-
lem. The sequential conjunctive planning problem struc-
ture (shortly scpps) for � , denoted by

� � , is the structure
� 
 _ 1 �5353435� 
 _Ha>� � � � � 
 �Q 1 �5343536� 
 �Q@S �

where _�� ( 	��[=���� ) are the sequential action structures
for the actions in $ , �	� is the simple problem structure for
� and ! , and 'ONP,DQ 1 �4353435�"Q@S>9 .

Let us reconsider the conjunctive planning problem from
Section 2. This planning problem can be expressed as the
following scpps.
� 
 � �n ` C p ` � QY�RQ � (�� 
 � �Q ` t u ` m�(Y� � � n � �m � � 
 n � 
 QY� 
 m � (1)

The structures

 � �n ` C5p ` � QY�"Q � ( and


 � �Q ` tRu ` m�( are the sequen-
tial action structures for the actions C�p and tvu , respectively.
The structure

� n � �m � is the simple problem structure for the
initial state �ON ,0-
n - 9 and the goal state !PN ,0-
mb- 9 . The
structures


 n � 
 m and

 Q correspond to ' N ,Dn �RQY�%m09 .

In the following, we will show that searching for a certain
kind of derivations where the conclusion is the scpps for a
planning problem is equivalent to finding a solution for this
planning problem. With the following lemmata, we will
formally express the operational semantics of reaching a
goal state and applying an action to a state in the language
of � �
	 , respectively.

Lemma 6. [16] The following rule, called termination, is
derivable in ���
	 .

� , � �w9?0/ � � � ��� ` � / 1 �5343534�
/ ? �
< 1 �4353534�.< � �
�/ 1 �4353435� �/ ? � (6� 
 �Q 1 �5353436� 
 �QKS �

where < ��
 ,2Q@1D�4353436�"Q S 9 for 	�� =
�$; .
Lemma 7. [16] The following rule, called action, is deriv-
able in � �
	 .

� � 
 � � �C 1 �5343535� �C E � ` � `�� (�� � ��� ` � ` � �w� � � ( �
�>C�? � � 
 � � �C 1 �4353436� �C E � ` � `�� (h� � �l� ` � C 1 �5343536�"C E �%� � ( �

By employing the rules �>C�?)=���� and ?.J4/�� =�� � ?)=���� bottom-
up, we can search for plans while going up in a deriva-
tion: the rule ��C ?)=���� is applied till the multiset of nega-
tive atoms in the of-course structure denoting the simple
problem structure is a submultiset of the multiset of pos-
itive atoms, where the rule ?.J4/�� =�� � ?)=���� can be applied.
After annihilating the of-course structures for the sequen-
tial action structures and excessive resources with the rule4 + , such a derivation will then give a plan structure at the
premise which is a solution for the planning problem. The
following theorem proves that our encoding is correct.

Theorem 8. Let � N � � �R!g�"$P�
')( be a conjunctive plan-
ning problem and

� � the scpps for � .

There is a derivation

� ^
� �
DFEBG iff the plan ^ solves �P3

Sketch of Proof: [16] If part of the proof is by induction
on the length of the plan at the premise of the derivation.
The base case follows from Lemma 6. The inductive case
follows from Lemma 7 and Theorem 2. Only if part is with
induction on the length of the plan. Take the derivation that
was constructed at the if part. �
To illustrate the above ideas, let us return to our running ex-
ample. Observe that the conclusion of the below derivation
is the scpps in (1).

� ��C p ` t u (4 +�� � 
 � �n ` C5p ` � QY�RQ � (�� 
 � �Q ` tRu ` m�(�� � ��C5p ` tRu�(5� 
 n � 
 m �?0/ � 
 � �n ` C5p ` � QY�RQ � (�� 
 � �Q ` tRu ` m�(Y� � �lC5p ` tRu ` � QY�%m
� �m � (D� 
 n � 
 Q#� 
 m �
�>C�? � 
 � �n ` C p ` � QY�"Q � (�� 
 � �Q ` t u ` m�(h� � �lC p ` � QY�"QY� �m � (D� 
 n � 
 QY� 
 m �
�>C�? � 
 � �n ` C5p ` � QY�"Q � (�� 
 � �Q ` tRu ` m�(Y� � �lf ` � n � �m � (2� 
 n � 
 QY� 
 m �N � 
 � �n ` C p ` � QY�RQ � (�� 
 � �Q ` t u ` m�(Y� � � n � �m � � 
 n � 
 QY� 
 m �

The plan structure at the premise is a solution of our plan-
ning problem.

5 Parallel Plans

As well as sequential composition due to non-commutative
seq operator, the language of � �
	 allows to express par-
allel composition of plans and actions by employing the
commutative par operator. In this section, we further ex-
tend the notion of plans to the notion of parallel plans, and
show that our encoding of the planning problems allows to
capture parallel behavior in plans.

Definition 9. A parallel plan structure is a structure gen-
erated by

� :: Nofw- � -b�@� ` � ( - � �8�"� �

where � denotes atoms representing actions.



Proposition 10. For every planning problem � given with
� , ! , and $ , and a plan � � 1D` 35343 ` �baK( that solves it, for
some ; � � , there is a planning problem � P given with
� P N XH� � � �5343536�vXH� �y1K���g��34353i� , ! and $ that is solved by
� � � � 1 ` 35353 ` � a ( .

Sketch of Proof: Follows immediately from the definitions
in Section 2. �

Proposition 11. Let � , T�1 , T�� be states and ^ be a plan.
XH�j^ ���g�#N T�1 iff XH� ^{�@� U] T��D�[N T�1 U] T�� .

Sketch of Proof: With induction on the length of ^ . �

Lemma 12. Let �k1 N ,.-0/D12�5343535�%/47 - 9 , ��� N
,.-0/ P1 �5343535�%/ P? - 9 , T�1 N ,.-=<�1��4353534�.<DEF- 9 and T�� N
,.-=< P1 �4353534�.< PL - 9 be states and ^h1 N � �y12�5353436� � a ( ,
^�� N � �FP 1 �4353435� �FP a N ( be plans. Furthermore, let
_A1D�5343534�*_ a �*_ P 1 �5343534�*_ P a N be the sequential action
structures for the actions � 1 �5353436� �ba>� �FP 1 �5343536� �FP a N . The
following are equivalent.

� =.��XH�v^ 1 �vXH�v^ � �@� 1 U] � � �
��NqXH�6^ � �vXH�v^ 1 ��� 1 U] � � �%�@N T .

� =@=.� XH�j^ 1 �l� 1 �eN T 1 and XH�j^ � �l� � �eN T � such that
T N T 1 U] T � .

� =@=@=.� � � ^h1D��^�� � ` � <�1D�5343534�.<DEb�.< P1 �4353534�.< PL � (
� _ 1 �4353534�*_Ha>�*_ P 1 �4353436�*_ P a N �%/ 1 �5343536�%/ 7 �
/ P1 �5343534�
/ P? �

I���J	��

��� M

Sketch of Proof:
� =.� � � =@=0�F* Let XH� ^�12���k14�#N T P . From Proposition 11, we
have
XH�j^��M�YXH� ^�1��@�k1 U] ���D�
�[NqXH�j^��M�bT P U] ���4�[N T .
Assume that � =0� holds and � =@=.� does not hold.
This can only be the case when there are fluents in TXP
that are not present in � � and consumed by ^ � , but this
contradicts with XH�v^ � �RXH�v^ 1 �l� 1 U] � � �
�gN T

� =@=.� � � =@=@=.�I* Observe that � =@=.� implies that there
are the following derivations.

��^ 12` � < 1 �5343536�
< E � (
� _ 1 �4353435�*_Ha��
/ 1 �4353435�
/ 7 �

I�� J���

���BM7�� � ^ �K` � < P1 �5353435�
<FPL � (
� _ P 1 �4353435�*_ P a N �
/ P1 �5343536�%/ P? �

I���J	��

��� M7��

Take the following derivation.

� � ^ 1 ��^ � � ` � < 1 �5353436�.< E �.< P1 �5343536�
<FPL � (2 + � ��^ 12` � < 1 �5343536�
< E � (6���j^ �K` � <FP1 �4353534�.< PL � ( �

� _ 1 �5353436�*_Ha>�%/ 1 �5353436�
/ 7 �4�j^ �K` � < P1 �4353436�.< PL � ( �
7 �

� _ 1 �5343536��_ ab�*_ P 1 �5343536��_ P a N �
/ 1 �4353436�
/ 7 �%/ P1 �5353435�%/�P? �
7��

� =@=@=.� � � =.� * The following derivations together with
Theorem 8 prove the result.

��^ 1D` ^ � (N � � ^h1D�vf � ` � f���^�� � (2 + � �j^ 1D` f2(6���lf ` ^ � ( �N � ^�1D��^�� �

�j^ �K` ^ 1 (N � � f>��^�� � ` � ^�12�Rf � (2 + � �lf ` ^ 1 (v�4� ^ �@` fK( �N � ^h1D��^�� �
�

Definition 13. A parallel plan structure � solves a plan-
ning problem � , if, for all the derivations

^

�
I����BM

where ^ is a plan structure, ^ solves � .

To illustrate these ideas let us return to our running exam-
ple. However, this time Bert is not only thirsty but also
hungry. Since he is equipped with the action that allows
him to get a candy-bar ( C ) for 50 cents from the vending
machine, this should not be a problem. Then, once he has a
lemonade and a candy bar, he can have lunch which makes
him happy ( A ). Consider the following scpps
� 
 � �n ` C5p ` � QY�"Q � (h� 
 � �Q ` tvu ` m�(Y� 
 � �Q ` <�� ` C5(h�
 � � �m.� �C � ` A u ` AY(�� � � n � �A � � 
 n � 
 QY� 
 m
� 
 C2� 
 A �

where

 � �Q ` < � ` C4( and


 � � �m
� �C � ` A u ` AY( , respectively, are the
sequential action structures for the actions get a candy-bar
and have lunch, respectively. It is easy to observe that the
parallel plan structure

��C4p ` � tRu>�.<�� � ` A u�(
solves the above planning problem. The following theorem
formally justifies that there is a derivation which provides
this parallel plan structure at the premise.

Theorem 14. Let � be a planning problem and
� � be the

scpps for � . If � is a parallel plan structure that solves
a planning problem � , then there is a derivation of the
following form. � �

� �
DFE:G7

Sketch of Proof: Let ^ N � � 1 �4353435� �baK( be a plan structure

such that there is a derivation
^

�
I����BM

. From Theorem 8

there is a derivation

� � �y1D�5343536� � a (
� �
DFEBG and from Theorem 2,

there is a derivation of the following form
� � � 1 �5343535� �baK(

� � _ 1 �5343536��_ ab�
/ 1 �5343535�%/ 7 � �< 1 �5353435� �< ? �
I�� J���

���BM7 �

� �
I�����
 ����
 ��� M7��



where _ 1 �5343536��_ a are the sequential action structures for
the actions � 1 �5353435� �>a . It remains to prove that there is a
derivation

�
� _H12�5353435��_ a �%/D1K�5353436�
/�7w� �<�1D�4353436� �<@? �

I���J	��

��� M7��

We will construct the derivation ��� with structural induc-
tion on � .

– If �PNqf or �PN � , then take �)1 .

– If � Ne��� 1K` � � ( , then there must be a plan ^ NB� ^ 1D` ^ � (

that solves � such that
^ 1

�M1
I���� M

and
^ �

� �
I���� M

where

^ 1 N � � 1 �5353435� �>a N ( and ^ � N&� �ba N � 1 �4353436� �baK( .
Proposition 10 and Theorem 8 give the derivation

� ��� 1K` � ? 1 �4353534� ?
S � (6�4� � �? 1 �4353435� �?
S � ` � � ( �
� _ 1 �5353435��_ a��%/ 1 �5353436�
/ 7 � �< 1 �4353436� �< ? �

I���J	��

��� M 3

– If � N � � 1 �%� � � then there must be plans ^ N
�j^ 1D` ^ � ( and ^�P N � ^ �K` ^ 1 ( that solve � such that
^ 1

� 1
I����BM

and
^ �

� �
I����BM 3 Lemma 12 and Theorem 8 give the

derivation

� � 1 �%� � �
� _ 1 �5353435��_ a��%/ 1 �5353436�
/ 7 � �< 1 �4353436� �< ? �

I���J	��

��� M 3

�

Corollary 15. Let � be a planning problem and
� � be

the scpps for � . If � is a parallel plan structure that solves
a planning problem � , then the structure

� � ��� 
 �� � has a
proof in � �
	 .

Sketch of Proof: Result follows immediately from Theo-
rem 14. �

6 Discussion

We presented an encoding of the conjunctive planning
problems in the language of ���
	 where plans are not ex-
tracted from the proof of a derivation, but they are explicit
premises of derivations. Furthermore, we showed that our
encoding is expressive enough to capture plans where the
parallel behavior of actions can be captured.

A direct consequence of this work is the establishment of
a bridge between concurrency theory and planning, which
makes it possible to employ methods form concurrency in
the lines of [3].

Another connection of our work with concurrency is via
Labeled Event Structures (LES). LES is a model for con-
currency [25] which has been studied for a class of linear
logic proofs in [8]. In LES the causality between events is
expressed as a partial order and the non-determinism is ob-
tained by a conflict relation. In LES one focuses on events
and their relations, abstracting away from states. This way
they provide a behavioral model of concurrency. In [15] we
presented a framework where conjunctive planning prob-
lems are expressed as structures in multiplicative exponen-
tial linear logic in the calculus of structures, and provided
an algorithm to extract partial order plans that exhibit LES
semantics from the proofs of these structures. This way
we established an explicit correspondence between partial
order plans and proofs.

The parallel plans that we derived in this paper can be ob-
served as N-free partial orders6. However, in the partial or-
der plans that we extract from linear logic proofs are not re-
stricted to N-free partial orders. One of our future objective
is to associate to every planning problem a LES which rep-
resents the independence and causality of all actions per-
formable in all different derivations produced by the search
for a proof of a planning problem. This is a concurrent
model of the possible computations. Future work includes
a general comparison of these methods.

We have implemented the proof search for the systems
in the calculus of structures, and also a planner which
implements the above ideas in the lines of [14, 17].
These implementations, mainly in system Maude [4], are
available7 for download. However, at the moment they are
plausible only for planning problems of toy size.
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i Alemany and Paul Égré, editors, Proceedings of the
ESSLLI-2004 Student Session, pages 117–127, Uni-
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