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The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]
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A proof in the sequent system GS1p
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⊢ a , ā
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⊢ b , b̄

R∨
⊢ b ∨ b̄

R∧
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The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

A proof in the sequent system GS1p A proof in system KSg
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⊢ a , ā
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⊢ b , b̄

R∨
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R∧
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The Calculus of Structures

◮ generalizes the sequent calculus with deep inference. [Guglielmi, 99]

◮ Inference rules can be applied at any depth inside a formula.

A proof in the sequent system GS1p A proof in system KSg

Ax
⊢ a , ā

Ax
⊢ b , b̄

R∨
⊢ b ∨ b̄

R∧
⊢ a , ā ∧ ( b ∨ b̄ )

R∨
⊢ a∨( ā ∧ ( b ∨ b̄ ) )

;

tt↓
⊢ tt

ai↓
⊢ a ∨ ā

ai↓
⊢ a ∨ ( ā ∧ ( b ∨ b̄ ) )

Deep inference brings shorter proofs.

[Polynomial Size Deep-Inference Proofs Instead of Exponential Size Shallow-Inference Proofs, Guglielmi, 2004]
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Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].
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The resolution rule

R ∧ T

(R ∧ a) ∨ (T ∧ ā)

is derivable in the calculus of structures system for classical logic.
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Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

The resolution rule
R ∧ T

ai↓
R ∧ T ∧ (a ∨ ā)

s
R ∧ (a ∨ (T ∧ ā))

s
(R ∧ a) ∨ (T ∧ ā)

is derivable in the calculus of structures system for classical logic.

S((R ∨ U) ∧ T )
s
S((R ∧ T ) ∨ U)

S{tt}
ai↓

S(a ∨ ā)
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However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
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⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:
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(a ∨ ā) ∧ (b ∨ b̄)
s
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In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

Switch rule can be applied to a ∨ b ∨ (ā ∧ b̄) in 27 different ways, and
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However...

Consider the instance of the sequent calculus inference rule:

⊢ a, ā ⊢ b, b̄
R∧

⊢ a, b, ā ∧ b̄
⊢ a, b, ā ∧ b̄ ; a ∨ b ∨ (ā ∧ b̄)

In the calculus of structures this rule is simulated by the switch rule:

(a ∨ ā) ∧ (b ∨ b̄)
s
a ∨ (ā ∧ (b ∨ b̄))

s
a ∨ b ∨ (ā ∧ b̄)

Switch rule can be applied to a ∨ b ∨ (ā ∧ b̄) in 27 different ways, and

to a1 ∨ b1 ∨ (ā1 ∧ b̄1 ∧ (a2 ∨ b2 ∨ (ā2 ∧ b̄2))) in 69 different ways.

Deep inference causes redundant nondeterminism.
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System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P
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resembling prefix operator of process algebra: a.b.P

◮ BV structures:

S ::= ◦ | a | [ S , . . . , S
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System BV

◮ System BV: [Guglielmi,99] smallest technically nontrivial system

MLL + mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

◮ BV structures:

S ::= ◦ | a | [ S , . . . , S
︸ ︷︷ ︸

>0

] | (S , . . . , S
︸ ︷︷ ︸

>0

) | 〈S ; . . . ; S
︸ ︷︷ ︸

>0

〉 | S̄

[(ā, b̄), a, b] corresponds to ((a⊥ � b⊥) O a O b)

◮ Structures are considered equivalent modulo an equational theory.
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Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U ] ] = [[R ,T ],U ]

(R , (T ,U)) = ((R ,T ),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉
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Syntactic Equivalence of BV Structures

Associativity

[R , [T ,U ] ] = [[R ,T ],U ]

(R , (T ,U)) = ((R ,T ),U)

〈R ; 〈T ;U〉〉 = 〈〈R ;T 〉;U〉

Commutativity

[R ,T ] = [T ,R ]

(R ,T ) = (T ,R)

Unit

[◦,R ] = R

(◦,R) = R

〈R ; ◦〉 = R

〈◦ ;R〉 = R

Negation

[R ,T ] = (R̄, T̄ )

(R ,T ) = [R̄, T̄ ]

〈R ;T 〉 = 〈R̄; T̄ 〉

◦̄ = ◦
¯̄
R = R
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System BV of the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S〈[R ,U ]; [T ,V ]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]
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S([R ,U ],T )
s
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S〈[R ,U ]; [T ,V ]〉
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↓ ↓

MLL
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System BV of the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S〈[R ,U ]; [T ,V ]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

MLL

{

S{1}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

All the systems in the calculus of structures follows this scheme.
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Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]
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Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S〈[R ,U ]; [T ,V ]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓
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S{tt}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S{ff}
w↓

S{R}

S [R ,R ]
c↓

S{R}

[Brünnler,CSL’03]
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Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), ā, b̄] in 12 different ways:

([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s

[(ā, b̄), a, b]
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([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s
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Observation: Switch rule breaks the “interaction” between atoms.

S([R, W ], T )
s
S [(R, T ), W ]
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Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), ā, b̄] in 12 different ways:

([ā, a, b], b̄)
s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
s

[(ā, b̄), a, b]

Observation: Switch rule breaks the “interaction” between atoms.

S([R , W ], T )
lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

Definition: System BVsl is the system {ai↓, lis, q↓}.
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Lazy Interaction Switch

Consider:

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R, W ], T )
s
S [(R, T ), W ]
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[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R, W ], T )
s
S [(R, T ), W ]

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)
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Lazy Interaction Switch

Consider:
[b, ([a, ā], b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R , W ], T )
lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {a} 6= ∅
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Lazy Interaction Switch

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē ], f̄ )])])]

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R , W ], T )
lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

◮ The rule lis can be applied in 14 different ways.

{e} ∩ {e} 6= ∅
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Lazy Interaction Switch

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē ], f̄ )])])]

[b, a, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R , W ], T )
lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅

University of Birmingham, School of Computer Science - 15 December 2006 , p.10



Reducing Nondeterminism

◦
ai↓

[b, b̄]
ai↓

[( [a, ā] , b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b ]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[ (ā, b̄), a, b ]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b ]
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Reducing Nondeterminism

◦
ai↓

[b, b̄]
ai↓

[( [a, ā] , b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[([a, ā], b̄), b]
lis

[(ā, b̄), a, b]

◦
ai↓

[a, ā]
ai↓

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b ]

◦
ai↓

[b, b̄]
ai↓

( [a, ā] , [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[ (ā, b̄), a, b ]

◦
ai↓

[a, ā]
ai↓

([a, ā], [b, b̄])
lis

[a, (ā, [b, b̄])]
lis

[(ā, b̄), a, b ]

In system {s, ai↓} in the proof search space of [(ā, b̄), a, b], there are 358
derivations including these 6 proofs, and no other proofs.
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Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]
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Reducing Nondeterminism

Definition: System BVsl is the system {ai↓, lis, q↓}.

Theorem: Systems {ai↓, s, q↓} (BV) and BVsl are equivalent. [LPAR’06]

Corollary: Systems {ai↓, s} and {ai↓, lis} are equivalent. [LPAR’06]

Theorem: The cut rule is admissible for system BVsl. [Tech.Rep.06]

Theorem: System BV is NP-Complete. [WOLLIC’06]
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Classical Logic in the Calculus of Structures

S{◦}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S〈[R ,U ]; [T ,V ]〉
q↓

S [〈R ;T 〉, 〈U;V 〉]

↓ ↓

KSg







S{tt}
ai↓

S [a, ā]

S([R ,U ],T )
s
S [(R ,T ),U ]

S{ff}
w↓

S{R}

S [R ,R ]
c↓

S{R}

[Brünnler,CSL’03]

University of Birmingham, School of Computer Science - 15 December 2006 , p.13



Reducing Nondeterminism in Classical Logic System KSg

Theorem: A structure R has a proof in KSg iff

R ′′

{ s,ai↓}

R ′
{w↓}

R

{ c↓}

[tt, tt] = tt
(ff, ff) = ff
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Definition: System KSgi is the system resulting from replacing the
switch rule in system KSg with the lazy interaction switch rule.
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Reducing Nondeterminism in Classical Logic System KSg

Theorem: A structure R has a proof in KSg iff

R ′′

{ s,ai↓}

R ′
{w↓}

R

{ c↓}

[tt, tt] = tt
(ff, ff) = ff

Definition: System KSgi is the system resulting from replacing the
switch rule in system KSg with the lazy interaction switch rule.

Theorem: Systems KSg and KSgi are equivalent. [LPAR’06]

University of Birmingham, School of Computer Science - 15 December 2006 , p.14



Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]
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Implementation in Maude

◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
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◮ Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Hölldobler, TR-04]

◮ Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R, T ), W ] → ([R, W ], T ) if at R ∩ at W 6= ∅

◮ Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).

◮ Maude has a built-in breadth-first search function.

◮ Systems of the calculus of structures can be easily implemented by
resorting to the simple high level language of Maude.
[ESSLLI’04,ISCIS’04]
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Example: Maude Module for System BV

mod BV is

sorts Atom Unit Structure .

subsort Atom < Structure .

subsort Unit < Structure .

op o : -> Unit .

op -_ : Atom -> Atom [ prec 50 ] .

op [_,_] : Structure Structure -> Structure [assoc comm id: o] .

op {_,_} : Structure Structure -> Structure [assoc comm id: o] .

op <_;_> : Structure Structure -> Structure [assoc id: o] .

ops a b c d e : -> Atom .

var R T U V : Structure . var A : Atom .

rl [ai-down] : [ A , - A ] => o .

rl [s] : [ { R , T } , U ] => { [ R , U ] , T } .

rl [q-down] : [ < R ; T > , < U ; V > ] => < [R,U] ; [T,V] > .

endm
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Automated Proof Search

1. [a, b, (ā, b̄, [a, b, (ā, b̄)])]

2. [a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

Query System # states
explored

finds a proof
in # ms (cpu)

1. {s, ai↓} 1041 100
{lis, ai↓} 264 0

2. {s, ai↓} – –
{lis, ai↓} 6595 1370
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Lazy Interaction Switch Revisited

Consider:
[a, b, (ā, b̄, [c , d , (c̄, d̄ , [f , ([e, ē ], f̄ )])])]

[b, a, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

S([R , W ], T )
lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅
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lis

S [(R , T ), W ]
if at R̄ ∩ at W 6= ∅

◮ The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

◮ The rule lis can be applied in 14 different ways.

{a} ∩ {b̄, c , c̄, d , d̄ , e, ē, f , f̄ } = ∅

The condition of the rule must be performed for 42 such substructures.

This is expensive in proof search.
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Deep Inference vs. Deepest Inference
Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.
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◮ Deep inference is complete.
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◮ Sequent calculus (shallow inference) is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

◮ Deep inference is complete.

[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ )])])]

. Is there a plausible notion of ”deepest inference” that is complete?
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Deepest Switch

Definition: A instance of the switch rule

S([R, W ], T )
s
S [(R, T ), W ]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2 ].
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Definition: A instance of the switch rule

S([R, W ], T )
s
S [(R, T ), W ]

is an instance of deep switch (ds) if R 6= (R1, R2) and W 6= [W1, W2 ].

Example:
[a, b, (ā, b̄, [c , d , (c̄ , d̄ , [e, f , (ē, f̄ ) ])])]

Proposition: Switch rule can be replaced with the rule deep switch in
system KSg without losing completeness.

Proposition: Every proof in system {ai↓, s} can be transformed to a
proof in {ai↓, ds} in linear time.

University of Birmingham, School of Computer Science - 15 December 2006 , p.20
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provides further reduction in nondeterminism.
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Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

Further Questions:

◮ Proof complexity analysis for the developed techniques.

◮ Extending and implementing the techniques to other systems for
other logics, e.g., LL, Modal Logics, NEL.

◮ Providing a confluent deductive system for MLL for structures
consisting of pairwise distinct atoms. [Guerrini, 1999]
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Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.
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Summary

◮ Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

◮ By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

◮ This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

◮ Deep inference systems can implemented as term rewriting systems
modulo equality.

◮ Maude modules and papers are available for download at
http://www.iccl.tu-dresden.de~/ozan/maude cos.html

GRAPE: http://grape.sourceforge.net/
◮ TOM/Java implementation available at the TOM distribution:

http://tom.loria.fr

http://tom.loria.fr/examples/structures/BV.html

◮ The technique for reducing nondeterminism provides a performance
improvement in implementations.
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