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Abstract

System BV is an extension of multiplicative linear logic (MLL) with the rules miz,
nullary mix, and a self-dual, non-commutative logical operator, called seq. While
the rules miz and nullary mix extend the deductive system, the operator seq extends
the language of MLL. Due to the operator seq, system BV extends the applications
of MLL to those where sequential composition is crucial, e.g., concurrency theory.
System FBV is an extension of MLL with the rules miz and nullary miz. In this
paper, by relying on the fact that system BV is a conservative extension of system
FBV, I show that system BV is NP-complete by encoding the 3-Partition problem in
FBV. I provide a simple completeness proof of this encoding by resorting to a novel
proof theoretical method for reducing the nondeterminism in proof search, which is
also of independent interest.

1 Introduction

Since its emergence, the multiplicative fragment of linear logic [5] remained
in focus of researchers due to its resource conscious features that capture
properties of concurrent computation (see, e.g., [1]). Max Kanovich showed
in [8,9] that multiplicative linear logic (MLL) is NP-complete. In [10], Lincoln
and Winkler show that constant-only fragment of MLL is also NP-complete.
However, from the point of view of applications, multiplicative linear logic
lacks a natural notion of sequentiality, which is crucial for expressing many
computational phenomena, e.g., sequential composition of processes in con-
currency theory. In [6], Guglielmi introduced a system, called BV, which is an
extension of MLL with the rules mix, nullary mix (mix0), and a self-dual, non-
commutative logical operator, called seq. While the rules mix and mix0 extend
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Fig. 1. The relationship between MLL, FBV, BV, MELL and NEL

the deductive system, the operator seq extends the language of MLL. This
logic captures sequential and parallel composition of process algebra naturally
by means of logical operators. In particular, Bruscoli showed, in [3], that there
is a strict correspondence between a fragment of the process algebra CCS [11]
and system BV.

System BV can not be designed in any standard sequent calculus, as it was
shown by Tiu in [16]: in the sequent calculus, during bottom-up proof search,
inference rules are applied at the main connective; however, in order to get all
the provable formula of system BV by means of a deductive system, a notion
of deep rewriting is necessary. System BV is designed in the proof theoretical
framework, the calculus of structures [6], which allows for such deep rewriting.
In the calculus of structures, the notion of main connective disappears and the
notions of formula and sequent of the sequent calculus are replaced with the
notion of structure. The inference rules can be applied deep inside structures,
resulting in one of the distinguishing features of this formalism, that is, deep
inference. In several other related work (see, e.g., [2,14]), deep inference gives
rise to many interesting proof theoretical properties of other logics, that are
not observable within the sequent calculus presentation of these logics.

Extending multiplicative linear logic with a self-dual, noncommutative op-
erator was also considered in Retoré’s pomset logic [12]. In [13], Retoré gives
proof nets for the pomset logic, but so far there is no sequent calculus sys-
tem for pomset logic with the cut-elimination property. In fact, Guglielmi
conjectured, in [6], that pomset logic and system BV are equivalent.

In [7], Guglielmi and Straburger introduced a system, called NEL, which
extends system BV with the exponentials of linear logic. In other words, sys-
tem NEL is an extension of multiplicative exponential linear logic (MELL) with
the rules mix, mix0, and the self-dual, noncommutative logical operator seq.
Although it is unknown if multiplicative exponential linear logic is decidable
or not, in [15], Straflburger showed that system NEL is undecidable. How-
ever, the complexity of the decision problem in system BV remained an open
problem.

In this paper, by encoding the 3-Partition problem [4] in multiplicative
linear logic extended by the rules mix and mix0, i.e., system FBV, I show the
NP-hardness of this logic. This result implies the NP-hardness of system BV,
since system BV is a conservative extension of system FBV (MLL+ mix+mix0):
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every provable BV structure, which does not contain any seq structure, is also
provable in FBV. Figure 1 summarizes the relationship between MLL, FBV,
BV, MELL and NEL, and the contribution of this paper.

Although the encoding in the sequent calculus, which was used in [8] for
showing the NP-hardness of MLL, can be used to show the NP-hardness of
MLL + mix 4+ mix0, in this paper, I provide a simpler encoding and an easier
proof, within the calculus of structures, by means of an analysis of the proof
theory of this logic: in contrast to sequent calculus, while applying the infer-
ence rules in bottom-up proof search, deep applicability of the inference rules
in the calculus of structures introduces a greater nondeterminism. I introduce
a novel technique for controlling the nondeterminism in proof search, which is
also of independent interest from the point of view of applications: despite the
combinatoric explosion in the applicability of the inference rules in the cal-
culus of structures, my method reduces the nondeterminism in proof search
without damaging the completeness of the system. This way, it becomes pos-
sible to separate the redundant nondeterminism, in my encoding, from the
concise nondeterminism, and prove the completeness of the encoding without
going into incomprehensible and complicated case analysis.

The rest of the paper is organized as follows: after introducing the calcu-
lus of structures and system BV in the next section, I present a method for
controlling the nondeterminism in proof search in multiplicative linear logic
extended by the rules mix and mix0, i.e., system FBV. I then present an en-
coding of the 3-partition problem in FBV, which is an NP-complete problem.
Following this, by showing that the length of a proof in BV is bounded by a
polynomial in the size of the structure being proved, I show that system BV
is NP-complete.

2 The Calculus of Structures and System BV

This section re-collects some notions and definitions of the calculus of struc-
tures and system BV, following [6].

In the language of BV atoms are denoted by a,b,c,... Structures are de-
noted by R, S, T, ... and generated by

Su=olal(S;...;8)|[S,....,8]|(S,....,8)|S ,
——— —— ——

>0 >0 >0
where o, the unit, is not an atom. (S;...;S) is called a seq structure, [, ..., S]
is called a par structure, and (S,...,S) is called a copar structure, S is the

negation of the structure S. Structures are considered equivalent modulo the
relation ~, which is the smallest congruence relation induced by the equalities
shown in Flgure 2. There R T and U stand for finite, non-empty sequence
of structures. A structure context, denoted as in S{ }, is a structure with
a hole that does not appear in the scope of negation. The structure R is a
substructure of S{R} and S{ } isits context. Context braces are omitted if no
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Associativity Commutativity Negation

(B:AT): 0) ~ (R:1.0) R.T) ~ [T, ) e
(R, (7)) ~ [R.T) (BT ~ (T, ) T) ~ AR T)
(B (T) ~ (R, T) B, T] ~ (R T)
Units (R, T) ~ [R,T]
Context Closure . . . =
(o; R) =~ (R;0) ~ (R) R~R
if R=T then S{R} = S{T} [0, R] ~ [R] o leton
and R=T (0, R) ~ (R) Singlet

(R) ~ [R]~ (R)~ R

Fig. 2. Equivalence relations underlying BV.

ambiguity is possible: for instance S[R, T'] stands for S{[R,T]}. A structure,
or a structure context, is in normal form when the only negated structures
appearing in it are atoms, no unit o appears in it.

We will call the BV structures, which do not involve seq structures, FBV
structures. There is a straightforward correspondence between FBV structures
and formulae of multiplicative linear logic (MLL), which do not contain the
units 1 and L. For example [(a,b),¢,d] corresponds to ((a ® b)w ¢t % db),
and vice versa. Units 1 and L are mapped into o, since 1 = |, when the rules
mix and mix0 are added to MLL.

KO U )
mix — mix0 —
Fo, v F

For a more detailed discussion on the proof theory of BV and the precise
relation between BV and MLL, the reader is referred to [6].

In the calculus of structures, an inference rule is a scheme of the kind
T

p 7’ where p is the name of the rule, T is its premise and R is its conclusion.

A typical (deep) inference rule has the shape p and specifies the impli-

S{R}
cation 7' = R inside a generic context S{ }, which is the implication being
modeled in the system . When premise and conclusion in an instance of an
inference rule are equivalent, that instance is trivial, otherwise it is non-trivial.
An inference rule is called an axiom if its premise is empty. Rules with empty
contexts correspond to the case of the sequent calculus.

3 Due to duality between 7' = R and R = T, rules come in pairs of dual rules: a down-
version and an up-version. For instance, the dual of the ai | rule in Figure 3 is the cut
rule. In this paper, only the down rules, which provide a sound and complete system are
considered.



Fig. 3. System BV

A (formal) system 7 is a set of inference rules. A derivation A in a
certain formal system is a finite chain of instances of inference rules in the
system. A derivation can consist of just one structure. The topmost structure
in a derivation, if present, is called the premise of the derivation, and the

bottommost structure is called its conclusion. A derivation A whose premise

T
is T, conclusion is R, and inference rules are in . will be written as alls .

R
Similarly, H][y will denote a proof II, which is a finite derivation, whose

topmost inference rule is an axiom. The length of a derivation (proof) is the
number of instances of inference rules appearing in it.

Two systems . and .’ are equivalent if for every proof of a structure T
in system .7, there exists a proof of T in system .#’, and vice versa.

The system {o|,ai |,s,q |}, shown in Figure 3, is denoted by BV, and
called basic system V. The rules of the system are called unit (o|), atomic
interaction (ai |), switch (s) and seq (q|). The multiplicative linear logic
system extended by mix and mix0, or system {o],ai|,s}, is denoted by FBV.

3 Preliminaries

In a proof search episode, the inference rules can be applied to a structure,
nondeterministically, in many different ways, but only few of these rule in-
stances can provide a proof. While providing a rich combinatorial analysis
of the logic being studied, applicability of the inference rules at any depth
causes an even greater nondeterminism. However, the mutual dependencies
between atoms, which are easily observable due to the notion of structure,
provides ways of controlling the nondeterminism without breaking the proof
theoretical properties. In this section, I present a system equivalent to system
FBV, where the nondeterminism in proof search is reduced by taking these
mutual dependencies between dual atoms into consideration.

Definition 3.1 Given a structure S, the notation at S indicates the set of all
the atoms appearing in S. Let interaction switch be the rule

. S([R,T],U)
s ———— |
SI(R,U),T]
where atT N at R # 0. Let system FBV with interaction switch, or system
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FBVi be the system {o| , ai| , is }.

Lemma 3.2 For any FBV structures R, U and T, if [R,U] has a proof in

T
FBVi, then there is a derivation AlFBVi

R,T),U]

Proof. If at R N atU # (), then trivial. Otherwise R and U must have
separate proofs. O

Theorem 3.3 (Shallow Splitting for FBVi) For all structures R, T and P,

P, P
if [(R,T),P] is provable in FBVi then there exists Py, Py and [ AIHFBQ\J; such

P
that [R, Py| and [T, Ps] are provable in FBVi.

Proof. (Sketch) Proof by induction with Lemma 3.2. Take the induction
measure (m,n) where m = | [(R,T), P] | and n is the length of the proof II of
[(R,T), P]. Single out the bottom most rule application p in II. Apply the
induction argument to p, similar to the proof of the splitting theorem for BV
in [6]. The following are the non-trivial cases for p:

* p= is such that R = (R,’R”>7 T = (T/,T”), P = (PI,P”) and

[([(R/’ Tl)? Pl] ) R”? Tl/)? Pl/]
[(RI’ RII’ 7’1/7 T//)’ Pl’ P//]

is

e p=is such that P = [(P', P"),U’,U"] and

[([(&,T), P, U"}, P"), U"]
[(R’ 77)7 (Pl7 Pl/)’ U/’ Ul/]

IS
d

Theorem 3.4 (Context Reduction for FBVi) For all structures R and for all
contexts S{ } such that S{R} is provable in FBVi, there ezists a structure U
such that for all structures X there exist derivations:

[X\’\F[Q/i and WFBVI
S{X} [R,U]

Proof. (Sketch) By induction on the size of S{o} with Theorem 3.3 and
Lemma 3.2, similar to the proof of context reduction for BV in [6]. O

Theorem 3.5 System FBV and FBVi are equivalent.

Proof. Observe that every proof in FBVi is also a proof in FBV. For the other
direction, single out the upper-most instance of the switch rule in the FBV
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proof, which is not an instance of the interaction switch rule:

TFBVi
S([R,U],T)

S e —
S|(R,T),U]
From Theorem 3.4, we have

{ 1LV] ;
I FBVi such that WFBV

S{} [([R,U].T), V]

Then, from Theorem 3.3, we have

[Kh K2 ] . WFBVi . and HWFBVE
‘&FBVI 9 [R’ U’ Kl] ) [KQ’ T]

We can then construct the following proof

[(R7 T)7 Ua K17 KQ}
|| FBVi

[(R.T),U.V]
S(RTU]

where A is the derivation delivered by Lemma 3.2 with the proof II. Repeat
the above procedure inductively till all the instances of the switch rule, which
are not instances of interaction switch rule, are removed. O

Splitting technique was originally introduced, in [6], to prove cut elimina-
tion for system BV. Because of the splitting technique used in the complete-
ness argument above, from which cut elimination immediately follows, system
FBVi remains clean from a proof theoretic point of view.

Proposition 3.6 System BV is a conservative extension of system FBV, that
18, if a structure R, not containing any seq structures, is provable in BV, then
it 18 also provable in FBV.

Proof. Let R be a BV structure that does not contain any seq structures. By
induction on the length of the proof II of R in BV, construct the proof II" of
R in FBV. Since the only rule that involves seq structures is the rule q, it
must be IT = IT'. O
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4 BV is NP-hard

In this section, I present an encoding of the 3-Partition Problem in system
FBV to show the NP-hardness of this logic, and system BV. This problem
was also used by Lincoln and Winkler, in [10], to show the NP-hardness of the
constant only fragment of MLL. By providing a similar encoding, and resorting
to the proof theory of system FBV, in the lines of Section 3, I provide a very
simple correctness proof without going into a complicated case analysis.

Problem 4.1 [}] (3-Partition) Given a set of A = {ay,aq,...,asnm} of ele-
ments, a bound B € 7T, and a size S(a) € Z* for each a € A such that
1B < S(a) < 3B and Y, ., S(a) = Bm, does there exist a partition of A into
m disjoint subsets A; so that Y ., S(a) = B for each A; in the partition.

The constraints on the S(a) imply that such a partition must have exactly
three elements in each of its sets. This problem is NP-complete in the strong
sense, which implies that even when the input is represented in unary, the
problem is NP-hard. This property of 3-Partition is essential for my encoding,
since I represent the input problem by using atoms.

4.1  Encoding the 3-Partition Problem in FBV

Given an instance of 3-Partition equipped with a set A = {aq,as,...,a3,}, a
unary function S, and a natural number B, presented as a tuple (A, m, B, S),
the encoding function 6 is defined as 0( (4, m, B,S) ) =

k k k.k,k, (¢,....¢c k.k,k,(¢,....¢c
[( 7[07 7C]>7 7( ’[c’ 70])7([ Y Y 7(67 76)]? 7[ ) ) ’(C’ 70)])]
x S(ay) x S(azm) R x B x B |
X m

Lemma 4.2 Let S(ay), S(az) and S(a3) be natural numbers such that, for
some natural number B, it holds that 1B < S(a1),S(a2),S(asz) < iB. If
S(ay) + S(az) + S(az) = B, then

[R. Q]
A‘FBV
(R, (k,[c,....c]), (k,[c,....c]), (K, [c,....,c]),(Q, [k, kK, (¢....e)])] "
x S(a1) x S(a2) x S(a3) x B

Proof. Take the following derivation where the redex in the conclusion of the
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applied rule is highlighted.

’ LX)
(R, (Q,[¢c,...,c,e,...,c, ¢ ,c,(C...,C)])]
/i x S(a1)  xS(az)  x S(as) x B
il S[R,(k, lc,...,c]), (K, [c,...,c]),(Q,[_]%,l?:,c, ,c,(_é,._ O]
S (R, (k,[c,....c]), (k,[c,....c]), (@, [([k, k], [c,...,c]),k, k,(C,...,E)])]
(R, (K, [, el) (R Loy e]), Q) [(By ey o ve]) by R B, (G, €)])]
), (k, [¢

Theorem 4.3 If a 3-Partition problem (A,m, B, S) is solvable, then there is
a proof of 0( (A, m, B, S)) in FBV.

Proof. By induction on m, using Lemma 4.2. O

4.2 Completeness of the Encoding

Theorem 4.4 For A, m, B, and S satisfying the constraints of 3-Partition,
if there is a proof of 0( (A, m,B,S)) in FBV, then the 3-Partition problem
(A,m, B, S) is solvable.

Proof. By induction on m: the case for m = 0 corresponds to empty problem.
Let (A,m + 1, B, S) be such that A = {ay,a9,...,a3m, A3m+1, @3m+2, A3m+3}-
Assuming that we have a proof of 0( (A,m + 1, B, S) ), we show that
(A,m+ 1, B, S) is solvable. Let

such that

0((A,m+1,B,5)) = [R,(Q, [k, k. &, (¢,...,2)])]

From Theorem 3.5 we have that ( (4, m + 1, B, S) ) has a proof in FBV iff it
9
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has a proof in FBVi. It follows from Theorem 3.3 that

(K1, K] HWFBVi WFBVi
A : such that and N -
JQFBV (K1, Q)] (Ko, b,k K, (G, ..., 0)]

Since there are only positive atoms in R, it follows that none of the rules ai |
and is can be applied in A, hence the derivation A must be the structure R.
This implies that [K, K»] are two partitions of R. Observe that in K, there
must be exactly 3 occurrences of k, which implies that

2= (kLo el (b [e o oel) (B [e o ic])]
X S(al) X S(aj) X S(ak)

and S(a;)+ S(aj)+ S(ax) = B, and II is the proof delivered by the induction
hypothesis. a

Corollary 4.5 System FBV is NP-hard.
Proof. Follows immediately from Theorem 4.3 and Theorem 4.4. O

Since system BV is a conservative extension of system FBV, this result
implies the NP-hardness of system BV.

Corollary 4.6 System BV is NP-hard.

Proof. Follows immediately from Proposition 3.6 and Corollary 4.5. O

5 System BV is in NP

In this section, I show that the proof of a BV structure is bounded by a
polynomial in the size of this structure.

Definition 5.1 [6] Given a structure S, we talk about atom occurrences when
considering all the atoms appearing in S as distinct (for example, by indexing
them so that two atoms, which are equal, get different indices). The notation
occ S indicates the set of all the atom occurrences appearing in S. The size
of S is the cardinality of the set occ.S. Given a structure S in normal form,
the structural relation |C (occS)? and, for every S’{ }, U and V and for
every a in U and b in V, the following holds: if S = S’[U, V] then a |g b.
To a structure that is not in normal form we associate the structural relation
obtained from any of its normal forms, since they yield the same relation | g.

Remark 5.2 Let R = S|a,a] and R’ = S{o} be BV structures with pairwise
/

R
distinct atoms. If ai | 7 then |p = |r\ {(g,a), (a,a)} .
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Remark 5.3 Let R = S[(P,T),U] and R’ = S([P,U],T) be BV structures
/

with pairwise distinct atoms. If s 7 then

lr=1r\({(z,y)| 2 €0ccT ANy €occU}U
{(z,y)|z € occU A y € occT}).

Remark 5.4 Let R = S[(P;T),(U;V)] and R' = S([P,UJ;[T,V]) be BV

structures with pairwise distinct atoms. If q| 7 then

lr=Ilr\ ({(z,y)|x €occP Ny €occV} U{(x,y)]x €occV A y€occP}U
{(z,y)]x € occU Ny €occT} U {(z,y)|z €occT Ay € occU}).

Proposition 5.5 The length of a proof of a BV structure R is bounded by
O(locc R[?).

Proof. With Remark 5.2, 5.3, and 5.4; observe that |p C (occR)Q, hence
| lr | < |occR|?. For each (non-trivial) application of an inference rule such
/

R
thatpE,we have that | |p | < | [r | O

6 Main Result

The main result of the paper follows from the results in Sections 4 and 5:
Theorem 6.1 System BV is NP-complete.
Proof. Follows immediately from Corollary 4.6 and Proposition 5.5. O

Corollary 6.2 Multiplicative linear logic extended by the rules mix and mix0,
or System FBV, is NP-complete.

Proof. Follows immediately from Corollary 4.5 and Proposition 5.5. O
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