The Cut tree of the Brownian Continuum Random Tree and the Reverse Problem

Minmin Wang

Joint work with Nicolas Broutin

Université de Pierre et Marie Curie, Paris, France

24 June 2014

Introduction to the Brownian CRT

• Let T_n be a uniform tree of n vertices.

Introduction to the Brownian CRT

• Let T_n be a uniform tree of n vertices.

- Let each edge have length $1/\sqrt{n} \longrightarrow metric space$
- Put mass 1/n at each vertex \rightsquigarrow uniform distribution
- Denote by $\frac{1}{\sqrt{n}}T_n$ the obtained metric measure space.

Introduction to the Brownian CRT

• Let T_n be a uniform tree of n vertices.

- Let each edge have length $1/\sqrt{n} \longrightarrow metric space$
- Put mass 1/n at each vertex \rightsquigarrow uniform distribution
- Denote by $\frac{1}{\sqrt{n}}T_n$ the obtained metric measure space.

Aldous ('91):

$$\frac{1}{\sqrt{n}}T_n \Longrightarrow \mathcal{T}, \quad n \to \infty,$$

where \mathcal{T} is the Brownian CRT (*Continuum Random Tree*).

Brownian CRT seen from Brownian excursion

Let B^e be the normalized Brownian excursion. Then \mathcal{T} is encoded by $2B^e$.

Motivation Brownian CRT

 ${\mathcal T}$ is

- a (random) compact metric space such that ∀u, v ∈ T, ∃
 unique geodesic [[u, v]] between u and v;
- equipped with a probability measure µ (mass measure), concentrated on the leaves;
- equipped with a σ -finite measure ℓ (length measure) such that $\ell(\llbracket u, v \rrbracket) =$ distance between u and v.

Aldous-Pitman's fragmentation process

Let \mathcal{P} be a Poisson point process on $[0,\infty) \times \mathcal{T}$ of intensity $dt \otimes \ell(dx)$.

- $\mathcal{P}_t := \{x \in \mathcal{T} : \exists s \leq t \text{ such that } (s, x) \in \mathcal{P}\}.$
- If v ∈ T, let T_v(t) be the connected component of T \ P_t containing v.

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Equip S_k with a distance d such that

$$d(\operatorname{root}, V_i) = \int_0^\infty \mu_i(t) dt := L_i,$$

with $\mu_i(t) := \mu(\mathcal{T}_{V_i}(t)).$

Cut tree of the Brownian CRT

Note that $S_k \subset S_{k+1}$ (as metric space). Let $\operatorname{cut}(\mathcal{T}) = \overline{\cup S_k}$.

Note that $S_k \subset S_{k+1}$ (as metric space). Let $cut(\mathcal{T}) = \overline{\cup S_k}$. Bertoin & Miermont, 2012

$$\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}.$$

Note that $S_k \subset S_{k+1}$ (as metric space). Let $cut(\mathcal{T}) = \overline{\cup S_k}$. Bertoin & Miermont, 2012

$$\mathsf{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}.$$

Question: given $cut(\mathcal{T})$, can we recover \mathcal{T} ?

Note that $S_k \subset S_{k+1}$ (as metric space). Let $cut(\mathcal{T}) = \overline{\cup S_k}$. Bertoin & Miermont, 2012

$$\mathsf{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}.$$

Question: given $cut(\mathcal{T})$, can we recover \mathcal{T} ? Not completely. \bigcirc

Note that $S_k \subset S_{k+1}$ (as metric space). Let $cut(\mathcal{T}) = \overline{\cup S_k}$. Bertoin & Miermont, 2012

$$\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}.$$

Question: given $cut(\mathcal{T})$, can we recover \mathcal{T} ? Not completely. Theorem (Broutin & W., 2014) Let \mathcal{H} be the Brownian CRT. Almost surely, there exist shuff(\mathcal{H}) such that

$$(\mathsf{shuff}(\mathcal{H}),\mathcal{H}) \stackrel{d}{=} (\mathcal{T},\mathsf{cut}(\mathcal{T})).$$

Cutting down uniform tree

Cutting down uniform tree

Cutting down uniform tree

Cutting down uniform tree

Cutting down uniform tree

Cutting down uniform tree

For $v \in T_n$,

let $L_n(v) :=$ nb. of picks affecting the size of the connected component containing v.

Then, $L_n(v) = nb$. of vertices between the root and v in cut (T_n) .

 $L_n \rightsquigarrow \text{distance on } T_n$

 $\operatorname{cut}(T_n)$

Convergence of cut trees

• Meir & Moon, Panholzer, etc if V_n is uniform on T_n , then

 $L_n(V_n)/\sqrt{n} \implies$ Rayleigh distribution (of density $xe^{-x^2/2}$)

Convergence of cut trees

• Meir & Moon, Panholzer, etc if V_n is uniform on T_n , then

 $L_n(V_n)/\sqrt{n} \implies$ Rayleigh distribution (of density $xe^{-x^2/2}$)

• Broutin & W., 2013
$$\operatorname{cut}(T_n) \stackrel{d}{=} T_n$$
 (Eq 1)

Convergence of cut trees

• Meir & Moon, Panholzer, etc if V_n is uniform on T_n , then

 $L_n(V_n)/\sqrt{n} \implies$ Rayleigh distribution (of density $xe^{-x^2/2}$)

- **•** Broutin & W., 2013 $\operatorname{cut}(T_n) \stackrel{d}{=} T_n$ (Eq 1)
- Broutin & W., 2013

$$\left(\frac{1}{\sqrt{n}}T_n, \frac{1}{\sqrt{n}}\operatorname{cut}(T_n)\right) \Longrightarrow (\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \to \infty.$$
 (Eq 2)

Convergence of cut trees

• Meir & Moon, Panholzer, etc if V_n is uniform on T_n , then

 $L_n(V_n)/\sqrt{n} \implies$ Rayleigh distribution (of density $xe^{-x^2/2}$)

- **Broutin & W.**, 2013 $\operatorname{cut}(T_n) \stackrel{d}{=} T_n$ (Eq 1)
- Broutin & W., 2013

$$\left(\frac{1}{\sqrt{n}}T_n, \frac{1}{\sqrt{n}}\operatorname{cut}(T_n)\right) \Longrightarrow (\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \to \infty.$$
 (Eq 2)

► (Eq 1) and (Eq 2) entail that $\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}$ (Eq 3)

Convergence of cut trees

• Meir & Moon, Panholzer, etc if V_n is uniform on T_n , then

 $L_n(V_n)/\sqrt{n} \implies$ Rayleigh distribution (of density $xe^{-x^2/2}$)

- **Broutin & W.**, 2013 $\operatorname{cut}(T_n) \stackrel{d}{=} T_n$ (Eq 1)
- Broutin & W., 2013

$$\left(\frac{1}{\sqrt{n}}T_n, \frac{1}{\sqrt{n}}\operatorname{cut}(T_n)\right) \Longrightarrow (\mathcal{T}, \operatorname{cut}(\mathcal{T})), \quad n \to \infty.$$
 (Eq 2)

► (Eq 1) and (Eq 2) entail that $\operatorname{cut}(\mathcal{T}) \stackrel{d}{=} \mathcal{T}$ (Eq 3) ► $\frac{1}{\sqrt{n}} L_n(V_n) \stackrel{(\text{Eq 2})}{\Longrightarrow} L(V) \stackrel{d}{=} d_{\mathcal{T}}(\operatorname{root}, V), \text{ by Eq (3)}$

Reverse transformation

From $cut(T_n)$ to T_n

 B_2

Reverse transformation

From $cut(T_n)$ to T_n : destroy all the edges in $cut(T_n)$

Reverse transformation

From $cut(T_n)$ to T_n : replace them with the edges in T_n

Reverse transformation

From $cut(T_n)$ to T_n : or equivalently...

Br(\mathcal{H}) = { x_1, x_2, x_3, \dots }. For each $n \ge 1$, sample A_n below x_n according to the mass measure μ .

 $\mathcal{H} = Brownian CRT$ \mathcal{H} x_n

Br(\mathcal{H}) = { x_1, x_2, x_3, \dots }. For each $n \ge 1$, sample A_n below x_n according to the mass measure μ .

 $\mathcal{H} = Brownian CRT$ \mathcal{H} x_n

Br(\mathcal{H}) = { x_1, x_2, x_3, \dots }. For each $n \ge 1$, sample A_n below x_n according to the mass measure μ .

Br(\mathcal{H}) = { x_1, x_2, x_3, \dots }. For each $n \ge 1$, sample A_n below x_n according to the mass measure μ .

- ► Almost surely, the transformation converges as n → ∞. Denote by shuff(H) the limit tree.
- shuff(\mathcal{H}) does not depend on the order of the sequence (x_n)
- It satisfies

$$(\operatorname{shuff}(\mathcal{H}),\mathcal{H}) \stackrel{d}{=} (\mathcal{T},\operatorname{cut}(\mathcal{T})).$$

Thank you!

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

Genealogy of Aldous-Pitman's fragmentation

Let V_1, V_2, \cdots be independent leaves picked from μ .

