
Interaction and Depth against

Nondeterminism in Proof Search

Ozan Kahramanoğulları

Imperial College London

ozank@doc.ic.ac.uk

University of Birmingham, School of Computer Science

15 December 2006

University of Birmingham, School of Computer Science - 15 December 2006 , p.1

The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

University of Birmingham, School of Computer Science - 15 December 2006 , p.2

The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

University of Birmingham, School of Computer Science - 15 December 2006 , p.2

The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

A proof in the sequent system GS1p

Ax
⊢ a , ā

Ax
⊢ b , b̄

R∨
⊢ b ∨ b̄

R∧
⊢ a , ā ∧ (b ∨ b̄)

R∨
⊢ a∨(ā ∧ (b ∨ b̄))

University of Birmingham, School of Computer Science - 15 December 2006 , p.2

The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

A proof in the sequent system GS1p A proof in system KSg

Ax
⊢ a , ā

Ax
⊢ b , b̄

R∨
⊢ b ∨ b̄

R∧
⊢ a , ā ∧ (b ∨ b̄)

R∨
⊢ a∨(ā ∧ (b ∨ b̄))

;

tt↓
⊢ tt

ai↓
⊢ a ∨ ā

ai↓
⊢ a ∨ (ā ∧ (b ∨ b̄))

University of Birmingham, School of Computer Science - 15 December 2006 , p.2

The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

A proof in the sequent system GS1p A proof in system KSg

Ax
⊢ a , ā

Ax
⊢ b , b̄

R∨
⊢ b ∨ b̄

R∧
⊢ a , ā ∧ (b ∨ b̄)

R∨
⊢ a∨(ā ∧ (b ∨ b̄))

;

tt↓
⊢ tt

ai↓
⊢ a ∨ ā

ai↓
⊢ a ∨ (ā ∧ (b ∨ b̄))

Deep inference brings shorter proofs.

[Polynomial Size Deep-Inference Proofs Instead of Exponential Size Shallow-Inference Proofs, Guglielmi, 2004]

University of Birmingham, School of Computer Science - 15 December 2006 , p.2

Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

University of Birmingham, School of Computer Science - 15 December 2006 , p.3

Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

The resolution rule

R ∧ T

(R ∧ a) ∨ (T ∧ ā)

is derivable in the calculus of structures system for classical logic.

University of Birmingham, School of Computer Science - 15 December 2006 , p.3

Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

The resolution rule
R ∧ T

ai↓
R ∧ T ∧ (a ∨ ā)

s
R ∧ (a ∨ (T ∧ ā))

s
(R ∧ a) ∨ (T ∧ ā)

is derivable in the calculus of structures system for classical logic.

University of Birmingham, School of Computer Science - 15 December 2006 , p.3

Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

The resolution rule
R ∧ T

ai↓
R ∧ T ∧ (a ∨ ā)

s
R ∧ (a ∨ (T ∧ ā))

s
(R ∧ a) ∨ (T ∧ ā)

is derivable in the calculus of structures system for classical logic.

S((R ∨ U) ∧ T)
s
S((R ∧ T) ∨ U)

S{tt}
ai↓

S(a ∨ ā)

University of Birmingham, School of Computer Science - 15 December 2006 , p.3

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

Switch rule can be applied to a ∨ b ∨ (ā ∧ b̄) in 27 different ways, and

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

Switch rule can be applied to a ∨ b ∨ (ā ∧ b̄) in 27 different ways, and

to a1 ∨ b1 ∨ (ā1 ∧ b̄1 ∧ (a2 ∨ b2 ∨ (ā2 ∧ b̄2))) in 69 different ways.

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

Switch rule can be applied to a ∨ b ∨ (ā ∧ b̄) in 27 different ways, and

to a1 ∨ b1 ∨ (ā1 ∧ b̄1 ∧ (a2 ∨ b2 ∨ (ā2 ∧ b̄2))) in 69 different ways.

Deep inference causes redundant nondeterminism.

University of Birmingham, School of Computer Science - 15 December 2006 , p.4

System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

University of Birmingham, School of Computer Science - 15 December 2006 , p.5

System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

◮ BV structures:

S ::= ◦ | a | [S , . . . , S
︸ ︷︷ ︸

>0

] | (S , . . . , S
︸ ︷︷ ︸

>0

) | 〈S ; . . . ; S
︸ ︷︷ ︸

>0

〉 | S̄

University of Birmingham, School of Computer Science - 15 December 2006 , p.5

System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

◮ BV structures:

S ::= ◦ | a | [S , . . . , S
︸ ︷︷ ︸

>0

] | (S , . . . , S
︸ ︷︷ ︸

>0

) | 〈S ; . . . ; S
︸ ︷︷ ︸

>0

〉 | S̄

[(ā, b̄), a, b] corresponds to ((a⊥ � b⊥) O a O b)

University of Birmingham, School of Computer Science - 15 December 2006 , p.5

System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

◮ BV structures:

S ::= ◦ | a | [S , . . . , S
︸ ︷︷ ︸

>0

] | (S , . . . , S
︸ ︷︷ ︸

>0

) | 〈S ; . . . ; S
︸ ︷︷ ︸

>0

〉 | S̄

[(ā, b̄), a, b] corresponds to ((a⊥ � b⊥) O a O b)

◮ Structures are considered equivalent modulo an equational theory.

University of Birmingham, School of Computer Science - 15 December 2006 , p.5

Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U]] = [[R ,T],U]

(R , (T ,U)) = ((R ,T),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉

University of Birmingham, School of Computer Science - 15 December 2006 , p.6

Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U]] = [[R ,T],U]

(R , (T ,U)) = ((R ,T),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉

Commutativity

[R ,T] = [T ,R]

(R ,T) = (T ,R)

University of Birmingham, School of Computer Science - 15 December 2006 , p.6

Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U]] = [[R ,T],U]

(R , (T ,U)) = ((R ,T),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉

Commutativity

[R ,T] = [T ,R]

(R ,T) = (T ,R)

Unit

[◦,R] = R

(◦,R) = R

〈R ; ◦〉 = R

〈◦ ;R〉 = R

University of Birmingham, School of Computer Science - 15 December 2006 , p.6

Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U]] = [[R ,T],U]

(R , (T ,U)) = ((R ,T),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉

Commutativity

[R ,T] = [T ,R]

(R ,T) = (T ,R)

Unit

[◦,R] = R

(◦,R) = R

〈R ; ◦〉 = R

〈◦ ;R〉 = R

Negation

[R ,T] = (R̄, T̄)

(R ,T) = [R̄, T̄]

〈R ;T 〉 = 〈R̄; T̄ 〉

◦̄ = ◦
¯̄
R = R

University of Birmingham, School of Computer Science - 15 December 2006 , p.6

System BV of the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

University of Birmingham, School of Computer Science - 15 December 2006 , p.7

System BV of the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

MLL

{

S{1}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

University of Birmingham, School of Computer Science - 15 December 2006 , p.7

System BV of the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

MLL

{

S{1}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

All the systems in the calculus of structures follows this scheme.

University of Birmingham, School of Computer Science - 15 December 2006 , p.7

Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

University of Birmingham, School of Computer Science - 15 December 2006 , p.8

Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

KSg







S{tt}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S{ff}
w↓

S{R}

S [R ,R]
c↓

S{R}

[Brünnler,CSL’03]

University of Birmingham, School of Computer Science - 15 December 2006 , p.8

Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), ā, b̄] in 12 different ways:

([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s

[(ā, b̄), a, b]

University of Birmingham, School of Computer Science - 15 December 2006 , p.9

Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), ā, b̄] in 12 different ways:

([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s

[(ā, b̄), a, b]

Observation: Switch rule breaks the “interaction” between atoms.

S([R, W], T)
s
S [(R, T), W]

University of Birmingham, School of Computer Science - 15 December 2006 , p.9

Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), ā, b̄] in 12 different ways:

([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s

[(ā, b̄), a, b]

Observation: Switch rule breaks the “interaction” between atoms.

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

Definition: System BVsl is the system {ai↓, lis, q↓}.

University of Birmingham, School of Computer Science - 15 December 2006 , p.9

Lazy Interaction Switch

Consider:

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R, W], T)
s
S [(R, T), W]

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Lazy Interaction Switch

Consider:

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R, W], T)
s
S [(R, T), W]

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Lazy Interaction Switch

Consider:

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule lis can be applied in 14 different ways.

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Lazy Interaction Switch

Consider:
[b, ([a, ā], b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {a} 6= ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Lazy Interaction Switch

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē], f̄)])])]

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule lis can be applied in 14 different ways.

{e} ∩ {e} 6= ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Lazy Interaction Switch

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē], f̄)])])]

[b, a, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.10

Reducing Nondeterminism

◦
ai↓

[b, b̄]
ai↓

[([a, ā] , b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

([a, ā] , [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

([a, ā] , [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

University of Birmingham, School of Computer Science - 15 December 2006 , p.11

Reducing Nondeterminism

◦
ai↓

[b, b̄]
ai↓

[([a, ā] , b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

([a, ā] , [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

([a, ā] , [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b]

In system {s, ai↓} in the proof search space of [(ā, b̄), a, b], there are 358
derivations including these 6 proofs, and no other proofs.

University of Birmingham, School of Computer Science - 15 December 2006 , p.11

Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.12

Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]

Corollary: Systems {ai↓, s} and {ai↓, lis} are equivalent. [LPAR’06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.12

Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]

Corollary: Systems {ai↓, s} and {ai↓, lis} are equivalent. [LPAR’06]

Theorem: The cut rule is admissible for system BVsl. [Tech.Rep.06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.12

Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]

Corollary: Systems {ai↓, s} and {ai↓, lis} are equivalent. [LPAR’06]

Theorem: The cut rule is admissible for system BVsl. [Tech.Rep.06]

Theorem: System BV is NP-Complete. [WOLLIC’06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.12

Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S〈[R ,U]; [T ,V]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

KSg







S{tt}
ai↓

S [a, ā]

S([R ,U],T)
s
S [(R ,T),U]

S{ff}
w↓

S{R}

S [R ,R]
c↓

S{R}

[Brünnler,CSL’03]

University of Birmingham, School of Computer Science - 15 December 2006 , p.13

Reducing Nondeterminism in Classical Logic System KSg

Theorem: A structure R has a proof in KSg iff

R ′′

{ s,ai↓}

R ′
{w↓}

R

{ c↓}

[tt, tt] = tt
(ff, ff) = ff

University of Birmingham, School of Computer Science - 15 December 2006 , p.14

Reducing Nondeterminism in Classical Logic System KSg

Theorem: A structure R has a proof in KSg iff

R ′′

{ s,ai↓}

R ′
{w↓}

R

{ c↓}

[tt, tt] = tt
(ff, ff) = ff

Definition: System KSgi is the system resulting from replacing the
switch rule in system KSg with the lazy interaction switch rule.

University of Birmingham, School of Computer Science - 15 December 2006 , p.14

Reducing Nondeterminism in Classical Logic System KSg

Theorem: A structure R has a proof in KSg iff

R ′′

{ s,ai↓}

R ′
{w↓}

R

{ c↓}

[tt, tt] = tt
(ff, ff) = ff

Definition: System KSgi is the system resulting from replacing the
switch rule in system KSg with the lazy interaction switch rule.

Theorem: Systems KSg and KSgi are equivalent. [LPAR’06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.14

Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

University of Birmingham, School of Computer Science - 15 December 2006 , p.15

Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

◮ Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R, T), W] → ([R, W], T) if at R ∩ at W 6= ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.15

Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

◮ Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R, T), W] → ([R, W], T) if at R ∩ at W 6= ∅

◮ Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).

University of Birmingham, School of Computer Science - 15 December 2006 , p.15

Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

◮ Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R, T), W] → ([R, W], T) if at R ∩ at W 6= ∅

◮ Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).

◮ Maude has a built-in breadth-first search function.

University of Birmingham, School of Computer Science - 15 December 2006 , p.15

Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

◮ Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R, T), W] → ([R, W], T) if at R ∩ at W 6= ∅

◮ Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).

◮ Maude has a built-in breadth-first search function.

◮ Systems of the calculus of structures can be easily implemented by
resorting to the simple high level language of Maude.
[ESSLLI’04,ISCIS’04]

University of Birmingham, School of Computer Science - 15 December 2006 , p.15

Example: Maude Module for System BV

mod BV is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [prec 50] .

op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e : -> Atom .

var R T U V : Structure . var A : Atom .

rl [ai-down] : [A , - A] => o .

rl [s] : [{ R , T } , U] => { [R , U] , T } .

rl [q-down] : [< R ; T > , < U ; V >] => < [R,U] ; [T,V] > .

endm

University of Birmingham, School of Computer Science - 15 December 2006 , p.16

Automated Proof Search

1. [a, b, (ā, b̄, [a, b, (ā, b̄)])]

2. [a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

Query System # states
explored

finds a proof
in # ms (cpu)

1. {s, ai↓} 1041 100
{lis, ai↓} 264 0

2. {s, ai↓} – –
{lis, ai↓} 6595 1370

University of Birmingham, School of Computer Science - 15 December 2006 , p.17

Lazy Interaction Switch Revisited

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē], f̄)])])]

[b, a, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.18

Lazy Interaction Switch Revisited

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē], f̄)])])]

[b, a, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

S([R , W], T)
lis

S [(R , T), W]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅

The condition of the rule must be performed for 42 such substructures.

This is expensive in proof search.

University of Birmingham, School of Computer Science - 15 December 2006 , p.18

Deep Inference vs. Deepest Inference
Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.

University of Birmingham, School of Computer Science - 15 December 2006 , p.19

Deep Inference vs. Deepest Inference
Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.

◮ Sequent calculus (shallow inference) is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

University of Birmingham, School of Computer Science - 15 December 2006 , p.19

Deep Inference vs. Deepest Inference
Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.

◮ Sequent calculus (shallow inference) is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

◮ Deep inference is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

University of Birmingham, School of Computer Science - 15 December 2006 , p.19

Deep Inference vs. Deepest Inference
Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.

◮ Sequent calculus (shallow inference) is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

◮ Deep inference is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

. Is there a plausible notion of ”deepest inference” that is complete?

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

University of Birmingham, School of Computer Science - 15 December 2006 , p.19

Deepest Switch

Definition: A instance of the switch rule

S([R, W], T)
s
S [(R, T), W]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2].

University of Birmingham, School of Computer Science - 15 December 2006 , p.20

Deepest Switch

Definition: A instance of the switch rule

S([R, W], T)
s
S [(R, T), W]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2].

Example:
[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

University of Birmingham, School of Computer Science - 15 December 2006 , p.20

Deepest Switch

Definition: A instance of the switch rule

S([R, W], T)
s
S [(R, T), W]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2].

Example:
[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

Proposition: Switch rule can be replaced with the rule deep switch in
system KSg without losing completeness.

University of Birmingham, School of Computer Science - 15 December 2006 , p.20

Deepest Switch

Definition: A instance of the switch rule

S([R, W], T)
s
S [(R, T), W]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2].

Example:
[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄)])])]

Proposition: Switch rule can be replaced with the rule deep switch in
system KSg without losing completeness.

Proposition: Every proof in system {ai↓, s} can be transformed to a
proof in {ai↓, ds} in linear time.

University of Birmingham, School of Computer Science - 15 December 2006 , p.20

Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

University of Birmingham, School of Computer Science - 15 December 2006 , p.21

Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

University of Birmingham, School of Computer Science - 15 December 2006 , p.21

Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

Further Questions:

◮ Proof complexity analysis for the developed techniques.

University of Birmingham, School of Computer Science - 15 December 2006 , p.21

Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

Further Questions:

◮ Proof complexity analysis for the developed techniques.

◮ Extending and implementing the techniques to other systems for
other logics, e.g., LL, Modal Logics, NEL.

University of Birmingham, School of Computer Science - 15 December 2006 , p.21

Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

Further Questions:

◮ Proof complexity analysis for the developed techniques.

◮ Extending and implementing the techniques to other systems for
other logics, e.g., LL, Modal Logics, NEL.

◮ Providing a confluent deductive system for MLL for structures
consisting of pairwise distinct atoms. [Guerrini, 1999]

University of Birmingham, School of Computer Science - 15 December 2006 , p.21

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

◮ Deep inference systems can implemented as term rewriting systems
modulo equality.

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

◮ Deep inference systems can implemented as term rewriting systems
modulo equality.

◮ Maude modules and papers are available for download at
http://www.iccl.tu-dresden.de~/ozan/maude cos.html

GRAPE: http://grape.sourceforge.net/

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

◮ Deep inference systems can implemented as term rewriting systems
modulo equality.

◮ Maude modules and papers are available for download at
http://www.iccl.tu-dresden.de~/ozan/maude cos.html

GRAPE: http://grape.sourceforge.net/
◮ TOM/Java implementation available at the TOM distribution:

http://tom.loria.fr

http://tom.loria.fr/examples/structures/BV.html

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

◮ Deep inference systems can implemented as term rewriting systems
modulo equality.

◮ Maude modules and papers are available for download at
http://www.iccl.tu-dresden.de~/ozan/maude cos.html

GRAPE: http://grape.sourceforge.net/
◮ TOM/Java implementation available at the TOM distribution:

http://tom.loria.fr

http://tom.loria.fr/examples/structures/BV.html

◮ The technique for reducing nondeterminism provides a performance
improvement in implementations.

University of Birmingham, School of Computer Science - 15 December 2006 , p.22

