The Cut tree of the Brownian Continuum Random Tree and the Reverse Problem

Minmin Wang
Joint work with Nicolas Broutin

Université de Pierre et Marie Curie, Paris, France

24 June 2014

Motivation

Introduction to the Brownian CRT

- Let T_{n} be a uniform tree of n vertices.

Motivation

Introduction to the Brownian CRT

- Let T_{n} be a uniform tree of n vertices.
- Let each edge have length $1 / \sqrt{n} \rightsquigarrow$ metric space
- Put mass $1 / n$ at each vertex \rightsquigarrow uniform distribution
- Denote by $\frac{1}{\sqrt{n}} T_{n}$ the obtained metric measure space.

Motivation

Introduction to the Brownian CRT

- Let T_{n} be a uniform tree of n vertices.
- Let each edge have length $1 / \sqrt{n} \rightsquigarrow$ metric space
- Put mass $1 / n$ at each vertex \rightsquigarrow uniform distribution
- Denote by $\frac{1}{\sqrt{n}} T_{n}$ the obtained metric measure space.
- Aldous ('91):

$$
\frac{1}{\sqrt{n}} T_{n} \Longrightarrow \mathcal{T}, \quad n \rightarrow \infty
$$

where \mathcal{T} is the Brownian CRT (Continuum Random Tree).

Motivation

Brownian CRT seen from Brownian excursion

Let B^{e} be the normalized Brownian excursion. Then \mathcal{T} is encoded by $2 B^{e}$.

Motivation

Brownian CRT

\mathcal{T} is

- a (random) compact metric space such that $\forall u, v \in \mathcal{T}, \exists$ unique geodesic $\llbracket u, v \rrbracket$ between u and v;
- equipped with a probability measure μ (mass measure), concentrated on the leaves;
- equipped with a σ-finite measure ℓ (length measure) such that $\ell(\llbracket u, v \rrbracket)=$ distance between u and v.

Motivation

Aldous-Pitman's fragmentation process

Let \mathcal{P} be a Poisson point process on $[0, \infty) \times \mathcal{T}$ of intensity $d t \otimes \ell(d x)$.

- $\mathcal{P}_{t}:=\{x \in \mathcal{T}: \exists s \leq t$ such that $(s, x) \in \mathcal{P}\}$.
- If $v \in \mathcal{T}$, let $\mathcal{T}_{v}(t)$ be the connected component of $\mathcal{T} \backslash \mathcal{P}_{t}$ containing v.

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

$$
S_{k}^{\prime}
$$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} V_{k+1}$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} V_{k+1}$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} V_{k+1}$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} V_{k+1}$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} \quad V_{k+1}$

$$
S_{k+1}
$$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by $V_{1}, \cdots, V_{k} V_{k+1}$

$$
S_{k} \subset S_{k+1}
$$

Motivation

Cut tree of the Brownian CRT

Equip S_{k} with a distance d such that

$$
d\left(\text { root }, V_{i}\right)=\int_{0}^{\infty} \mu_{i}(t) d t:=L_{i}
$$

with $\mu_{i}(t):=\mu\left(\mathcal{T}_{V_{i}}(t)\right)$.

Motivation

Cut tree of the Brownian CRT

Note that $S_{k} \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T})=\overline{U S_{k}}$.

Motivation

Cut tree of the Brownian CRT

Note that $S_{k} \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T})=\overline{\cup S_{k}}$. Bertoin \& Miermont, 2012

$$
\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}
$$

Motivation

Cut tree of the Brownian CRT

Note that $S_{k} \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T})=\overline{\cup S_{k}}$. Bertoin \& Miermont, 2012

$$
\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}
$$

Question: given $\operatorname{cut}(\mathcal{T})$, can we recover \mathcal{T} ?

Motivation

Cut tree of the Brownian CRT

Note that $S_{k} \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T})=\overline{\cup S_{k}}$. Bertoin \& Miermont, 2012

$$
\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}
$$

Question: given $\operatorname{cut}(\mathcal{T})$, can we recover \mathcal{T} ? Not completely.

Motivation

Cut tree of the Brownian CRT

Note that $S_{k} \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T})=\overline{\cup S_{k}}$.
Bertoin \& Miermont, 2012

$$
\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}
$$

Question: given $\operatorname{cut}(\mathcal{T})$, can we recover \mathcal{T} ? Not completely.
Theorem (Broutin \& W., 2014)
Let \mathcal{H} be the Brownian CRT. Almost surely, there exist $\operatorname{shuff}(\mathcal{H})$ such that

$$
(\operatorname{shuff}(\mathcal{H}), \mathcal{H}) \stackrel{d}{=}(\mathcal{T}, \operatorname{cut}(\mathcal{T}))
$$

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cutting down uniform tree

A uniform tree T_{n}

Related discrete model

Cut tree of T_{n}

For $v \in T_{n}$,
let $L_{n}(v):=\mathrm{nb}$. of picks affecting the size of the connected component containing v.

Then, $L_{n}(v)=n b$. of vertices between the root and $v \operatorname{in} \operatorname{cut}\left(T_{n}\right)$.
$L_{n} \rightsquigarrow$ distance on T_{n}

$$
\operatorname{cut}\left(T_{n}\right)
$$

Related discrete model

Convergence of cut trees

- Meir \& Moon, Panholzer, etc if V_{n} is uniform on T_{n}, then $L_{n}\left(V_{n}\right) / \sqrt{n} \Longrightarrow$ Rayleigh distribution (of density $x e^{-x^{2} / 2}$)

Related discrete model

Convergence of cut trees

- Meir \& Moon, Panholzer, etc if V_{n} is uniform on T_{n}, then $L_{n}\left(V_{n}\right) / \sqrt{n} \Longrightarrow$ Rayleigh distribution (of density $x e^{-x^{2} / 2}$)
- Broutin \& W., 2013

$$
\begin{equation*}
\operatorname{cut}\left(T_{n}\right) \stackrel{d}{=} T_{n} \tag{Eq1}
\end{equation*}
$$

Related discrete model

Convergence of cut trees

- Meir \& Moon, Panholzer, etc if V_{n} is uniform on T_{n}, then $L_{n}\left(V_{n}\right) / \sqrt{n} \Longrightarrow$ Rayleigh distribution (of density $x e^{-x^{2} / 2}$)
- Broutin \& W., $2013 \quad \operatorname{cut}\left(T_{n}\right) \stackrel{d}{=} T_{n}$
(Eq 1)
- Broutin \& W., 2013

$$
\begin{equation*}
\left(\frac{1}{\sqrt{n}} T_{n}, \frac{1}{\sqrt{n}} \operatorname{cut}\left(T_{n}\right)\right) \Longrightarrow(\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \rightarrow \infty \tag{Eq2}
\end{equation*}
$$

Related discrete model

Convergence of cut trees

- Meir \& Moon, Panholzer, etc if V_{n} is uniform on T_{n}, then $L_{n}\left(V_{n}\right) / \sqrt{n} \Longrightarrow$ Rayleigh distribution (of density $x e^{-x^{2} / 2}$)
- Broutin \& W., $2013 \quad \operatorname{cut}\left(T_{n}\right) \stackrel{d}{=} T_{n}$
- Broutin \& W., 2013

$$
\begin{equation*}
\left(\frac{1}{\sqrt{n}} T_{n}, \frac{1}{\sqrt{n}} \operatorname{cut}\left(T_{n}\right)\right) \Longrightarrow(\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \rightarrow \infty \tag{Eq2}
\end{equation*}
$$

- (Eq 1) and (Eq 2) entail that $\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}$

Related discrete model

Convergence of cut trees

- Meir \& Moon, Panholzer, etc if V_{n} is uniform on T_{n}, then

$$
L_{n}\left(V_{n}\right) / \sqrt{n} \Longrightarrow \text { Rayleigh distribution (of density } x e^{-x^{2} / 2} \text {) }
$$

- Broutin \& W., $2013 \quad \operatorname{cut}\left(T_{n}\right) \stackrel{d}{=} T_{n}$
- Broutin \& W., 2013

$$
\begin{equation*}
\left(\frac{1}{\sqrt{n}} T_{n}, \frac{1}{\sqrt{n}} \operatorname{cut}\left(T_{n}\right)\right) \Longrightarrow(\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \rightarrow \infty \tag{Eq2}
\end{equation*}
$$

- (Eq 1) and (Eq 2) entail that $\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}$

$$
\begin{equation*}
\frac{1}{\sqrt{n}} L_{n}\left(V_{n}\right) \stackrel{(\mathrm{Eq} 2)}{\Longrightarrow} L(V) \stackrel{d}{=} d_{\mathcal{T}}(\text { root }, V), \quad \text { by } \mathrm{Eq}(3) \tag{Eq3}
\end{equation*}
$$

Related discrete model

Reverse transformation

From $\operatorname{cut}\left(T_{n}\right)$ to T_{n}

A uniform tree T_{n}

Related discrete model

Reverse transformation

From $\operatorname{cut}\left(T_{n}\right)$ to $T_{n}:$ destroy all the edges $\operatorname{in} \operatorname{cut}\left(T_{n}\right)$

A uniform tree T_{n}

Related discrete model

Reverse transformation

From $\operatorname{cut}\left(T_{n}\right)$ to T_{n} : replace them with the edges in T_{n}

A uniform tree T_{n}

Related discrete model

Reverse transformation

From $\operatorname{cut}\left(T_{n}\right)$ to T_{n} : or equivalently...

A uniform tree T_{n}

Construction of $\operatorname{shuff}(\mathcal{H})$

$\operatorname{Br}(\mathcal{H})=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$. For each $n \geq 1$, sample A_{n} below x_{n} according to the mass measure μ.

$$
\mathcal{H}=\text { Brownian CRT }
$$

Construction of $\operatorname{shuff}(\mathcal{H})$

$\operatorname{Br}(\mathcal{H})=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$. For each $n \geq 1$, sample A_{n} below x_{n} according to the mass measure μ.

$$
\mathcal{H}=\text { Brownian CRT }
$$

Construction of $\operatorname{shuff}(\mathcal{H})$

$\operatorname{Br}(\mathcal{H})=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$. For each $n \geq 1$, sample A_{n} below x_{n} according to the mass measure μ.

$$
\mathcal{H}=\text { Brownian CRT }
$$

Construction of $\operatorname{shuff}(\mathcal{H})$

$\operatorname{Br}(\mathcal{H})=\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$. For each $n \geq 1$, sample A_{n} below x_{n} according to the mass measure μ.

$$
\mathcal{H}=\text { Brownian CRT }
$$

Construction of $\operatorname{shuff}(\mathcal{H})$

- Almost surely, the transformation converges as $n \rightarrow \infty$. Denote by $\operatorname{shuff}(\mathcal{H})$ the limit tree.
- $\operatorname{shuff}(\mathcal{H})$ does not depend on the order of the sequence $\left(x_{n}\right)$
- It satisfies

$$
(\operatorname{shuff}(\mathcal{H}), \mathcal{H}) \stackrel{d}{=}(\mathcal{T}, \operatorname{cut}(\mathcal{T}))
$$

Thank you!

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

$$
S_{k}^{\prime}
$$

Motivation

Genealogy of Aldous-Pitman's fragmentation

Let V_{1}, V_{2}, \cdots be independent leaves picked from μ.
subtree of \mathcal{T} spanned by V_{1}, \cdots, V_{k}

$$
S_{k}^{\prime}
$$

