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Abstract

Given a monomial ideal I in the polynomial ring S = k[x1, . . . , xn] over a field k, we construct
a minimal free resolution for S/I. We give an introduction to Gröbner bases in order to prove
Hilbert’s Syzygy Theorem, which we use to resolve simple ideals, then by developing the study
of free resolutions to that of cellular resolutions we construct Taylor’s resolution and show by
Hilbert’s Syzygy Theorem that this is often non-minimal, giving some discussion to minimal
resolutions.

1 Introduction

Let I be an ideal in a polynomial ring S = k[x1, . . . , xn], where k is any field. Our objective is
to minimally resolve the quotient ring S/I, and in order to do so we first prove that such a finite
free resolution exists for all ideals, the result of Hilbert’s Syzygy Theorem. The first definition we
provide to allow us to reach and prove this statement is that of a Gröbner basis, which we compute
using Buchberger’s algorithm. We apply Gröbner basis theory to syzygy modules, which are of
interest to us as the relationship between a syzygy module and its generators can be encoded in
a finite free resolution, and at this point we are in a position to state and prove Hilbert’s Syzygy
Theorem.

If our monomial ideal admits a Gröbner basis with relatively few elements and lies in a ring of
only a few variables, then computing its syzygy module and its generators to obtain a free resolution
is fairly straightforward, as we will show via application of Hilbert’s Syzygy Theorem. However,
we want to be able to construct a minimal free resolution for more complicated ideals, and in order
to do this we look at cellular resolutions, which also give us a way to encode geometrically the
information in a free resolution. We give particular attention to Taylor’s resolution, as this is an
example of a cellular resolution which we can compute for any monomial ideal. In some cases,
Taylor’s resolution is a minimal resolution and so at this point we have successfully resolved the
quotient ring.

Our motivation for resolving the quotient ring lies in the fact that there is a wealth of algebraic
and combinatorial information for S/I contained in its minimal free resolution. We do not include
discussion of these properties, but simply highlight them once we have resolved the quotient ring
to give an indication of the usefulness of what we have constructed.
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2 Construction of a Gröbner Basis

Our fist step towards being able to minimally resolve S/I is to prove that a finite free resolution
exists for the ideal we are studying. A crucial structure in being able to create such a resolution
and prove its existence is that of a Gröbner basis, which we consider as a preferred generating set
for an ideal, Cox, Little and O’Shea [CLO, Chapter 2].

Definition 2.1. Given a fixed monomial ordering and an ideal I = 〈f1, . . . fs〉, a Gröbner basis
G = {g1, . . . , gt} for I, is a subset of I such that 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉, where LT(gi) is
defined to be the leading term in gi and 〈LT(I)〉 is the ideal generated by the leading terms of all
the elements in I.

Our study of Gröbner bases will focus on how they can be used in the construction of finite free
resolutions. They can also be applied in elimination theory to find the implicit equations that cut
out a variety or the solutions of a set of polynomial equations. As a generating set they are also
useful in determining whether a given polynomial lies in an ideal, [CLO, Chapter 3 ].

The first thing we must familiarise ourselves with before we can compute a Gröbner basis is the
definition of a monomial ordering. A monomial ordering is defined to be a relation which is a linear
ordering, preserves inequalities and is also a well ordering on Zn≥0, [CLO, Chapter 2]. We will give
examples of three commonly used monomial orderings, and of note in the following example is that
the leading term in the polynomial is different in the case that different monomial orderings are
used. This is not always the case, but it does mean that when computing a Gröbner basis, which
is a potentially lengthy algorithmic procedure, it is crucial that we stick with the same monomial
ordering throughout the computation.

Example 2.2. Let m1 = x4y3z7,m2 = x4y5z2 and m3 = x2y7z5 be monomials in the polynomial
ring S = Q[x, y, z] such that f = m1 + m2 + m3. To find the leading term in f , we must fix a
monomial ordering to obtain an ordering of m1,m2 and m3.

(i) Lexicographic Order
By considering the exponents of the monomials as vectors, vm1 = (4, 3, 7),vm2 = (4, 5, 2) and vm3 =
(2, 7, 5), we are able to compute the vector differences:

vm2 − vm1 = (0, 2,−5)

vm2 − vm3 = (2,−2,−3)

vm1 − vm3 = (2,−4, 2).

The monomials’ order is determined such that mi >lex mj if and only if the left most com-
ponent in the vector difference is positive. Hence m2 >lex m1 >lex m3 and m2 is the leading
term in f .

(ii) Graded Lexicographic Order
Graded orderings require first that we consider the total degree of the monomials:

|vm1 | = 14

|vm2 | = 11

|vm1 | = 14.
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Clearly m1 >grlex m2 and m3 >grlex m2. To distinguish between monomials of the same total
degree we use lexicographic order; it is now m1 which is the leading term in f .

(iii) Graded Reverse Lexicographic Order
Again we are interested in the total degree of the monomials, but in this case those of equal
degree are ordered by considering the right most component in the vector difference, with
mi >grevlex mj if it is negative. So we consider vm3 − vm1 = (−2, 4,−2) and conclude that
m3 >grevlex m1 >grevlex m2; the monomial m3 is the leading term in f with respect to grevlex
order.

The key definition that we must give before we examine the algorithm used to construct a Gröbner
basis is that of an S-polynomial1. Let LCM(LM(f),LM(g)) be the least common multiple of the
leading monomials2 of f and g. Then for any pair of polynomials f, g ∈ S, the S-polynomial is

S(f, g) =
LCM(LM(f),LM(g))

LT(f)
.f − LCM(LM(f),LM(g))

LT(g)
.g.

Gröbner bases were first proposed by Bruno Buchberger in his PhD thesis, [BB], in which he
shows how a finite generating set for a polynomial ideal can be computed algorithmically using
S-polynomials and a version of the division algorithm. The first step in Buchberger’s algorithm is
to define the set G of polynomials with which we are working. If I = 〈f1, . . . fs〉 is the ideal of
S for which we want to compute the Gröbner basis, define G = (f1, . . . fs). The next step is to
compute the S-polynomials for every pair of polynomials in G with respect to a fixed monomial
ordering. By developing the familiar division algorithm from the polynomial ring in one variable
S′ = k[x] to define division over S = k[x1, . . . xn] it is possible to divide each S-polynomial by all
the polynomials in G, expressing them as S(fi, fj) = a1f1 + · · ·+ asfs + r where a1, . . . , as, r ∈ S,
[CLO, Chapter 2]. If it is the case that every S-polynomial has zero remainder after undergoing
the division algorithm, then G is a Gröbner basis for I. If this is not the case, then G is redefined
to include those S-polynomials that have non-zero remainder, and the algorithm is repeated until
all S-polynomials have zero remainder. This application of the division algorithm ensures that all
elements in the ideal can be generated by elements in the basis; in this case we check that the
S-polynomials, given elements of the ideal, can be generated by the basis we have defined. The
Ascending Chain Condition ensures us that this algorithm must terminate, stating that for every
chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · there is some N ∈ N such that IN = IN+1 = IN+2 = · · · , [CLO,
Chapter 2].

Although there are adjustments that can be made to make the algorithm more efficient, it can
still be necessary to compute a great number of S-polynomials at each stage, and so Gröbner bases
can be time consuming to compute manually. The Macaulay 2 software developed by Grayson and
Stillman [GS] can be used to quickly generate Gröbner bases. The basis generated by Macaulay 2
is a reduced Gröbner basis, defined as a Gröbner basis in which the coefficient of the leading term
is equal to one for all gi ∈ G and moreover, that no monomial of gi lies in the monomial ideal
〈LT(G − {gi})〉. An ideal may have infinitely many Gröbner bases, depending on the characteristic

1The ‘S’ in S-polynomials stands for syzygy, which we will explore in Section 3, it is not related to the polynomial
ring S.

2The leading monomial is the leading term in the polynomial expression with the coefficient set to one.

3



of the field k. The reduced Gröbner basis is unique to a given ideal I, and therefore allows one to
make comparisons between ideals, because two ideals are equal if and only if their reduced Gröbner
bases are equal, [CLO, Chapter 2]. The following example demonstrates the steps of Buchberger’s
algorithm.

Example 2.3. Let I = 〈x4 + y + y2z, x3y3z2, xy2z3 + x2z〉 be an ideal in a polynomial ring
S = Q[x, y, z]. Set G = (f1, f2, f3) with f1 = x4 + y + y2z, f2 = x3y3z2 and f3 = xy2z3 + x2z.

1. Select the leading terms with respect to a chosen monomial ordering. With respect to grevlex
ordering, LT(f1) = x4,LT(f2) = x3y3z2 and LT(f3) = xy2z3.

2. Compute the S-polynomials for each pair of polynomials:

S(f1, f2) =
x4y3z2

x4
(x4 + y + y2z)− x4y3z2

x3y3z2
(x3y3z2)

= y4z2 + y5z3

S(f2, f3) =
x3y3z3

x3y3z2
(x3y3z2)− x3y3z3

xy2z3
(xy2z3 + x2z)

= −x4yz

S(f3, f1) =
x4y2z3

xy2z3
(xy2z3 + x2z)− x4y2z3

x4
(x4 + y + y2z)

= x5z − y3z3 − y4z4.

3. If the remainder of every S-polynomial on division by the elements of G is zero, then we have
computed a Gröbner basis. We see that G = (x4 + y + y2z, x3y3z2, xy2z3 + x2z) is not a
Gröbner basis for I as there are no a1, . . . , a3 ∈ S such that

LT(S(f1, f2)) = −y5z3 = a1 LT(f1) + a2 LT(f2) + a3 LT(f3).

4. We must perform another step of the algorithm, redefining G to include the S-polynomials
with non-zero remainder on division by G. When all remainders are zero we have arrived at
a Gröbner basis. To generate a Gröbner basis using Macaulay 2, define the polynomial ring,
the chosen monomial ordering and the ideal to produce the reduced Gröbner basis

G = {xyz, x2z, y2z2 + yz, x4 + y2z + y}.

3 Syzygy Modules

In the course of our proof of Hilbert’s Syzygy Theorem in Section 4, we compute the Gröbner
basis of a syzygy module. This section defines the first syzygy module and looks at how its Gröbner
basis can be computed.
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A module M , over a ring S, or an S-module, is an abelian group together with an action of S
on M such that for all si ∈ S,mi ∈M :

(i) s1(m1 +m2) = s1m1 + s1m2;

(ii) (s1 + s2)m1 = s1m1 + s2m1;

(iii) s1(s2m1) = (s1s2)m1;

(iv) 1(m) = m.

A free module is a module which has a basis. Ideals and quotient rings provide familiar examples
of modules over S = k[x1, . . . , xn], and we focus on these in later sections.

Free resolutions build sequences by considering the relationship between generators of a module,
and this information is held in the syzygy module.

Definition 3.1. Let F = (f1 . . . , ft) be the ordered t-tuple of elements such that f1, . . . ft ∈ M .
The first syzygy module of F , Syz(f1, . . . , ft), is the set of relations (a1, . . . , at)

T ∈ St on F such
that a1f1 + · · ·+ atft = 0.

As implied by its name, the first syzygy module is itself an S-module, and so we can compute the
second syzygy module by considering the set of relations on the elements of the first syzygy module
and so on. In order to see how we can form a Gröbner basis for a syzygy module, we consider
Schreyer’s Theorem [CLO2, Chapter 5].

Theorem 3.2. [Schreyer’s Theorem] Let G = (g1, . . . , gs) be a Gröbner basis of a module with
respect to any monomial ordering. Define a column vector aij ∈ Ss for each S-polynomial S(gi, gj)
by setting

S(gi, gj) =

s∑
k=1

aijkgk.

Let Ss be a free S-module of rank s with standard basis vectors e1, . . . , es. For each i, j ∈ {1, . . . , s}
define an element sij ∈ S by setting

sij :=
LCM(LM(gi),LM(gj))

LT(gi)
.ei −

LCM(LM(gi),LM(gj))

LT(gj)
.ej − aij .

The elements sij for all pairs of polynomials in G form a Gröbner basis for Syz(g1, . . . , gs).

An understanding of Schreyer’s Theorem will be central to proving Hilbert’s Syzygy Theorem,
showing as it does how we can manipulate the S-polynomials of a Gröbner basis in order to compute
its syzygy module.
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4 Hilbert’s Syzygy Theorem

The main result of this section is the construction of a finite free resolution for any finitely
generated S-module. Before we can define this object, we say that a sequence of S-modules

· · · −→Mi+1
ψi+1−→Mi

ψi−→Mi−1 −→ · · ·

is exact at Mi if and only if im(ψi+1) = ker(ψi). The sequence is exact if it is exact at every Mi

in the sequence. Our interest lies in a particular kind of exact sequence.

Definition 4.1. A finite free resolution of an ideal I, with length ` is an exact sequence of the
form

0 −→ F`
ψ`−→F`−1 −→ · · · −→ F1

ψ1−→F0 −→ I −→ 0 (4.1)

where each Fi is a free module of rank ri and where F` 6= 0.

Our aim is to find a minimal free resolution for a quotient ring. The condition of exactness allows
us to achieve this by finding a minimal resolution for an ideal. Consider the short exact sequence
0 −→ I −→ S −→ S/I −→ 0. By ‘splicing’ this sequence with the finite free resolution defined in
4.1, we are able to consider the finite free resolution

0 −→ F`
ψ`−→F`−1 −→ · · · −→ F1

ψ1−→F0 −→ S −→ S/I −→ 0.

in which the free modules Fi are unchanged.

Having defined modules and free resolutions and looked at the computation of generating sets,
we are now able to state and prove Hilbert’s Syzygy Theorem3.

Theorem 4.2. [Hilbert’s Syzygy Theorem] Let S = k[x1, . . . , xn]. Every finitely generated S-module
has a finite free resolution of length at most n.

Proof. Let M be a finitely generated S-module. Choose a generating set (f1, . . . , fr0) for M .
Calculate the first syzygy module on this set of generators using the method of Schreyer’s Theorem,
and compute a Gröbner basis G0 = {g1, . . . , gr1} for Syz(f1, . . . , fr0).

We now begin to construct our exact sequence. This choice of r0 generators of M allows us to
define a map ψ : F0 → M , where F0 is a free S-module of rank r0, in which each standard basis
vector ei for i ∈ {1, . . . , r0} is mapped to fi ∈ M . This map is surjective and we can therefore
construct the exact sequence

F0
ψ−→M −→ 0.

Now if we consider the homomorphism ψ as a map sending (g1, . . . , gro) ∈ F0 to
∑r0

i=1 gifi ∈M , we
see that its kernel is the tuple (g1 . . . , gro) such that

∑r0
i=1 gifi = 0. This is precisely the definition

of the syzygy module of the generating set (f1 . . . , fr0), hence we can conclude that

Syz(f1, . . . , fr0) = ker(ψ : F0 →M).

3For more detailed explanation of aspects of the theory of free resolutions used in this proof, see Chapter 6 of
[CLO2].
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Recall that the first syzygy module is itself an S-module, so choosing set of generators for the
module Syz(f1, . . . , fr0) allows us to obtain a sequence

F1
ψ1−→F0 −→M −→ 0

which gives a presentation of M .
Define a monomial ordering on the elements of G0 such that if LT(gi) and LT(gj) contain the

same standard basis vector ek, and i < j, then LM(gi)
ek

>lex
LM(gj)

ek
where >lex is the lexicographic

order on the variables of S, and order the elements of G accordingly to obtain the vector G0. We
now compute a Gröbner basis G1 for the module Syz(G0) and obtain an exact sequence of the form

F2
ψ2−→F1

ψ1−→F0 −→M −→ 0.

This process is iterated, and as it can be shown that the ordering we have defined allows us to
remove at least one variable from the leading terms of each consecutive syzygy module [CLO2,
Lemma 2.2, Chapter 6], the length of the sequence can be at most the number of variables in the
polynomial ring. Hence after ` ≤ n steps we obtain the exact sequence

F`
ψ`−→F`−1 −→ · · · −→ F1

ψ1−→F0 −→M −→ 0

where the leading terms in the Gröbner basis for F` do not contain any variables, and hence
F`+1 = 0.

Finally we can extend this exact sequence to an exact sequence of length ` by considering ψ` as
the inclusion mapping, leading to the free resolution

0 −→ F`
ψ`−→F`−1 −→ · · · −→ F1

ψ1−→F0 −→M −→ 0.

To complete this section, we will give an example of the construction of a finite free resolution
for an ideal.

Example 4.3. Let I = 〈x2y, xyz3, yz2, xy2〉 be a monomial ideal in S = Q[x, y, z]. First, determine
the Gröbner basis of I, G0 = (yz2, xy2, x2y).

We now calculate the set of relations on G0, the column vectors aij such that aij1(yz
2) +

aij2(xy
2) + aij3(x

2y) = 0, and use them to construct the 3× 3 monomial matrix

ψ1 =

 xy x2 0
−z2 0 x

0 −z2 −y

 .
We next construct the monomial matrix ψ2 which relates the elements of the Gröbner basis G1 ⊆ F1

to F2. As the sequence is exact we must have ψ1.ψ2 = 0. Hence we see that

ψ2 =

−xy
−z2

 .
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This information is represented in the free resolution

0 −→ F2


−x
y
−z2


−→ F1


xy x2 0
−z2 0 x

0 −z2 −y


−→ F0 −→ I −→ 0

which has length ` = 2 ≤ n = 3, as guaranteed by Hilbert’s Syzygy Theorem.

5 Cellular Resolutions

Having established that finite free resolutions exist for all finitely generated modules, we give some
consideration to how they can be geometrically interpreted, and then examine how this method can
be developed in order to construct free resolutions quickly for ideals where the method of applying
Schreyer’s Theorem to syzygy modules becomes overly lengthy. We concentrate on monomial ideals
from this point, defined as any ideal generated by monomials.

Before we can construct this geometric object and define the resolution it provides us with, a
few more general definitions are required. A cell complex is a collection of cells which can be built
from a set of discrete points. By joining the points to each other by one dimensional lines and
connecting these lines with two dimensional faces, and so on in higher dimensions, a complex of
cells is constructed. In the case that these cells are simplices, then the cell complex is infact a
simplicial complex. The cell complexes with which we are concerned have the property that the
sequence of free modules which they encode are exact. Such complexes are said to be acyclic.

Definition 5.1. Let X be a finite acyclic cell complex. A cellular resolution of X is the finite
resolution of free S-modules represented by the cellular monomial matrices which support X.

Our first example shows how we construct a cellular resolution for the ideal given in Example
4.3.

Example 5.2. Let I = 〈x2y, xyz3, yz2, xy2〉 be a monomial ideal in S = Q[x, y, z]. In order to
construct the cellular resolution we first define the vertices in the simplex ∆ to be the monomial
elements in the Gröbner basis of I. The edge between each set of points is labelled by the least
common multiple of the points, and the face of ∆ which the three edges form is labelled by the
least common multiple of the labels of the edges.

By labelling the vertices of a simplex with the monomials in an ideal, we can easily work out
what the elements of the second and third syzygy module are, and we can continue this process in
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higher dimensions to find the next syzygy modules. So S1 = (x2y2, x2yz2, xy2z2) and S2 = (x2y2z2).
From this simple object we can determine the cellular resolution

0 −→ S1
2
φ2−→S3

1
φ1−→S3

0 −→ I −→ 0 (5.1)

where the grading on the free module is determined by the number of facets in each dimension. We
can then construct the monomial matrices φ1 and φ2 in sequence 5.1 from the information encoded
in this simplex. Determine the aij such that for the matrix φ1 = {aij}3×3,

φ1 ×

yz2xy2

x2y

 = 0

Of course we find that φ1 = ψ1 as defined in Example 4.3, and by the same procedure we find
that φ2 = ψ2. We have therefore constructed a cellular resolution for I, but without having to
apply Schreyer’s Theorem in order to compute syzygy modules, as ∆ clearly shows the elements of
each free module.

The remainder of this section will deal with a particular class of examples of cellular resolutions.

Definition 5.3. Let I = 〈m1, . . . ,mr〉 be a monomial ideal in S with minimal generators. Taylor’s
resolution, is the free resolution which supports the full (r−1)-dimensional simplex whose vertices
are labeled by the monomials which generate I.

These cellular resolutions may allow us to minimally resolve an ideal in some cases, but may
lead to a non-minimal resolution in others. A minimal resolution is a cellular resolution in which no
polytopes are represented by the same monomial, Bayer and Sturmfels, [BS, Remark 1.4]. Example
5.2 demonstrates a minimal Taylor’s resolution for an ideal, however it is rare that this is the case;
Taylor’s resolution is normally non-minimal if the rank of S is much greater than the number of
variables in the polynomial ring. Example 5.4 shows why this is the case.

Example 5.4. Let I = 〈x2yz, z6, y6, xy3, x3y6〉 be a monomial ideal in S = Q[x, y, z] with minimal
generators. By definition, the Taylor’s resolution for I is a four dimensional simplicial complex ∆I .
Consider the five minimal generators of I to be the vertices of ∆I . To work out the grading on
the next free module in the resolution, consider that all of the five points must be connected to
each other by an edge, hence ∆I has

(
5
2

)
= 10 edges. We continue with this procedure and see that

∆I has ten two dimensional faces, five three dimensional faces and one four dimensional face. We
begin to produce the Taylor’s resolution

0 −→ S1
4
ψ4−→S5

3
ψ3−→S10

2
ψ2−→S10

1
ψ1−→S5

0 −→ I −→ 0.

To determine the monomial matrices, we first determine the elements of each S-module. This
is done by extending the labeling method presented in Example 5.2 to a four dimensional simplicial
complex, and thus

S0 = (x2yz, z6, y6, xy3, x3y6)

S1 = (x3y6z, x3y6, x3y6, x3y6z6, x2y3z, x2y6z, x2yz6, xy6, xy3z6, y6z6)

S2 = (xy6z6, x3y6z6, x2y6z6, x3y6z6, x2y3z6, x3y6z6, x3y6z, x3y6z, x2y6z, x3y6)

S3 = (x3y6z, x3y6z6, x3y6z6, x3y6z6, x2y6z6)

S4 = (x3y6z6).
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Recall that elements of each module are labels of distinct faces, so if the same label appears
multiple time in a module, then the resolution we are constructing is non minimal.

We can now determine the monomial matrices. Now that we are working with more elements
in each S-module, we will consider how these matrices can be construted without necessarily con-
sidering syzygy modules. We know that ψ1 is a 5 × 10 matrix, and we construct it by labelling
each row with an element aj ∈ S0 for j ∈ {1, . . . , 5} and each column with an element of bk ∈ S1
for k ∈ {1, . . . , 10}. The entries mjk in the matrix are either

(i) zero, in the case that bk is not a least common multiple of aj and some other element of S0;

(ii) non-zero, with mjk such that |aj .mjk| = bk.

Repeating this method allows us to obtain all the monomial matrices in Taylor’s resolution, and
to ensure the sequence is exact, check that ψi.ψi+1 = 0 for all i ∈ {1, 2, 3}. Hence we have that

ψ1 =


z 1 1 z 0 0 0 0 0 0
−xy5 0 0 0 y2 y5 z5 0 0 0

0 −x2y3 0 0 −xz 0 0 y3 z6 0
0 0 −x3 0 0 −x2z 0 −x 0 z6

0 0 0 −x3y6 0 0 −x2y 0 −xy3 −y6



ψ2 =



0 0 0 0 0 −z5 −1 −1 0 0
0 0 0 −z6 0 0 0 z 0 −1
0 z6 0 0 0 0 z 0 0 1
0 1 0 1 0 1 0 0 0 0
0 0 0 0 −z5 0 0 −xy3 −y3 0
0 0 z5 0 0 0 −x 0 1 0
0 0 y5 0 y2 −xy5 0 0 0 0
−z6 0 0 0 0 0 0 0 −xz −x2
y3 0 0 −x2y3 −x 0 0 0 0 0
−x −x3 −x2 0 0 0 0 0 0 0



ψ3 =



0 x2 0 0 x
0 −1 −1 0 0
0 0 x 0 −1
0 1 0 −1 0
0 0 0 xy3 y3

0 0 1 1 0
1 0 −z5 0 0
−1 0 0 −z5 0
x 0 0 0 −z5
−z −z6 0 0 0



ψ4 =


−z5

1
−1
1
−x

 .
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These matrices, together with the elements of each S-module, provide a full cellular resolution
for I. We can be sure that this resolution is non minimal as it has length ` = 4 and by Hilbert’s
Syzygy Theorem, there exists a resolution of length ` ≤ 3. There must therefore be a subcomplex
of the cellular complex supported on Taylor’s resolution which is minimal.

6 Minimally Resolving S/I

The geometric interpretation of free resolutions allows us to construct Taylor’s resolution for any
monomial ideal. As this resolution has length determined by the number of minimal generators
in the ideal, for ideals with large rank which exist in polynomial rings of only a few variables,
Taylor’s resolution is much longer than the finite free resolution with length ` ≤ n, the existence
of which is guaranteed by Hilbert’s Syzygy Theorem. Therefore, by considering a simple geometric
interpretation of the minimal generating set of an ideal, the task of minimally resolving a quotient
ring is straight forward in the cases that Taylor’s resolution is minimal. In the more likely cases
in which Talylor’s resolution is non minimal, it is not just an overly long resolution which we
encounter, but also one in which the monomial matrices become increasingly large as the resolution
gets longer.

The next step in the study of free resolutions is to consider how an ideal can be minimally
resolved. This process is different depending on the monomials in the given ideal; the method
outlined by Bayer and Sturmels in [BS] works only for generic ideals, which they define to be
monomial ideals in which no variable appears to the same degree in any two generators. In the
case that the ideal is not generic, it is necessary to deform the ideal to a generic one before a
minimal resolution can be constructed. Once such a minimal resolution has been constructed, it
is possible to obtain algebraic information about the quotient ring, including Betti numbers, Euler
characteristics and k-polynomials, as discussed in Chapter 6 of [MS].
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