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Deep inference brings shorter proofs.

[Polynomial Size Deep-Inference Proofs Instead of Exponential Size Shallow-Inference Proofs, Guglielmi, 2004]
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Deep Inference and Resolution

Cut-free sequent calculus does not polynomially simulate popular proof
procedures such as resolution, e.g., [Beame, Pitassi,98].

The resolution rule
RAT

N AT A VD)
"RA(av (T A3)
*(RAa)Vv(TA3)

is derivable in the calculus of structures system for classical logic.

S(RVU)AT) o S{t}
*S(RAT)VU) W Seva)
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However...

Consider the instance of the sequent calculus inference rule:

Faa Fbb

— _ RA FabaAb ~ aVv bV (anb)
Fab,aNb

In the calculus of structures this rule is simulated by the switch rule:

Switch rule can be applied to aV bV (3 A b) in 27 different ways, and
toa; VbV (51 A\ [_31 A\ (32 V by V (52 A\ 52))) in 69 different ways.

Deep inference causes redundant nondeterminism.
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» System BV: [Guglielmi,99] smallest technically nontrivial system

MLL 4+ mix + mix0 + a non-commutative self-dual operator

resembling prefix operator of process algebra: a.b.P

» BV structures:
Su=olal|[S,...,S]](S,...,8)|(5;...;S)| S
—— ——

>0 >0 >0

[(3,b),a,b] correspondsto ((a- ® b*) 9 a® b)

> Structures are considered equivalent modulo an equational theory.
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Syntactic Equivalence of BV Structures

Associativity

Commutativity
[R? [Tv U]] = [[Rv T]? U]

[R, T]=[T,R]
(R.(T,U)) = ((R, T),U) (R, T)=(T.R)
(R(T;U)) = (R T); U)
[ :;lt_ Negation
(O’R): [ i(_ _) o=o
(Rio) =R D= Rog
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(0;R)=R
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System BV of the Calculus of Structures

i 5{o} 55([R7U]’T) q S([R,U]; [T, V])
S[a.a]  S[(R,T) U] S[(R; T), (U V)]
! !
. S{1} S([R, U], T)
MEL { NSea SSIRT.U]

All the systems in the calculus of structures follows this scheme.



Classical Logic in the Calculus of Structures

S{e} S([R, UL, T) S([R, UL [T, V])

Slaa CSIRTLUL TSR, (U V)]



Classical Logic in the Calculus of Structures

N 5{0} SS([R, U],T)
S|a, 3] S[(R, T), U]
! !
LS SR ULT)
Sa, 3] S[(R, T), U]
KSg
S{f) S[R, R]
SRy S(R)

[Briinnler,CSL'03]

S([R, UL [T, V])

VSR T), (U V)]



Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), 3, b] in 12 different ways:

 ([3.2.6],b)  1(3,5],b). 3]  1(3.b,a). b]
[(3,5), a, b] [(3,5), a, b] [(3,5), , b]



Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), 3, b] in 12 different ways:

(3.2.5).5) _L((2.11.5) ] [(,b.2). 4]
[(3, b), a, b] [(3,b), a, b]
Observation: Switch rule breaks the “interaction” between atoms.

S([R, W], T)
*S[(R, T), W]



Reducing Nondeterminism

In BV, the rule s can be applied to [(a, b), 3, b] in 12 different ways:
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Definition: System BVsl is the system {ail, lis,q }.
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Lazy Interaction Switch

Consider:

[aa b7 (57 ) )
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_S([R, W], T)

ISW if atRﬂatW#@

» The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

» The rule lis can be applied in 14 different ways.

{a} N {b,c,c,d.d.eef f} =0
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Reducing Nondeterminism

o

L " Il o 0]
T IEEADY) " a3l [6,5D)
.31, 5 = 1([2,31,5). 2 = ([,31,5). 5

[(3, b), a, b] [(3, b), a, b] [(3,b), a, b]

'8l U
a 5 " (.31, 65D " (31, [b.B)
o, [B,BD)] 0.3, [0,5D)] 12,3, [6,BD)]
[.5)..b] *1G.5). 2. 5] [3.5).2.b]

In system {s,ai]} in the proof search space of [(3, b), a, b], there are 358
derivations including these 6 proofs, and no other proofs.
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Definition: System BVsl is the system {ail, lis,ql }.

Theorem: Systems {ail,s,ql} (BV) and BVsl are equivalent. [LPAR'06]
Corollary:  Systems {ai|,s} and {ail, lis} are equivalent. [LPAR'06]
Theorem: The cut rule is admissible for system BVsl. [Tech.Rep.06]

Theorem: System BV is NP-Complete. [WOLLIC'06]
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W{s,ail}
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I {wl} [t ] =t
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Il {cl} (f. ) =
R

Definition: System KSgi is the system resulting from replacing the
switch rule in system KSg with the lazy interaction switch rule.

Theorem: Systems KSg and KSgi are equivalent. [LPAR'06]



Implementation in Maude

» Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Holldobler, TR-04]



Implementation in Maude

» Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Holldobler, TR-04]

> Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R,T),W] — ([R,W],T) if atRnatW # 0



Implementation in Maude

» Systems in the calculus of structures can be expressed as term

rewriting systems modulo equational theories.
[K, Holldobler, TR-04]

> Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R,T),W] — ([R,W],T) if atRnatW # 0

» Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).



Implementation in Maude

» Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Holldobler, TR-04]

> Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

[(R,T),W] — ([R,W],T) if atRnatW # 0

» Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).

» Maude has a built-in breadth-first search function.



Implementation in Maude

> Systems in the calculus of structures can be expressed as term
rewriting systems modulo equational theories.
[K, Holldobler, TR-04]

> Inference rules can be expressed as (conditional) rewrite rules,
modulo equality. For instance, the rule lis becomes

(R, T),W] = ([R,W], T) if atRnNnatW # 0
» Language Maude allows implementing term rewriting systems
modulo associativity, commutativity and unit(s).
» Maude has a built-in breadth-first search function.

» Systems of the calculus of structures can be easily implemented by
resorting to the simple high level language of Maude.
[ESSLLI'04,ISCIS’04]



Example: Maude Module for System BV

mod BV is
sorts Atom Unit Structure .
subsort Atom < Structure .
subsort Unit < Structure .

op o : —-> Unit .
op -_ : Atom -> Atom [ prec 50 ]
op [_,_] : Structure Structure -> Structure [assoc comm id:
op {_,_} : Structure Structure -> Structure [assoc comm id:
op <_;_> : Structure Structure -> Structure [assoc id: o]
ops abcde : -> Atom .
var R T U V : Structure . var A : Atom .
rl [ai-down] [A, -A] => o0 .
rl [s] :[{R, T}, U] ={[R,U],T}.
rl [gq-down] [<R;T>,<U;V>]=>< [R,U] ; [T,V] > .

endm

o]
o]



Automated Proof Search

N
[e. £ (& )]

Query| System # states | finds a proof
explored | in # ms (cpu)
1. {s,ail} 1041 100
{lis, ail } 264 0
2. {s,ail} - -
{lis, ail } 6595 1370
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Lazy Interaction Switch Revisited

Consider: _ _ -
[a,b,(3, b, [c,d,(c,d,[f,([e&]. F)])])]
[b,a,(3,b,[c,d,(c,d, e f, (& )])]]

_S([RoW],T) .
ISW if atRnNatW # 0

» The rule s can be applied to this structure in 42 different ways.
(In system KSg, in 111 different ways.)

» The rule lis can be applied in 14 different ways.

{a} N {b,c,¢,d,d,e, & f,f} =0
The condition of the rule must be performed for 42 such substructures.

This is expensive in proof search.
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Deep Inference vs. Deepest Inference

Idea: When we restrict the application of the inference rules to the
deepest redexes, we are restricted to the smaller substructures.

> Sequent calculus (shallow inference) is complete.
[a,b,(3,b,[c,d,(c,d, e f, (& )]]]
» Deep inference is complete.
[a,b,(3,b,[c,d,(c,d, e f, (& )]]]
Is there a plausible notion of " deepest inference” that is complete?

[a, b, (3, b, [c,d,(c,d, e f, (& )]
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Deepest Switch

Definition: A instance of the switch rule

S([R, W], T)
*S[(R, T), W]

is an instance of deep switch (ds) if R # (R, R2) and W # [Wy, Wh].
Example: _ _ _

[a,b, (3, b, [c,d, (T, d, [e, f,(& F)])])]
Proposition: Switch rule can be replaced with the rule deep switch in

system KSg without losing completeness.

Proposition: Every proof in system {ai|,s} can be transformed to a
proof in {ai],ds} in linear time.
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Deepest Lazy Interaction Switch?

Integrating the ideas from deep switch and lazy interaction switch
provides further reduction in nondeterminism.

Theorem: We can replace the switch rule with the deep lazy interaction
switch rule without losing completeness.

Further Questions:
» Proof complexity analysis for the developed techniques.

» Extending and implementing the techniques to other systems for
other logics, e.g., LL, Modal Logics, NEL.

» Providing a confluent deductive system for MLL for structures
consisting of pairwise distinct atoms. [Guerrini, 1999]
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Summary

>

Systems with deep inference bring shorter proofs but also greater
nondeterminism in proof search.

By means of a new general purely proof theoretical technique, this
nondeterminism can be reduced.

This technique can be used as a proof theoretic tool while proving
properties of deductive systems, e.g., system BV is NP-Complete.

Deep inference systems can implemented as term rewriting systems
modulo equality.

» Maude modules and papers are available for download at
http://www.iccl.tu-dresden.de”/ozan/maude _cos.html
GRAPE: http://grape.sourceforge.net/

» TOM/Java implementation available at the TOM distribution:
http://tom.loria.fr
http://tom.loria.fr/examples/structures/BV.html

The technique for reducing nondeterminism provides a performance
improvement in implementations.



