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Motivation
Introduction to the Brownian CRT

I Let Tn be a uniform tree of n vertices.

I Let each edge have length 1/
√
n  metric space

I Put mass 1/n at each vertex  uniform distribution
I Denote by 1√

n
Tn the obtained metric measure space.

I Aldous (’91):
1√
n
Tn =⇒ T , n→∞,

where T is the Brownian CRT (Continuum Random Tree).
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Motivation
Brownian CRT seen from Brownian excursion

Let Be be the normalized Brownian excursion. Then T is encoded
by 2Be .
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Motivation
Brownian CRT

T is

I a (random) compact metric space such that ∀u, v ∈ T , ∃
unique geodesic Ju, vK between u and v ;

I equipped with a probability measure µ (mass measure),
concentrated on the leaves;

I equipped with a σ-finite measure ` (length measure) such that
`(Ju, vK) = distance between u and v .



Motivation
Aldous–Pitman’s fragmentation process

Let P be a Poisson point process on [0,∞)× T of intensity
dt ⊗ `(dx).

I Pt := {x ∈ T : ∃ s ≤ t such that (s, x) ∈ P}.
I If v ∈ T , let Tv (t) be the connected component of T \ Pt

containing v .
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Genealogy of Aldous-Pitman’s fragmentation

Let V1,V2, · · · be independent leaves picked from µ.
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Motivation
Cut tree of the Brownian CRT

Equip Sk with a distance d such that

d(root,Vi ) =

∫ ∞

0
µi (t)dt := Li ,

with µi (t) := µ(TVi
(t)).

0

t
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t2

t3

V2

V1

V3 V4

Sk

∫ t1
0 µi(s)ds

i = 1, 2, 3, 4

∫∞
t1
µ2(t)dt
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Motivation
Cut tree of the Brownian CRT

Note that Sk ⊂ Sk+1 (as metric space). Let cut(T ) = ∪Sk .

Bertoin & Miermont, 2012

cut(T )
d
= T .

Question: given cut(T ), can we recover T ? Not completely.

Theorem (Broutin & W., 2014)

Let H be the Brownian CRT. Almost surely, there exist shuff(H)
such that

(shuff(H),H)
d
= (T , cut(T )).
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Related discrete model
Cut tree of Tn

For v ∈ Tn,

let Ln(v) := nb. of picks affecting the
size of the connected component
containing v .

Then, Ln(v) = nb. of vertices between
the root and v in cut(Tn).

Ln  distance on Tn

B1

cut(Tn)

V2 V3

V1

B2

1
2
3



Related discrete model
Convergence of cut trees

I Meir & Moon, Panholzer, etc if Vn is uniform on Tn, then

Ln(Vn)/
√
n =⇒ Rayleigh distribution (of density xe−x

2/2)

I Broutin & W., 2013 cut(Tn)
d
= Tn (Eq 1)

I Broutin & W., 2013

( 1√
n
Tn,

1√
n

cut(Tn)
)

=⇒
(
T , cut(T )

)
, n→∞. (Eq 2)

I (Eq 1) and (Eq 2) entail that cut(T )
d
= T (Eq 3)

I
1√
n
Ln(Vn)

(Eq 2)
=⇒ L(V )

d
= dT (root,V ), by Eq (3)
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Related discrete model
Reverse transformation
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Related discrete model
Reverse transformation
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Related discrete model
Reverse transformation

From cut(Tn) to Tn: or equivalently...
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Construction of shuff(H)

Br(H) = {x1, x2, x3, · · · }. For each n ≥ 1, sample An below xn
according to the mass measure µ.

H = Brownian CRT

xn

H
r
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Construction of shuff(H)

I Almost surely, the transformation converges as n→∞.
Denote by shuff(H) the limit tree.

I shuff(H) does not depend on the order of the sequence (xn)

I It satisfies
(shuff(H),H)

d
= (T , cut(T )).



Thank you!
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