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ABSTRACT

Firstly, the classification of finite subgroups of SL(2, C), a result of Felix Klein in 1884, is presented.
The polynomial invariant subrings of these groups are then found. The generators of these subrings
satisfy a polynomial relation in three variables, which can be realised as a hypersurface in C3. Each
of these surfaces have a singularity at the origin; these are the Kleinian singularities. These
singularities are blown-up, and their resolution graphs are shown to be precisely the Coxeter-
Dynkin diagrams ADE. The target readership of this project is intended to be undergraduates with
a foundational knowledge of group theory, topology and algebraic geometry.



1 Classifying the Finite Subgroups of SL(2,C)
1.1 Important Subgroups of the General Linear Group
Recall: The general linear group of a vector space V over a field F is given by

GL(V)={f:V — V| f is linear and invertible}.

In particular, we denote GL(F™) by GL(n,F). Since we can view linear maps as matrices, GL(n, F)
can also be viewed as the set of invertible n x n matrices with entries in F.

The next few definitions include important subgroups of GL(n,F).

Definition 1.1. The special linear group over F is given by
SL(n,F) = {A € GL(n,F) | det A =1}.
Definition 1.2. The orthogonal group over F is given by
O(n,F) = {A € GL(n,F) | AAT =TI}

where AT denotes the transpose of A, and I denotes the n x n identity matrix.
Note that if F = R we simply refer to O(n,R) as the orthogonal group and denote it by O(n).
Additionally, if F = C we have the unitary group, given by

U(n) = {A € GL(n,C) | AA* =1}
where A* denotes the conjugate transpose of A.

Definition 1.3. The special orthogonal group over F is given by
SO(n,F) = {A € O(n,F) | det A =1}.

Moreover, if F = R we refer to SO(n,R) as the special orthogonal group, denoted SO(n), and if
F = C we have the special unitary group, given by

SU(n) ={A € U(n) | det A=1}.

Remark 1.4. Routine calculations prove that the sets defined in Definitions 1.1-1.3 are indeed
subgroups of the general linear group under matrix multiplication.

In this project we are especially interested in SL(2,C), the set of complex 2 x 2 matrices with
determinant equal to 1.

1.2 Platonic Solids and the Finite Subgroups of SO(3)

To present the classification of finite subgroups of SL(2, C), we will make use of the classification of
finite subgroups of SO(3). The latter arises as a consequence of there existing exactly five platonic
solids. We will construct these now.



Definition 1.5. A half-space is either of the two parts into which a plane divides R3. A convex
polyhedron in R3 is the intersection of finitely many half-spaces. Loosely speaking then, a polyhe-
dron is a solid in three dimensions such that its faces are flat and its edges are straight. By convex
we mean that for any two points inside (including on the boundary of) the polyhedron, all of the
points on the line joining them are also contained inside the polyhedron.

Definition 1.6. Let P be a polyhedron. A flag of P is a triple (v, e, F') consisting of a vertex v,
an edge e and a face F' such that v is one of the endpoints of e, and e is one of the sides of F'. We
now say that P is reqular if for any two flags of P there is a symmetry (rotation or reflection) of P
mapping one to the other.

Theorem 1.7. (The Platonic Solids) Let P be a regular convex polyhedron. By the regularity
of P, each face must be a regular polygon and an equal number of them must meet at each vertex.
Suppose that the faces of P are p-gons and that ¢ faces meet at each vertex. The pair {p,q} is
then called the Schlifli symbol of P. Let v be a vertex of P. We know that at v, the total of the
angles between each pair of edges connecting to v must be less than 27. Since ¢ faces meet at v,
there are ¢ such angles and since each face is a regular p-gon, these angles are all of size m — 27 /p.
Thus we have the condition
q(m—2m/p) < 2w

which simplifies to
(p—2)(g—2) <4

Together with the natural condition that p, ¢ > 3, we have that the only integer solutions are {3,3},
{4,3}, {3,4}, {5,3}, {3,5}. These pairs identify the five platonic solids and are illustrated below.
The table below that gives the number of vertices, edges and faces of each.

Tetrahedron Octahedron Cube

Icosahedron Dodecahedron

Figure 1: The Platonic Solids [1]



Polyhedron Vertices | Edges | Faces | Schléfli symbol
Tetrahedron 4 6 4 {3,3}
Cube 8 12 6 {4,3}
Octahedron 6 12 8 {3,4}
Dodecahedron 20 30 12 {5,3}
Icosahedron 12 30 20 {3,5}

O

The classification of finite subgroups of SO(3) is now given, although the proof is not. A full
proof given from first principles and perfect for undergraduate reading can be found in [2, pp.
10-15).

We say that a pair of solids are dual if one can be constructed from the other by connecting
vertices placed at the centres of the faces of its dual. An example of this can be seen using the
cube and octahedron below.

Figure 2: Illustration of the duality of the cube and octahedron [3]

Essentially then, dual solids are solids with their faces and vertices interchanged. Due to this,
the symmetry groups of dual solids are the same.

Below is a table of the symmetry groups of the platonic solids. Note that the tetrahedron is
self-dual.

Platonic Solid Isomorphic to: | Order
Tetrahedron Ay 12
Cube and Octahedron Sy 24
Dodecahedron and Icosahedron As 60

Recall that transformations in R? that preserve orientation and distance from the origin are
precisely rotations about the origin; these are the matrices comprising SO(3).



The classification: All finite subgroups of SO(3) are isomorphic to either:

e a cyclic group Z,, order n. We can view Z,, as a cyclic group of rotations around a particular
axis. It is generated by a rotation a satisfying a™ = 1.

e a dihedral group D,,, order 2n. We can view D,, as the rotations of a prism based on a regular
n-gon. It is generated by two rotations a and b that satisfy the relations a™ = 1, b*=1, and
bab~! = a1

Figure 3: Octagonal Prism. Its rotational symmetry group is D,, n = 8. [4]

e the rotational symmetry group of a platonic solid, either:

— the tetrahedron T' =2 A4, order 12.
— the octahedron O =2 Sy, order 24.
— the icosahedron I = As, order 60.

1.3 From SL(2,C) to SO(3)

Definition 1.8. Let G be a group. We say that two subgroups H1, Hs of G are conjugate subgroups
if 3g € G such that gH g~ = Hy.

Lemma 1.9. Every finite subgroup of SL(n,C) is conjugate to a subgroup of SU(n).

Proof. Let G be a finite subgroup of SL(n,C). Denote the usual inner product on C™ by (, ) (so
(u,v) = w-v =7 u;vj). We will need a new inner product (, ) on C" that is unitary with
respect to G, i.e. (Au, Av) = (u,v) VA € G and Yu,v € C". The inner product

1
(u,v) := |G’|1§;<AU,AU>

will do. Tt is easy to check that this is an inner product on C" and the fact that AG = G VA € G
implies that it is unitary.



Now, since C™ with (, ) is a finite dimensional inner product space, there exists an orthonormal
basis B for (, ) by the Gram-Schmidt process. Let p : C* — C" be the change of basis operator
taking B to the standard basis. Then p € GL(n,C) and pGp~! is a subset of SU(n) as

(pAp~"u, pAp~'v) = (Ap~ u, Ap~ ') = (p™"u, p~'0) = (u, v)

VA € G and Yu,v € C". Moreover, pGp~! is a subgroup of SU(n) as it is the image of the
conjugation map A — pAp~! which is a homomorphism. By construction, G is conjugate to the
subgroup pGp~!. U

Remark 1.10. Lemma 1.9 tells us that in order to classify all finite subgroups of SL(2,C), it is
enough to classify all finite subgroups of SU(2) (up to conjugacy).

Lemma 1.11. There exists a natural surjective group homomorphism 7 : SU(2) — SO(3) with
kernel {£T1}.

Proof. For this proof we make use of the fact that the quaternions, denoted by H, of norm equal
to 1 can be used to describe rotations in R?, as can matrices in SO(3) (see page 4).

Recall that quaternions are of the form a+bi+cj+dk, where a,b,¢,d € Rand i2 = j2 = k? = —1
and ¢ = k. Notice that we can write a quaternion ¢ € H as ¢ = 21 + z2j, where 21 = a + bi and
29 = ¢+ di are complex numbers. Hence we have

q? = a2+ +E+d% =z + |
q = a—bi—cj—dk =z — zj.
A quaternion ¢ is invertible if and only if |q| # 0, in which case ¢~ = T;‘(j. Remember that

multiplication of quaternions is not commutative!
Recall from the definition that SU(n) = {A € U(n) | det A = 1}. In the case n = 2, we have

SU(2) = {<_Z;_2 Z) 21,2 € C |+ |22 = 1.

Thus we have a group isomorphism (a routine calculation to check)

d:SU(2) — Hy, < L "?) 5 21 + 29]
—Z22 2

where H; is the group of quaternions of norm 1 (Hj is a subgroup of H* = H\{0}. It is closed
under multiplication, has identity 1 and inverses as described above).

Now let us identify R? with the space of “pure quaternions”, i.e. quaternions of the form bi+cj+
dk. Recall that complex numbers of norm 1 can be written in the form z = € = cos(6) + isin(6).
Similarly we can write quaternions of norm 1 in the form g = e?? = cos(f) + ¢y sin(f), where ¢; is
a pure quaternion of norm 1 (for a thorough explanation of general quaternions in polar form, see
[5]). Akin to using e? to represent a rotation in the plane by @ about the origin, e?? can be used
to represent a rotation by 6 around the axis given by the unit vector ¢ in Euclidean space.

For any pure quaternion gy (vector in R?) and any ¢ € H; written in the form ¢ = el the
expression qqog~! gives the resulting vector of rotating gy by 26 around the axis ¢;. A sketch proof

of this is given in [6, pp. 20-23]. Therefore we can define the map 7 : Hy — SO(3), ¢ — qqoq},



which rotates each fixed vector gy by 26 around the axis q; as explained above. This map is clearly
a homomorphism (it is essentially just conjugation by ¢) and is surjective as any rotation in R3 can
be expressed by a unit quaternion.

To work out the kernel, suppose 7(q) = qq0q~" = qo, i-e. qqo = qoq.- Then we are looking for
quaternions of norm 1 that commute with every pure quaternion. The only ones are {1,—1}. In
terms of SU(2), this is {I,—I}.

Since SU(2) = Hj, we have that = : SU(2) — SO(3), via the isomorphism ® above, is the

1

surjective homomorphism required. O
-1 0).
Lemma 1.12. ( 0 _1> is the only element of SU(2) of degree 2.

Proof. Any element of SU(2) with degree 2 satisfies

(552 =00

This gives us the system of equations

o’ — |8 =1 (1)
af + Ba=0 (2)
—Ba—pBa=0 (3)
a’—|p* =1 (4)

Note that (1) implies o # 0 since otherwise —|3|?> = 1. Now (1) and (4) imply that o? = a? so
a = +a. Thus a = x or a = ix for some x € R\{0}. If & = iz then (1) implies (ix)% — |3 = 1 so
—22 — |32 = 1, however —2? — |B]?> < 0 so we cannot have a = iz. Hence a = z and (2) implies
that 2a8 = 0 so = 0 and finally (1) gives &« = £1. Of course a = 1 gives the identity matrix,
and a = —1 gives the degree 2 matrix that we seek. O

Lemma 1.13. Let G be a finite subgroup of SU(2) and let = be the map constructed in Lemma
1.11. Then either G is cyclic of odd order, or |G| is even and G = 7~ !(7(Q)) is the preimage of a
finite subgroup of SO(3).

Proof. First suppose |G| is odd. Then there are no elements of order 2 in G so ker(7) NG = {I}.
By the First Isomorphism Theorem, the restriction of m to G is isomorphic to its image, so by the
classification of finite subgroups of SO(3), this can only be a cyclic group of odd order.

Now suppose |G| is even. Then by Cauchy’s Theorem, G must have an element of order 2,
which is —I by Lemma 1.12. Hence ker(n) = {£I} C G, so G = 7~ !(n(G)) is the preimage of a
finite subgroup of SO(3). O

Remark 1.14. When |G] is even, ker(r) is of order 2 in G so 7 is a two-to-one surjection. A proof
of this is as follows: suppose y is an element of the codomain. By surjectivity, there exists an x
in the domain such that w(x) = y. Let e, be the identity elements of G and SO(3) respectively.
Since 7 is a homomorphism and —e € ker(rw), then n(—z) = ©(—e)nw(x) = In(x) = y, so at
least two elements in the domain map to y. If there was a third, say m(a) = y, then we have
n(z) = m(a) = n(x)m(a)™t = I = w(za™t) = I = xa™' € ker(n). We have just produced a third
element in the kernel, a contradiction.



Therefore if |7(G)| = n, then |G| = 2n. We call G a binary polyhedral group; it corresponds to
a finite subgroup of SO(3) but has order twice that of its image. This classifies finite subgroups of
SU(2), and hence SL(2,C) up to conjugation.

Theorem 1.15. (Classification of the Finite Subgroups of SL(2,C)) The classification of
the non-trivial finite subgroups of SL(2,C), up to conjugation, are precisely the binary polyhedral
groups, which are given below. Hereafter we set ¢ = exp(%).

A,: For n > 1, the cyclic group G =2 Z,,, where m = n + 1, order m, generated by

em O
0 et/

D,: For n > 4, the binary dihedral group D,,, where m = n — 2, order 4m, generated by A, B

where .
A= (5% 91), B- <‘? )
0 &5, v 0

FEs: The binary tetrahedral group T, order 24, generated by o, 7, u where

oz 0N __foi\ 1 (1
o )T o) T -

E7: The binary octahedral group O, order 48, generated by &, 7, u where

(s 0 Cf0d 1 (1
o )T P i)

Eg: The binary icosahedral group 1, order 120, generated by -, 7, 2 where

el 0 0 ¢ 1 (e5—et e2-¢&}
! < 0 51—01)’ ' <Z 0> VG (6? —&§ —es+es

Remark 1.16. i) The generators of each group can be found via the map 7, but these calculations
are skipped and only the results given here. It is worth noting however that there are other ways
of expressing the above groups using different generators.

ii) This theorem is an example of ADE Classification, which is a specific type of classification
into two infinite sets of objects indexed by the natural numbers, namely A,, for n > 1 and D,, for
n >4 (for n = 1,2,3 we have 4,, = D,,), with three sporadic cases denoted Eg, E7, Es. Why we
use these names will become apparent later.



2 (G-invariant Subrings

Now that we have classified all of the finite subgroups G of SL(2,C), we seek all of the G-invariant
polynomials in two variables over C.
To be explicit, let C[u, v] be the ring of polynomials in two variables with coefficients in C, let
G be a finite subgroup of SL(2,C) (one of A,,, D,,, Eg, E7, Eg as in Theorem 1.15) and let G act on
Clu,v]. In this chapter we want to find the set of polynomials invariant under the action of G, i.e.
the set
Clu,v]® := {f € Clu,v] | gf = f Yg € G}.

So what is the action we are interested in? We simply take the column vector (u v)T and
left-multiply it by a generator of G (we need only consider the generators - see below) to see how it
acts on u,v € Clu,v]. Observe however that u,v generate the algebra Clu,v], so by understanding
how G acts on u,v we can understand how G acts on any f € Clu, v].

This is perhaps best understood through an example. Consider the A, case, so G = Z,,, where

m=n-+1. Let g = <€m 501> be the generator of G. Then

O m
em O u\ [ Enu
0 e')\v)  \elv

0 gu = epu and gv = £, 'v. For example then, if f = u+v?+u?v3 41, we have gf = e u+e;,2v?+
etuv3 + 1. An example of an invariant polynomial is f = uv, because gf = e ue,,'v = uv = f.
Observe that we only need to check the first power of each generator. If f is invariant under a
generator g, i.e. gf = f, then it is invariant under all powers of g because ¢>f = g(gf) = gf = f,
and an induction argument can be used for greater powers. A similar proof shows that we needn’t

investigate products of distinct generators either.

Lemma 2.1. Let G be a finite subgroup of SL(2,C) with action on Clu,v] as explained above.
Then C[u,v]¢ is a subring of Clu, v].

Proof. Clearly 1 € Clu,v]®. Suppose g € G and let p, ¢ € C[u, v] be monomials, i.e. p = au v, q =
bu"v*2 where r;, t; € Z are non-negative. Then gp = a(gu™)(gv®') and gq = b(gu"?)(gv'?).

Hence g(p+q) = a(gu™)(gv"*)+b(gu")(gv*?) = gp+gq and g(pq) = a(gu™)(gv")b(gu™)(gv'?) =
ab(guT72)(gvt1T2) = gpgq, so g preserves addition and multiplication of monomials in C[u,v]. By
extension, g preserves addition and multiplication of every polynomial in Clu, v] because these are
just sums of finitely many monomials. Therefore if f, h are invariant under g we have

e g(—f)=—gf=—f
e g(f+h)=gf+gh=f+h
e g(fh) =gfgh=fh
]G

and so Clu,v]“ is a subring of Clu,v]. O



Theorem 2.2. Let G be a finite subgroup of SL(2,C). Then the G-invariant subrings C[u,v]“ are
generated by the following invariant polynomials:
Ap: fi=u™ (m=n+1)
fa=ov™

We have the relation f3" = fi fo.

Dp: f1 = uww(u®™ — 2u™v™ + 2™, (m =n — 2)
For n odd, fo = u?™ —v*™, f3 = u?0?.
.2 s
We have the relation f;” = f3f2 + 4 g”“, where f1 = f1 + 2f.
For n even, fo = u?™ — 2u™v™ + 02" f3 = uv(u?*™ — v*™).

m—+1
2

Eg: f1 = 2(u'? — 33ubv* — 33u® + v'2)
fo = ud + 1du*v? 4+ o8
f3 = uv(ut —v?)
We have the relation fZ = f;} +4f3.

Er: fi = uo(u® — 08)(u® + 0® — 34uto?)
fo = ud + 14uto* + 08
fz = (WP —uv®)?
We have the relation fZ = f3f3 — 108f3.

Eg: f1 = u®0 4+ 030 4+ 522(u?v® — vPv?) — 10005(u?0v'0 4 u!19%20)
f2 — _(u20 + ,020) + 228(U15U5 _ U5U15) _ 494U10U10
f3 = uv(ul® 4+ 11u50° — 1Y)
We have the relation f2 + f3 = 1728f3.

Proof. We only prove the A, case here. Unfortunately it is beyond the scope of this project to
reproduce the entire proof. For this, see [7, pp. 6-13].
So let G = Z,,. As explained in the example on page 9, our lone generator g = (Egl 691> acts
m
on u,v as follows: gu = ¢;,u and gv = 5;1111. Since the action of g in this case simply multiplies u
and v by a constant, a polynomial will be invariant if and only if each of its terms are invariant.
Hence, in this case, Clu, v] will be generated by monomials so we only need to consider them.
Suppose a monomial f = u%? is invariant. Then gf = g iff €% u% v = u%® iff €470 = 1 iff
m divides @ — b. Assume without loss of generality that a > b. Then since u®® = (uv)?u®? we
have that u®v® must be a product of a power of uv and «™. Similarly if b > a then we have that
b must be a product of a power of uv and v™. This shows that u™, v"™, uv generate the ring of
invariants, and so Clu, v]% = C[u™, v"™, u]. O

u®v

Remark 2.3. i) In the D,, case the relation between the invariant polynomials for n even is
omitted. This is because the ring of invariants is isomorphic to the n odd case (proof omitted) so
will not be needed for Theorem 2.4.

ii) Observe that in every case Clu,v]” is generated by 3 homogeneous (no constant term) polyno-
mials, and that there exists a relation between them. The relations F' are homogeneous polynomials
in three “variables”; using the A,, example again, we have F' = xy — 2™, where x = fi = u™, y =
fo=v", 2= f3=uwv.

]G
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Theorem 2.4. Let G be a finite subgroup of SL(2,C) and let fi, fo, f3 generate the ring of in-
variants, i.e. Clu,v]% = C[fi, fo, f3]. Let F(z,y,2) = 0 be the homogeneous polynomial relation
between fi, f2, f3 as given in Theorem 2.2. Then Clu,v]® = Clx,y, 2]/(F(z,y, 2)).

Proof. First of all note that when writing down F(x,y, z), we can scale the relation between fi, fa, f3
so that all of the coefficients are equal to 1 simply by multiplying the invariants by appropriate
constants (they will still be invariant and generate Clu, v]%). Unfortunately, only half of a proof of
the A, case can be given; the rest is beyond the scope of this project.

We have G = Z,,, Clu,v]% = Clu™,v™, w], and F(z,y,2) = xy — 2™. Let ¢ : Clz,y,2] —
Clu™,v™, uv] be the map taking z,y,z to u™,v"™, uv respectively. Clearly ¢ is a surjective ring
homomorphism. It’s also clear that the ideal generated by F, ie. (ry — 2™) is contained in the
kernel of ¢. What’s true but not so trivial is that ker(¢) C (xy—2"). Armed with this fact, we have
ker(¢) = (xy — z™) and so by the First Isomorphism Theorem, C[u,v]® = Cz,y, 2]/(zy — z™). O

The results of Theorem 2.4 are as follows:
Ay Clu,v]¢ = (C[ac y, 2]/ {zy — 2", n > 1

[
Dy: Clu,v|% = Cla,y, 2] /(x? + zp2 + 2" 1), n > 4
Eg: Clu, U]G =~ Cla,y, 2) /(22 + oy + 2%)
E7: Clu,v]C = Cla,y, 2]/ (2 + y® + yz?)
Eg: Clu,v]% = Clz,y, 2] /(2 + 4 + 2°)

The Final Goal: The last step of this journey is to take the generators of the ideals in each
of the above quotient rings above and realise them as hypersurfaces in C3. We will see that these
hypersurfaces have exactly one singularity at the origin. Our aim is to blow-up these singularities
and show that their resolution graphs (explained through example later) match those given by
Figure 4. These singularities define a special class of surface singularities called the Kleinian
singularities, named after Felix Klein (1849-1925) who first determined the classification of finite
subgroups of SL(2,C) in 1884. These singularities also go by the names of du Val singularities or
stmple surface singularities.

Figure 4: We want to show that the resolution graphs of the surfaces described above match the
Coxeter-Dynkin diagrams of type ADE [8]
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3 Blow-up

3.1 Definitions and Properties

First let us recall some definitions. Let A" and P"~! denote n-dimensional affine and projective
space respectively. The field in question will always be C, unless otherwise specified.

Definition 3.1. Suppose S C Clzy,...,zy] is a set of polynomials in n variables. The algebraic
variety, or just variety, defined by S is the locus given by

V(S)={pe A" | f(p) =0Vf e S}

Definition 3.2. The Zariski topology on affine or projective space is the topology such that al-
gebraic varieties are precisely the closed sets. We will always assume this topology on A" and
Pt

Definition 3.3. Let X € A" Y € A™ be algebraic varieties. A polynomial map ¢ : X — Y is
an isomorphism if there exists another polynomial map v : Y — X satisfying 1 o ¢ = idx and

¢ oy =idy.

Definition 3.4. Let f € Clzy,...,z,] be irreducible and nonconstant. A point p € V(f) is singular
. Of
if
81‘1’
So what exactly is blow-up? Intuitively, it’s a process whereby we “pull apart” a variety at
a singular point according to the different directions of lines through that point. An example of
this is given by Example 3.8. If the resulting variety is smooth, then we are said to have achieved
a resolution of singularities, i.e. we have smoothed the singular variety. Sometimes this process
requires several iterations of blowing-up, as we shall see later.

(p) =0Vi=1,...,n. If a variety has no singular points then we say that it is smooth.

To begin with, we will define the blow-up of the origin O = (0,...,0) € A™. Consider the
Cartesian product A" x P*~!. Denote the coordinates of A" by (z1,...,z,) and the homogeneous
coordinates of P*~! by [y : ... : y,]. Note that the closed subsets (i.e. varieties) of A" x P"~! are
defined by polynomials in z;,y; which are also homogeneous with respect to the y;.

Definition 3.5. The blow-up of A™ at the point O is the closed subset
X:V(I‘iyj—l‘jyi | 1,] = 1,...,n) Cc A" x prt

There is an important natural morphism ¢ : X — A™ obtained by simply restricting the
inclusion map from X into A" x P! to the affine part. Hereafter X and ¢ will always refer to
this variety and map.

X —5 Ar x prl

|

A’n
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Lemma 3.6. (Properties of X and ¢)

i) If O # p € A", then ¢~ !(p) consists of a single point.

Proof. We show that ¢ gives an isomorphism between X\¢~1(0O) and A™\{O}, i.e. we need to

find an inverse morphism of ¢. So let p = (z1,...,2,) € A™ with some x; # 0. If p X [y; :
.t Yn] € ¢ Y(p), then by definition of X we must have y; = %yz Vi = 1,...,n. But this

uniquely determines [y; : ... : y,] € P"" ! (up to a scalar multiple at least, so without loss of
generality we can take y; = x; Vi = 1,...,n). Hence ¢~ !(p) consists of a single point and defining
¥(p) = (z1,...,2n) X [11 1 ... : ] gives an inverse morphism of ¢, thus X\¢~1(0) = A™\{O}.

ii) o~ 1(0) =P L.
Proof. ¢~1(0) consists of all points of the form O x q, where ¢ € P"~! is subject to no constraints.

iii) The points of ¢ 1(O) are in one-to-one correspondence with the set of lines through O in A™.
Proof. Let L be a line through O in A", given parametrically by z; = a;t,i =1,...,n,t € A, a; € C
not all 0. Let L' be the line ¢ 1(L\{O}) in X\ }(O). This line is given by the equations
r; = ait,y; = at,t € AN\{O}. But since the y; are homogeneous coordinates in P*~!, we can
describe L' by x; = a;t,y; = a;, and these equations now make sense for all ¢t € Al; this gives the
closure of I’ in X. Now L/ meets ¢~ 1(O) at the point O x [a; : ... : a,] where [a1 : ... : a,] € PP L.
Hence the map sending L to [a; : ... : ay,] gives a one-to-one correspondence between lines through
O in A" and points of ¢~1(0).

iv) X is irreducible.

Proof. We have X = (X\¢1(0)) U (¢~1(0)). By i), the first piece is isomorphic to A"\{O} and
thus irreducible. As for the second piece, we know from iii) that every point of »~1(0O) is in the
closure of some subset (L’ as constructed in iii)) of X\ ~!(0). Hence X\¢~1(0) is dense in X and
thus (X\¢~1(0)) = X = X (where the latter equality comes from the fact that X is a variety).
But the closure of an irreducible set is irreducible, therefore X is irreducible. ]

Definition 3.7. If Y is an algebraic variety in A™ passing through the origin O, the blow-up of Y
at the point O is Y = (¢=1(Y\{O})) € X € A" x P"~L. To blow up any other point P € Y, we
make a linear change of coordinates sending P to O.

Example 3.8. Let Y = V(y? — 2%(x + 1)) € A2, This variety has one singularity at the origin,
which we will blow up. Let the projective coordinates of A% x P! be given by [t : u]. Then the
blow-up of (0,0) € Y is given by Y=YNX= V(zu — yt,y? — 22(x + 1)) € A% x PL,

Observe that the result looks like our curve in A2 except that the origin has been replaced by
a P!, see Figure 5. We call this P! the exceptional divisor and denote it by E.

Figure 5: Blow-up of (0,0) € Y =V (y? — 2%(z + 1)) [9]
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Recall that A% x P! is covered 1 by two affine open sets given by ¢ # 0 and u # 0, denoted U; and
U, respectively. We will look at Y in the affine chart U;. Denote this by Yt, i.e. Y} UsN Y. Then
u

we can divide our projective coordinates by ¢ and use y as an affine coordinate, and so study Y;

as if it lived in A% with coordinates (z,y,%). Therefore we have Y =V(y — 2%yt —a?(z+1)) C
U; = A®. Plugging the first equation into the second yields 2%(%)? — z%(z 4+ 1) = 0 which factors as
22 (4?2 -2 —1)=0.

We must have either 22 = 0 or (%)2 = x + 1. The first condition forces y = 0 and leaves ¥
arbitrary; this of course corresponds to E (or at least the t # 0 affine part of it). The second
condition is (%)? = z + 1. This is Y;. Observe that at Y; N E we must have (z,y) = (0,0) in this
equation. This leaves (%)2 = #£1. These two points, (z,y, %) = (0,0,%1) correspond to the slopes
of the two branches of Y at the origin. Note that with respect to Figure 5, ¢t has been set equal to

1, as opposed to dividing through by it in the above calculations. %

The surfaces we want to blow-up are defined by the polynomials generating the ideals on page
11. Here they are again for convenience:

Ay zy— 2"t =0,n>1

Dy: 2?4+ 22+ 2" 1=0,n>4

Eg: 22+ +22=0

Er 2?2+ 9> +y23 =0

Eg: 2 +9y°+2°=0
Lemma 3.9. Each of these surfaces has exactly one singularity, which can be found at the origin.

Proof. The A,, Fg and Eg cases are easy as taking the partial derivatives with respect to each
variable and setting them equal to 0 forces each variable in turn to be equal to zero, thus giving a
singularity at (0,0,0) as required.

For E, let f be the polynomlal given. Firstly 37 95 — 0 forces z = 0. Now % = 0 implies 3yz? = 0
and gjj = 0 implies 332 + 23 = 0. The only sunultaneous solution to both of these equations is
y =0 = z, giving the desired singularity (0,0,0). The D,, case is similar. O

We are now ready to calculate the blow-ups of each of these surfaces at the origin and find their
resolution graphs. These calculations will take us to the end of the project. Note that in Example
3.8 we were working in R?, and hence able to get nice pictures. Such pictures are impossible for
blow-ups of surfaces in C3, although guiding diagrams have been attempted.

Notation: Denote the coordinates of A3 x P? by (z,y,z;a : b : ¢), i.e. we use z,y,z for the
affine part and a, b, ¢ for the projective part. X is given by V(zb — ya,zc — za,yc — zb). In each
case, denote the surface in question by the variety Y = V(f), where f is the defining polynomial.
Let the blow-up of the surface at the origin be given by Y = V(xb — ya, zc — za,yc — 2b, f) C X.
Let U, € A3 x P? be the open subset where the the a-coordinate is non-zero. Observe U, = A®
and that the coordinates in this _space are (ac Y,z ,2, £). We define Uy, U, similarly. Denote the
affine charts of Y for example YN U,, by Y. Denote the exceptional divisor of each blow-up
by E. For cases requiring several blow-ups, we will alternate between the coordinates above and

(A,B,C;a: B:7) € A% x P2
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3.2 The A, Case

The strategy will be to show that A; and Ay have the desired resolution graphs and then complete
an induction argument on the general A, case.

3.2.1 A

We have f =2y — 22 and Y = V(zb — ya, zc — za,yc — zb, xy — 22).

First consider Y, = V(x% — Y, s — 2, ys — zg,xy — 22) C U, = AS. Substituting the first two
equations into the last one yields ng —2%(£)2 =0, ie. x2(§ —(£)%) =0.

This last equation has two irreducible parts, namely z? and g — (g)2 If we set 22 = 0, the
other equations in Y, force y = 0 = 2. This part is the exceptional divisor E. It is the set

that ¢ maps to the singularity (0,0,0) € Y. Observe that in X, F is the set with coordinates
{(0,0,0;a: b:c)} = P2 This is in accordance with Lemma 3.6.ii, which is reassuring.

The other part, g— (5)2, tells us more about Y. Using g = (g)2 and the equations y = :cg, z=z7,

we can construct a polynomial isomorphism (z,y, 2, g, ) = (z,2(£)% 2(9),(£)% <) = (w,2) € A?,
i.e. we achieve Y, = A?. Since A? is smooth, we know that Y, must be smooth. The following

diagram represents Y, as A? with coordinate axes x, <.

,
}“'

The red squiggle along the £-axis corresponds to where Y, meets E ,as x =0 forces y =0 = z.

The calculations for }71, are almost identical to the ones above. The important thing is that we get
another isomorphism (z,y, 2, %, %) = (y($)% v, (%), (§)%,§) — (v, §) € A?, thus showing that Y}, is
also smooth. Below we have another similar diagram. The red squiggle again corresponds to where

}71, meets F.

Y,

Finally, in the same manner again, considering 570 yields the equation 22(% g —1) = 0. The interesting
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irreducible part of this is %Q = 1. Observe that this implies both a # 0 and b # 0, but these two

(&
conditions are precisely those considered by looking in the charts U, and U,. Hence we have

Y. C Y, UY}, so there is nothing new to be found in this chart. It is superfluous.

The next step is to “glue” our two charts (or diagrams) together. Remember that affine charts collec-
tively cover the same space and overlap each other almost entirely. In fact Y,\{$ =0} = Y;\{{ =0}
via the map (z, §) = (#(5)% (§)") = (v, §), which has inverse (y, §) = (y(3)% (5)7") = (=, %)

a a

Importantly, note that in this case we have 7 = g;a — ¢fa = (¢)7! = 2 50 that the original axes
a (c/a) a c
£ and § coincide almost entirely (We can see this by joining the diagrams together). The ¢ axis

doesn’t qulte reach the y-axis in Yb as this would correspond to ¢ = 0 i.e. a = 0 (this is why when

gluing Y to Yb we must omit the line {£ = 0} in the domaln) However by treating this as the
“point at infinity”, we actually see that this unified axis is a projective line P!. We thus have the
following diagram, where the red squiggle is a P'.

So what is the resolution graph? Whenever we have a P! we draw a node, and we connect two
nodes with a line if the two projective lines they represent intersect. Since here we only have one
P!, our graph is just a single node, which is the desired result (see Figure 4 on page 11).

O

3.2.2 A
Now we have f = 2y — 2> and Y = V(zb — ya, zc — za,yc — zb, xy — 2°).

As before, we consider Y in each of the three affine charts. }7@ and }7(, will be very similar, but this
time Y, will have a much more important role.

Now in }N/a, we have y = 1‘3, z = r7 again and substituting these into ry — 23 = 0 yields 3323 —

23(£)3 =0, ie. x2(§ —x(£)%) = 0. Again the ? part will give us F and the other part gives us

a
= x(£)3. Just like before, we have an isomorphism (z,y, 2, 2, €)= (z,22(£)3,2(£),2(£)3,¢) —
°) e € A2, Hence this chart is smooth and we get a diagram identical to the first of those given

in the Aj case.

b
(z,
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c\3 ¢

Similarly, considering Y, yields the isomorphism (z,y, 2, ¢, §) = (y2(%)3, v, y(5),y(5)°,8) = (1, 5) €
A?. We thus have smoothness and a diagram identical to the second of those given in the A; case.
ab

In 170, we have r = 2% and y = z%. Plugging these into zy — 2% = 0 yields ZQ(EE —z) =0, from

which the interesting irreducible part gives z = £¢. This time our isomorphism Y, to A% will make
all three affine coordinates redundant: (z,y,z, 2, %) = ((2)2%,¢(2)2, ab a by, (a by c A2 We

yede c/ c’c\e/ Tcec’clece clec
still get a smooth result but with a different diagram. Here both coordinate axes have preimage in

E.

Now we're ready to look at the big picture. We glue our three affine charts together and achieve
the digram below. Note that we need to bend the coordinate axes of Y, to do this on paper - the
angle between the %,% axes is still a right angle.

Y,

c
Q@

The glue between these charts are the following maps.

o 17@\{5 =0} = }7@\{% =0} via (7, £) = ((£)7L2(£)?) = (2,%). The latter coordinate in the
image comes from the fact that in Y, g = x(§)3, SO % = ZZ = %{?3 = az(g)2
o YA{Z=0}=V\{§ =0} via (£, 2) = (D)7 2D = ;)
So what is the resolution graph? We have two distinct projective lines intersecting in a single point
(the orange dot), thus we have the following Coxeter-Dynkin diagram, representing As! We are

done. o

17



3.2.3 A,

The A; and As cases Wig be our base cases for an induction argument. Consider then the A,, case,
ie. f=ay— 2" and Y = V(zb — ya, xzc — za,yc — zb, xy — 2"*1), and suppose that for all k < n
we have that the resolution graph of Ag is k nodes in a line as shown below.

o—0---0—90

The results of looking in the U, and Uy, charts are exactly the same as before; we get that ffa =~ A2
and Yj, = A? via the isomorphisms listed below, and so the diagrams we get are the same as the
first two given in the A; case.

o Yo (z,y,2,2,€) = (z,2"(&)"H, 22, 2" 1 (&), €) s (2, €)

) a’ a ’a ’a

o }/E) (:U y7zu %7 %) = (yn( )n+17y7yb7y (%)n+1 C) (y7 b)
For Y, we will get the equation z 2(22 b — 2n=1) = 0. Here we cannot make the z variable redundant
and get a polynomial isomorphism YC >~ A2, In fact, the equation %g — 2”1 = 0 does not even

define a smooth variety. By renaming the variables ¢ +— A, g — B, z +— (| it defines the singular
variety V(AB — C™1) € A3. Hence Y, = V(AB — C™1) ¢ A3. But look! This variety describes
the A,,_o singularity (the green dot on the diagram below), so by induction it has resolution graph
n — 2 nodes in a line.

":1'“—2

The glue between the charts is:
o Y\{A=0}2Y,\{¢=0}via(4,B,C) — (AC, A") with inverse (z, ) — ((£)~!, 2" 1(

o Y\{B=0}=Y,\{¢=0}via (A, B,C) — (BC,B~") with inverse (y, £) = (3" (&)™, ()", y%)

Hence the coincidence of the £-axis and the A-axis in }~’c forms a P!, call it Iy, and similarly the
7 and B axes form another, call it I'y. Thus I'g, 'y will contribute two extra nodes to the resolution
graph representing the A,_» singularity in Ye; we just need to make sure that these two nodes
join the rest in the correct place. Using the new coordinates (A, B, C') with projective coordinates
[o: B : ] we blow-up Y’ := V(AB — C™ 1) and, like we've already seen, we will get smoothness in
the Y and Y charts via the following isomorphisms to A%:
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o YI. (A,B,C,2 1) = (A, AV ()1 AL A3l 2y 1y (A, D)
. f’g’- (A,B,C,§, %)= (B"*(3)" . B,B%, B"*(3)" 1, }) = (B, })

~7, after throwing away the irreducible part with preimage in E we will get the equation

%g — C"3 =0, a singularity of A,_4 type. Like above, the coincidence of the g,% axes and the

%,; axes will create another two P's that intersect in this A,,_4 singularity. Meanwhile, T'g, I'; will
intersect these P's also. See the diagram below.

Jsy)

A . Y! . B
’ oy
Yo | Yi

2 o 3
5

*‘17!—..1

T2

This whole process of gaining two extra P's repeats with each blow-up, overall yielding the
desired n nodes in a straight line for A,,.

L O——0- - - -O—Or,
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3.3 The D, Case

Like A,, we first study D4 and Ds and then complete an induction argument on the general case
D,,. From hereafter the calculations for checking whether a chart may be smooth or not are skipped
(these are easily done by taking partial derivatives).

3.3.1 Dy

We have f = 22 + zy% + 2% and Y = V(zb — ya, zc — za, yc — zb, x + 2y + z3). Substituting the
blow-up equations into f and looking in each affine chart, we have:

o Yo 2?(1+2(2)2¢ +23(2)3) = 0.
o Vi 2((9)2 +ys +u(§)?) =0.
o Yo 22((2)2+2(8)% +2) =0.

The irreducible parts 22, 32, 22 of the respective charts above each have preimage entirely contained
in E. In fact, we will get these factors every time we blow-up Kleinian singularities. Since we are
not interested in these parts of the preimage, they will hereafter simply be omitted when listing
the equations of the affine charts of Y.

Hence, now disregarding them and focussing on the other irreducible parts, which collectively
describe the proper transform of Y, we have:

o YV, 1+ z(2)2£ + 23(£)3 = 0. This chart is smooth and does not intersect E (since in Y,NE
we must have x = 0 which leaves 1 = 0 in the equation above. Thus Y, N E = 0).

o Y (9)?+y$+y(§)® = 0. This chart has a smgular point at (¢,y,7) = (0,0,0) and intersects
E when a = 0, i.e. with affine coordinates (z,y,2,%,7) = (0,0,0,0, {).

° V. (2)% + 2(%)? + 2 = 0. This chart has two singular pomts at (2,2,2) = (0,%4,0) and
intersects ' when a = 0, i.e. when (x,y,2, %, E) (0,0,0,0, )
First of all, the intersection of E with Yb is isomorphic to Al, as it Just the line with coordinates
(0,0,0,0, 7). Similarly, Y. N E is another A' with coordinates (0,0, 0,0, ) We see then that these
two lines are actually just the two affine charts of the same P!. This is the same idea as used in
the Ay case on page 16. We will denote this particular P! by T'y.

Now let’s look at the singularities in these charts. There are two important observations. Firstly,

we have that these three singularities are distinct: the singularity in Y, has § = 0 whereas the

singularities in Y, have g = =i, which are of course inconsistent with each other. The second

observation is that all three of these singularities lie on I'y (where a = 0) as they have coordinates
7 = 0 and ¢ = 0 respectively. We will now prove that these singularities are all of type A;, thus
yielding the resolution graph Dy. This will be achieved since each of the three A; singularities’
blow-ups will contain a single P! that will intersect I'y at a distinct point. Observe then that Ty
will correspond to the P! given by the centre node in the Dy resolution graph.
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—& & *— I
(0, —4.0) (0,0,0) (0,,0)
= A =4 = A O \ O

]-U

So, first let’s check the (%,y,7) = (0,0,0) singularity in the Yy Change coordinates § — A,y
B, § + C so that ($)? +y¢ +y(§)® = 0 becomes A%+ BC + BC? = 0. We blow this up at (0,0,0)
as normal and, using a new set of projective coordinates [« : 5 : 7], get a variety 17’, that is smooth
in all three charts, as hoped. Each chart intersects E = {(4, B,C) = (0,0,0)} x P? as follows:

It’s easy to see that these affine equations collectively yield the projective variety Y'NE = V(a2 +
Bv) c {0} x P2, a non-degenerate conic in P?. Now, by Example 15.2 in [10, pp. 39-40], we know
that non-degenerate conics in P2 are isomorphic to P'. Thus the blow up of this singularity contains
exactly one P!, which is what we wanted.

Where does this P! intersect I'v? In f’b, ['g is the j-axis. Thus it’s proper transform in Y’ will be
the C-axis. The blow-up variety of Y is X! = V(AB — Ba, Ay — Ca, By — Cf3), so the proper
transform of Ty will be the variety I'y = V(AS — Ba, Ay — Ca, By — CB, A, B). We consider the
intersection of T'g and E when C is left arbitrary, yielding o = 0 = . Hence (Y’ N E) N (Iy N E)
contains only the point [a: B : 4] =[0: 0 : 1]; this is where Iy meets the conic (or P!) we find by

blowing up the A; singularity (3,y, ) = (0,0,0).

Now we must check the singularities (%, %, z) = (0,=£4,0) in Y.. We only need to look at one as the
cases will be symmetric. So consider (0,7,0) and make a linear coordinate change ¢ — A, % — B+1,
z — C with a new set of projective coordinates [a : 8 : 7] so that (¢)? + z(g)2 + z = 0 becomes
A% 4+ CB? +2iBC = 0. This coordinate change translates the (0,4,0) singularity to (0,0, 0), which
we now blow-up. An important note here is that this blow-up, denoted Y”, is not actually smooth

in one of its affine charts. More precisely, 175” will contain a singularity at (%, B, %) = (0,—21,0).

We should not be alarmed however; this singularity is just the other singularity (0, —4,0) € Y,
that we didn’t blow-up originally. The fact that there are no other singular points in any of the
affine charts of Y” means that we've “smoothed out” (0,1,0) € Y. as intended. Similar to above,
we actually have Y'NE = V(a? + 2if3v), another non-degenerate conic that will give us a P! as
desired. The intersection with I'g is calculated similarly.

The overall result is the resolution graph given above. We are done. O
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3.3.2 Ds

We have f = 22+ 2zy?+ 2% and Y = V(zb—ya, xc— za, yc— zb, 2% + zy? + z*). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in F, we have:

o YV, 142a¢ €(2)2 4+ 22(£)* = 0, smooth and does not intersect E.

o Y, (4)2+y¢+y?(§)* = 0. This chart has a smgular point at (

7,4,7) = (0,0,0) and intersects
E when a = 0, i.e. with affine coordinates (x,y, 2, %, ) = (0,0,

Yr b
0,0,%).
o Y. (2)%42(2)%+ 2% = 0. This chart has asmgular point at (2,2, 2) = (0,0,0) and intersects

’e?

E when a = 0, i.e. with affine coordinates (z,y, 2, %, c) (0,0,0,0, )

We see that 17}, and 17,3 each intersect E along a = 0 just like in the D4 case. We know that this
corresponds to a P! which we will again denote by I'g. The singularities in the latter two charts must
be distinct as they require § = 0 and % = 0 respectively. The singularity (¢,y,7) = (0,0,0) € 1:},
is of Ay type and this can be shown in precisely the same manner as for the singularity in the Y3
chart in the Dy case (see page 21).
In Y, we have a singularity at (%, %, z) = (0,0,0). We change coordinates & A,g — B,z— C,
use a new set of projective coordinates [ : B : 7], and denote the blow-up of A2 + CB?+ C? =0
at (0,0,0) by Y. Again, throwing away the irreducible part with preimage completely contained
in E yields the following:

o Y1+ A%(g)Z + (2)? = 0, smooth and intersects E along (1)? +1 = 0.

. éfﬂ’ (%) B”H—(%) = 0, singular at (%, B

o« Y ( )2+ C( )2+ 1 =0, smooth and intersects E along (5 )2+1=0.

(0,0,0) and intersects E along (%) +(%)2 =

2 B,3) =

Firstly, observe that the singularity in ?é lies on T'p: in 570, Tg is the g—axis. After the coordinate
change, this corresponds to the B-axis in ?é The singularity at ( B’B’ %) = (0,0,0) lies on this
line.

Now, amalgamating the equations where each chart of Y’ intersects E., we have Y'NE = V(a2 +
7?) = V((a +iy)(a — 7)) = V(a +iy) UV(a — iy) C {0} x P2. This describes a pair of projective
lines, namely « + iy = 0 and o — iy = 0. These lines intersect at the point (A, B,C;a : f: ) =
(0,0,0;0 :1:0), which of course we only find in EN/é In fact, this point of intersection is precisely

the singularity in 175’ mentioned above. It is actually another A;; denoting its blow-up by Y” and

making the coordinate change % — x, B — y,% — z with a fresh set of projective coordinates

[a:b: c], we have Y" = V(xb — ya, zc — za,yc — zb, 22 + yz + 22). Omitting the calculations we
have Y” N E = V(a? + bc + ¢?), a non-degenerate conic that we know is isomorphic to P*.

We want to make sure that the two projective lines a+4y = 0 and a — 4y = 0 now intersect this P!
in Y” at distinct points. To do this we need to find the proper transform of each of these lines (i.e.
blow them up too!) and look where they intersect E, then in turn V(a? + bc + ¢?). So taking first
the line o — iy = 0 which has affine part * — iz = 0 = y after the coordinate change, its blow-up
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is given by V(zb — ya, xc — za,yc — zb,x —iz,y) = V(xb, xc — za, zb,x — iz,y). Hence we have the
affine charts listed below. Note that y = 0 makes the b # 0 chart uninteresting as we would only
find the origin (z,y, z) = (0,0,0) there, which just gives us E.

e a#0:z(1-i5)=0
e c#0: 2(2—1i)=0

From these two charts, we see that at the intersection with £ we must have a = ic. Plugging this
into V(a? + be + ¢2) yields be = 0. Hence in the a # 0 and ¢ # 0 charts, we must have b = 0 and so

the point of intersection is [a : b: ¢] = [i : 0 : 1]. If we were to repeat this blow-up with the other
line a+iy =0, i.e. z+iz =0 =y, we would see that the point of intersection with V(a2 + bc + c?)
isa:b:c]=[—i:0:1], (an almost identical calculation). Hence, we see that each of the two lines

intersect the conic (or P1) at the two distinct points [4i : 0 : 1], and so have been “pulled apart”
at the singularity that they used to meet in.

Finally we check where I'g hits V(a? + bc + ¢?): after the second change of coordinates, Ty in Y is
the y-axis. Subbing this into the blow-up equations V(xb — ya, zc — za, yc — zb) and seeing where
it intersects F yields the point [a: b:c] =[0:1: 0], which is indeed a point on V(a? + bc + ¢?). In
summary, we have a situation portrayed by the diagram below. Each bold black line is a P! and
the coordinates of the intersection points given in the right-hand diagram are in terms of [a:b:]
in Y.

v o —iy =0 r—itz=10
8

/ v

\/ Vs (i,0,1)
S (0,1,0),
/\ Iy
Ty,

o + iy = 0

1U

(—i,0,1)

=~ A

V(a2 + be + c2) r+iz=10

Finally, adding on the A; lying on I'g in the original 17}, yields the resolution graph for Ds. The
node for I'g has been labelled. O

23



3.3.3 D,

We have f = 22+ 232 + 2" L and Y = V(2b — ya, zc — za, yc — 2b, x% + 2y + 2"1). Looking in
each affine chart and disregarding the irreducible part with preimage completely contained in F,
we have:

o Y, 14a¢ £(2)2 4 gn=3(£)n1 = 0, smooth and does not intersect E.

o Y ($)? +y5 +y"2(5)"t = 0. This chart has a singular pomt at (%,%,3) = (0,0,0) and
intersects £/ when a = 0, i.e. with affine coordinates (z,y, 2, ¢, 7) = (0,0,0,0, 7).

oY, (2)2 + 2(%)? 4+ 273 = 0. This chart has a singular pomt at (2,2%,2) = (0,0,0) and

c’rc’?

intersects £/ when a = 0, i.e. with affine coordinates (z,y, 2, ¢, f) (0,0,0,0, )

The analysis we need to do here has largely been done before. We see that Yb and YC intersect F
along a = 0, which we already know corresponds to a P! that we will again denote by I'g. The
singularities in the latter two charts must be distinct as they require § 7 =0 and b = 0 respectively.
The singularity (0,0,0) € Yb is of A; type and this can be shown in precisely the same manner as
for the Y} chart in the Dy case (see page 21). Finally, the singularity (0,0,0) € Y, is of D,_s type,
which we can see by its defining equation. We just need to make sure that I'g will intersect any
P's and singularities we find in the first blow-up of this D,,_» singularity in the desired manner.

So perform the coordinate change ¢ +— Al Bz Cin Y, with new projective coordinates

’c

[ : B : 7] and denote the blow-up of this D,,_o singularity by Y’. Tt has the following affine charts:
o V! 1+ AV( )2 4+ A"3(1)"=3 = 0, smooth and does not intersect E.

. Yé: (%)2 + B3 —|—B”*5(%)”*3 = 0. This chart has a singular point at (§, B, %) = (0,0,0) and
intersects E when o = 0, i.e. with affine coordinates (A, B, C, %, g) =(0,0,0 )
. }77’ (%)2 + C( )2 4 C"=5 = 0. This chart has a singular point at (2,2,C) = (0,0,0) and

7y’
intersects When a = 0, i.e. with affine coordinates (A, B, C, %, %) = (0,0,0,0, g)

As we would expect, the singularity in }77’ is of D,,_4 type. Denote the P! we get from a = 0 by I'y
and denote the A; singularity in the Y3 chart by Aj.

In Y’, T is the affine line (A, B,C) = (0, B,0). By studying the blow-up equations X’ = V(AS —
Ba, Ay — Ca, By — Cf), we see that it intersects E at the point [a: 5: ] =[0:1:0]. Of course,
we only find this point in the Y’ chart; it is in fact the singularity A]. I'; also intersects Af; it is
the point where I'; and T’y meet We can summarise this with the dlagrams below. On the left
is the situation described above, and on the right will be what happens when blowing-up A} and
thus pulling apart I'g and I'g.
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This process of course iterates with each blow-up, producing A} and I's etc. along the way,
ending in either the D4 or D5 case where we get a branch at the end. Therefore we achieve the
desired D,, resolution graph as shown below. We are done.

DTr—J

0—o0 o --

."11 11U

=0
=0

3.4 The Eg Case

We have f = 22 +y3 +2* and Y = V(zb — ya, xc — za, yc — zb, x> + 3> + z*). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in E, we have:

o Vi 1+ m(g)g + 22(£)* = 0, smooth and does not intersect E.

o Yy ()2 +y+y*(§)* =0, smooth and intersects E along a = 0.

o Yo (4)%+ z(g)g’ + 22 = 0, singular at (2, %, z) = (0,0,0) and intersects E along a = 0.

We get a P! from the intersection of E along a = 0 Jjust like in the D,, cases, which we will again
denote by I'g. This I'g intersects the singularity in Y, which we will need to blow up. We change
coordinates ¢ — A,g — B,z — C with a new set of projective coordinates [« : 8 : 7] and denote

the blow-up of A2+ CB3 + C? =0 at (0,0,0) by Y’. We have:
o Y1+ A22(B)3 4 (2)2 = 0, smooth and intersects E along (1)2 + 1 = 0.

o gé (%)2+B2%+(%)2 = 0, singular at (§, B, ) = (0,0,0) and intersects £ along (%)24—(%)2 =

o }74 (%)2 + 02(%)3 + 1 =0, smooth and intersects F along (%)2 +1=0.
What comes out of all this looks similar to the D5 case. Sure enough, we have Y'NE = V(a2+~2) =
V(a+iv) UV(a —iy) C {0} x P2, describing the pair of projective lines a +iy =0 and a —iy =0
that intersect at the point [ : 8 : 9] =[0,1,0] € V4. This is the point where I'g, here the B-axis,
also meets the singularity in 175’ The difference however is that their intersection, occurring at the
singularity (%, B, %) = (0,0,0) is now a D3 = A3 type singularity as can be seen from the equation

describing Yé. So far we have this picture:
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Denote the blow up of the As singularity in }Nfé by Y”. Make the coordinate change g z,Be
y,% ++ 2, so that we are considering the blow-up of Y” = V(22 + 4%z + 22) with the projective

coordinates [a : b : ¢]. Y” has the following charts:

o Y/ 14 z(2)2< + (£)2 = 0, smooth and intersects E along (£)? 41 = 0.

a

o Y/ ($)2+y5+(5)* =0, singular at (¢,y,§) = (0,0,0) and intersects E along ($)?+(£)* = 0.

o Y/ (2)2+2(2)2 + 1 =0, smooth and intersects E along (£)%+ 1 = 0.
The proper transform of I'g is the y-axis, and the proper transforms of the affine part of the lines
a+iy =0 from ?é are the lines z &+ iz = 0 = y. Furthermore we have Y/ N E = V(a2 + ¢?) =
V(a +ic) UV(a —ic) C {0} x P?, another pair of projective lines a + ic = 0 meeting at the A;
singularity in the 17,]” chart. Consider now only the line z — iz = 0 = y. We see from the D5 case
(see page 23) that it intersects E at the point [a:b:¢] =[i:0:1]. This point cannot lie therefore
in the 1717” chart and so this line doesn’t intersect the Ay singularity. The line z — iz = 0 = y does
however intersect the projective line a — ic = 0 at the point [a : b : ¢] = [¢ : 0 : 1]. Similarly the
other line z + iz = 0 = y will intersect the line a + ic = 0 at the point [a : b:¢] =[—i:0:1]. We
thus have the following picture:

a—ic=10

Il

=

Il
B

Il
Il
=

A; a-+ic=10

All that’s left to do is check that the final blow-up of this A; singularity pulls apart T'g and the
lines a + ic = 0 in a manner that will ultimately give us the resolution graph for Fg. Make the
coordinate change § — A,y +— B,{ + C with new projective coordinates [a : 3 : 7] and denote

the blow-up of this A; singularity by Z. We’ve done this calculation before: it is Y” from the Ds
case (see page 23). We know it intersects F in the conic Z := V(a? + By ++?), giving us our sixth
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projective line. We've seen from Dy that Ty intersects Z at the point [a: 8 : 4] = [0: 1 : 0] (see
page 23) and that the lines a +ic = 0, which become A £iC' =0 = B after the coordinate change,
intersect Z at the points [ov: : ] = [£i:0: 1].

The following picture summarises how all of our lines now intersect (for spatial efficiency it has
been rotated from the one above).

A~ =0= 18

A+iC=0=B \
/ 7

z+iz=0=y

Hence we achieve the resolution graph Eg. I'g is labelled.

Iy

3.5 The E; Case

We have f = 22 +13%+y2% and Y = V(xb—ya, xzc— za,yc— zb, 2> + 13> +y2z3). Looking in each affine
chart and disregarding the irreducible part with preimage completely contained in E, we have:

o YV, 14 :L“(g)3 + 1:2(5)3% = 0, smooth and does not intersect E.

o Yy ()% +y+y*(§)® =0, smooth and intersects E along a = 0.

o Yo (2)2+2(%)3 4 222 =0, singular at (2,2, 2) = (0,0,0) and intersects E along a = 0.

c

Like the D,, cases, we get a P! from the intersection of E along a = 0 which we will again denote by
T'g. This I'y intersects the singularity in Y, which we will need to blow-up. We change coordinates
S A,% — B,z +— C with a new set of projective coordinates [a : 5 : 7] and denote the blow-up

of A2+ CB3 + C?B =0 at (0,0,0) by Y’. We have:

o Y1 1+ A22(2)3 1 A(2)28 = 0, smooth and does not intersect .

o f’é (%)2 + BZ% + B(%)2 =0, singular at (5, B, 4) = (0,0,0) and intersects E along a = 0.
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. }77’ (%)2 + CQ(g)3 + C’g = 0, singular at (£, g, C) = (0,0,0) and intersects E along o = 0.
Firstly, denote the P! gained by o = 0 (& la a = 0 in previous cases) by I';. Now the singularities
in Y’ and Y’ are distinct (as they respectively requlre 2 =0 and ’8 = 0) and both lie on I';. The

s1ngular1ty (0‘ B2) =(0,0,0) € Y,Y’ can easily shown to be of type Al, its blow-up, call it W with

projective coordlnates [a:b: ], contains three smooth charts and we have W N E = V(a? + be), a
conic which is isomorphic to P! (see Dy case on page 21).

In YC, Ty is the *—aXlS Blowing this up under the new coordinates it is B-axis, and using the
blow-up equatlons X'=V(AB — Ba, Ay — Ca, By — Cf), we see that the proper transform of T'y
intersects E at the point [a : § : 4] = [0 : 1 : 0]. This intersection therefore only lies in the ?é
chart, and in fact it is the point at which the singularity in that chart lies on I'y (since I'1 in this
chart is the %-axis). So far then we have the following picture:

Y}

o
}"r

The red dot is the singularity W shown above to be of type A;. The green dot is the singularity
(%, B, 6) (0,0,0) € Y,B situated at the 1ntersectlon of I'g and I';. We will blow this up now. Make
the change of coordinates % 3T By, ﬁ — z with a new set of projective coordinates [a : b : (]

and denote the blow-up of 22 + y%z + yz2 = 0 at (0,0,0) by Y”. We have:
o Y/ 1+ 2(2)2< + 2(£)22 = 0, smooth and does not intersect E.

° 17})”: (a) +y5 —|—y(%) = 0, singular at two points, (%,y, £) = (0,0,0), (0,0, —1), and intersects

FE along a = 0.
o Y (2)242(2)%+22 = 0, singular at two points, (%, 2,z) = (0,0,0), (0, —1,0), and intersects
E along a = 0.

Again, denote the P! gained by the intersection of E along a = 0 by I'y. The singularities with

coordinates (0,0,0) in }7” and Y must be distinct as they require $ =0 and g = 0 respectively.

Observe however that (¢,y,7) = (0,0,—-1) € }N/b” and (2,%2,2) = (0,-1,0) € Y/ are the same
singularity. Hence in total we have three distinct singularities that all lie on I'y. It is easy to show
that all three of these singularities are of Ay type, just like when studying the three singularities
lying on the 'y of the Dy case (see page 21).

So what do I'g and I'; look like in this blow up? Recall that in }75', Ty is the B-axis and I'; is the

%—axis. After the coordinate change, these are the y and z axes respectively. Using the blow-up
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equations X" = V(xb — ya,xc — za,yc — zb), their proper transforms intersect E at the points
[@:b:¢c]=1[0:1:0] and [0 : 0 : 1] respectively. We of course only find these points in one of
the three, in particular distinct, affine charts. These are actually the coordinates of the respective
origins in Y and Y’ where we already know lies an A; singularity as explained above. The third
singularity with coordlnates (%,9,%) = (0,0,—1) in Yb” for example, lies in both Yb” and YC” and
doesn’t intersect either of I'g or I';. We thus finally arrive at the following picture:

I'y j}i” I v B

Al | Al

When finally blowing up each of these A; singularities and remembering to add on the A; denoted
by W found in Yé, we achieve at last the resolution graph representing F7. Each node has been
labelled.

Ay

3.6 The Es Case

The final case relies very heavily on the analysis done in the E7 case; in fact we will find an E7
singularity in our first blow-up of Eg. To stay consistent with the names of varieties and chain of
coordinate changes used in the E7 case, we will begin by using the coordinates (A4, B,C;a: 3 : 7).
So instead of f = 22 +y3 + 25, consider the variety Y° = V(A — Ba, Ay —Ca, By—CpB, A>+ B3 +
C%). Looking in each affine chart and disregarding the irreducible part with preimage completely
contained in E, we have:

o V0 1+ A(g)?’ + A%(2)5 = 0, smooth and does not intersect E.

«

)2+ B+ B3(%)5 = 0, smooth and intersects £ along o = 0.

IR

g (
o Y0 (%)2 + C’( )3 4+ C3 = 0, singular at (5, E,C’) = (0,0,0) and intersects E along a = 0.

We see from the 17:9 equation that the singularity in this chart is of type E7. Hence we have a

P! given by a = 0 (like in all previous cases) which we will call T's. In }7,9 it is the %—axis and
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intersects the F7 singularity at the point [aw: f: ] =[0:0: 1] € E. All we need to do is find
the proper transforms of I's through the blow-ups of E7 to see where it fits onto the F7; resolution
graph, hopefully giving us the graph for Eg.

So denoting the blow-up of this E7 singularity by Y and making the coordinate change 9 —x,C—

Y 5 8y 2 with projective coordinates [a : b : ], we will get precisely what we saw at the start of the

E7 case:

o Vo 14+2(2)% +22(£)32 =0, smooth and does not intersect E.

o Y (%) + y+y*(§)® = 0, smooth and intersects E along a = 0.

o Yo (2)2+2(%)3 4 222 = 0, singular at (2,8, 2) = (0,0,0) and intersects E along a = 0.

In 170 I's was the %—axis soin Y its proper transform is the z-axis. In the 170 chart, it intersects

Iy, Wthh is the f—ax1s here, at the singularity (% b 2) =1(0,0,0). So far then we have this:

)¢

FC] 1—';;

We already know what happens when we blow up this singularity (the blue dot): we get the diagram
on page 28. But what happens to I's? Here are the charts from this blow-up for convenience:

o Y1+ A27( P+ A2 )2§ = 0, smooth and does not intersect E.

. YB’: (ﬁ) 327 + B(%) = 0, singular at (5, B, %) = (0,0,0) and intersects E along o = 0.
. 177’ (%)2 + C’Q( )3 C% =0, singular at (£, 5,0) = (0,0,0) and intersects E along o = 0.

In Y, I'; was the z-axis, so in Y it is the C-axis. Using the blow-up equations X’ = V(AL —
Ba, Ay — Ca, By — Cf), it intersects E at the point [a : 5 : 7] = [0: 0 : 1] which of course we only
find in }N/C’ Continuing to use the names from E7, at this point is the A; type singularity denoted
W. We hence have the following picture:

ety
3.1

v
]’H

L'y
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Of course, blowing up W will pull apart the lines I'y and I's. We have already seen what happens
when blowing up the singularity in the Yé chart (the green dot), so we're done! The resolution
graph with all nodes labelled, like the E7; case, is given below.

A,

O

This concludes the blowing-up of all of the Kleinian singularities, which have been shown to have
the resolution graphs ADE. O

Figure 6: ADE Coxeter-Dynkin diagrams [8]

Interesting Note: It turns out that as well as finite subgroups of SL(2,C), Kleinian surface
singularities and simply-laced Dynkin diagrams, ADE can be used to classify several other diverse
objects in mathematics that experience seemingly unrelated properties. More examples can be

found at [11].
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