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Introduction by the Organisers

The workshop “Toric Geometry” was attended by 53 people including many young
participants. The idea was to shed light on the subject from many different points
of view — toric geometry involves methods from algebraic and symplectic geometry,
algebraic groups, and discrete mathematics.

A major driving force combining all these directions is still provided by the dif-
ferent flavours of mirror symmetry. So it is quite natural that related subjects like
Lagrangians in symplectic manifolds showed up in many talks (Abreu, Woodward,
Ono, Lau, Sjamaar).

A very common feature that appeared in many talks was the attempt to weaken
assumptions in the setting of algebraic or symplectic toric varieties. This was
done by either considering higher complexities of torus actions, or by relaxing the
demands on the symplectic forms, or by studying non-algebraic situations or more
general algebraic groups than just tori (Timashev, Hausen, Siif}, Knop, Tolman,
Holm, Masuda).

Polyhedral methods and their interplay with resolutions and deformations or
degenerations is a classical feature of toric geometry. Recently this was extended
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to non toric varieties by the notion of Okounkov bodies. Talks widely fitting into
this area were given by Kiritchenko, Teissier, Tevelev, Kaveh, Ilten, Nill.

Finally, there were talks dealing with homological, K-theoretical or derived
methods (Craw, Anderson, Ploog) or talks with the classical topics of syzygies or
projective duality (Schenck, di Rocco).

The informal discussions in addition to the talks brought algebraic and sym-
plectic geometers together — for instance the different languages for studying com-
plexity one T-varieties were mutually recognized. Moreover, on Wednesday night a
special session of short talks took place. Everybody was allowed to speak, but each
contribution was strictly limited to ten minutes plus discussion. This was adroitly
moderated by Christian Haase and became a very successful and energetic evening.
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Abstracts

Divided difference operators on convex polytopes
VALENTINA KIRITCHENKO

I describe a convex geometric procedure for building generalized Newton poly-
topes of Schubert varieties. One of the goals is to extend to arbitrary reductive
groups our joint work with Evgeny Smirnov and Vladlen Timorin on Schubert
calculus (in type A) in terms of Gelfand—Zetlin polytopes [6].

Newton (or moment) polytopes of projective toric varieties play a prominent
role in toric geometry. Analogs of Newton polytopes (Newton—Okounkov convex
bodies) were defined for an arbitrary variety together with a line bundle [3]. If the
variety enjoys an action of a reductive group G and the line bundle is G-linearized,
then a more precise description of the Newton—Okounkov body can be given (in
particular, for spherical varieties this convex body is a polytope). In this case,
major building blocks in the construction of Newton-Okounkov bodies are string
polytopes. String polytopes first appeared in representation theory [7] and are
associated with the irreducible representations of G, e.g. a classical example of
a string polytope for G = GL,, is a Gelfand-Zetlin polytope. The integer points
inside and at the boundary of a string polytope parameterize a canonical basis in
the associated representation, in particular, string polytopes can be regarded as
Newton polytopes for projective embeddings of the complete flag variety for the
group G.

The Gelfand—Zetlin polytopes can be constructed from a single point by iterat-
ing a simple convex-geometric operator on polytopes that mimics the well-known
divided difference or Demazure operators from representation theory [5]. Each op-
erator acts on convex polytops (more generally, on conver chains) and takes a
polytope to a polytope of dimension one greater. In the case of GL,, these op-
erators were used to calculate Demazure characters of Schubert varieties in terms
of the exponential sums over unions of faces of Gelfand-Zetlin polytopes [6]. In
particular, they yield generalized Newton polytopes (conver chains) for Schubert
subvarieties in the variety of complete flags in C™.

The convex-geometric Demazure operators are defined not only for arbitrary
reductive group but in a more general setting. They are well suited for inductive
descriptions of Newton—Okounkov polytopes for line bundles on Bott towers and
on Bott—Samelson varieties [5]. The former polytopes were described by Grossberg
and Karshon [2] and the latter are currently being computed by Anderson [1].

Below I give a definition of Demazure operators on convex polytopes and for-
mulate some results. A root space of rank n is a coordinate space R? together with
a direct sum decomposition

RE=R" ... @R

and a collection of linear functions I1, ..., I, € (R%)* such that [; vanishes on R%.
We always assume that the summands are coordinate subspaces (so that R% is
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spanned by the first d; basis vectors etc.). The coordinates in R? will be denoted
by (ac%,...,:U}h;...;a:?,...,a:gn).

Let P < R? be a convex polytope in the root space. It is called a parapolytope
if for all i = 1,..., n, the intersection of P with any parallel translate of R% is a
coordinate parallelepiped, that is, the parallelepiped

H(May):{y’k<xﬁﬁgyka kzla"'adi}a

where p1, ..., pa,, v1, ..., Vg, are real numbers. For instance, if d = n (i.e.
dy = ...=d, = 1) then every polytope is a parapolytope. A less trivial example of
a parapolytope is the classical Gelfand—Zetlin polytope @ (where A = (A1,...,\y)
is an increasing collection of integers) in the root space

RI=R"1@pR"2®...OR! (1)
of rank (n — 1). The polytope @, is given by 1nequahtles :r:; < x; <x ; +11 for all
i=1,...,n—Tland1<j<(n—1i) (weputal=2A\;forj=1...,n).

For each 1 =1,..., n, we now define a divided difference operator D; on para-

polytopes. In general, the operator D; takes values in convexr chains (or virtual
polytopes) in R (see [4] for a definition).

First, consider the case where P < (c+R%) for some c € R?, i.e. P = P(u,v) is
a coordinate parallelepiped. Choose the smallest 7 = 1,..., d; such that p; = v;.
Define D;(P) as the coordinate parallelepiped II(p, v’), where v; = vy, for all k # j
and v} is defined by the equality

Z pu +vy,) = lic).

For an arbitrary parapolytope P < R? define D;(P) as the union of D;(P n
(c +R%)) over all c e R%:

Di(P) = [ J{Di(P n (c+R%))}
ceR4

(assuming that dim(P n (¢ + R%)) < d; for all c € R%). That is, we first slice P by
subspaces parallel to R% and then replace each slice II(p, v) with II(yx, ). Note
that P is a facet of D;(P) unless D;(P) = P.

Example 1 (case of GL,): Consider the root space (1) with the functions [;
given by the formula:

li(z) = 0i1(2) + oit1(2),

where o;(z) = 22;1 zi fori=1,...,n—1and og = o, = 0. It is not hard to show
that the Gelfand—Zetlin polytope () defined above coincides with the polytope

[(Dl e Dn—l)(Dl Cee Dn_z) Ce (Dl)] (p),

where p € R? is the point (Xa,..., A; Az, .00y Anse .5 An).

Example 2 (arbitrary reductive groups): Let G be a connected reductive
group of semisimple rank n, ai,..., a, simple roots of G, and si,..., s, the
corresponding simple reflections. Fix a reduced decomposition wg = s;, ...s;, of
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the longest element in the Weyl group of G. Let d; be the number of s;; in this
decomposition such that ¢; = ¢. Consider the root space

RI=RU" @...@R%" (2)

with the functions /; given by the formula:

li(x) = Z(ak,@i)ak(fﬂ),

k#1

where (ag, ;) is the element of the Cartan matrix of G, that is, s;(ag) = ax —
(g, o)y In particular, for G = GL,, and wo = (s1...5,-1)(S1...5n—2) ... (51)
we get the root space of Example 1. Define the projection of the root space to the
real span of the weight lattice of G by the formula p(z) = o1(x)as +... 4+ opn(x)ay,.

Theorem: For each dominant weight A of G there exists a point py € R% such
that the polytope

P = Dil .. -Did(p)\)
yields the Weyl character x(Vy) of the irreducible G-module Vy, namely,

x(Vy) = Z eP(x)

zeEPNZ4

Similarly, the face of P defined as D, ... D;,(px) yields the Demazure character
corresponding to w = s;, ...s;, and A for any [ < d. Demazure characters for the
other elements of the Weyl group can be represented by unions of faces of P.

If we replace each R% in root decomposition (2) with the sum of d; one-
dimensional coordinate subspaces with the same function /; (the result is the root
decomposition of rank d), then the (usually virtual) polytope D;...Dg(py) is
exactly the skew polytope constructed in [2]. The theorem above holds for this
polytope by [2] as well as for the other polytopes constructed via arbitrary subdi-
visions of root decomposition (2) (that is, when R% is split into several coordinate
subspaces, not necessarily one-dimensional). Conjecturally, string polytopes can
also be obtained using either (2) or one of its subdivisions.

REFERENCES

[1] Dave Anderson, Okounkov bodies and toric degenerations, preprint arXiv:1001.4566v2
[math.AG]

[2] Michael Grossberg and Yael Karshon, Bott towers, complete integrability, and the extended
character of representations, Duke Math. J. 76 (1994), no. 1, 23-58.

[3] Kiumars Kaveh, Askold Khovanskii, Convez bodies associated to actions of reductive
groups, preprint arXiv:1001.4830v2 [math.AG]

[4] A.G. Khovanskii, A.V. Pukhlikov, Finitely additive measures of virtual polytopes, St. Pe-
tersburg Mathematical Journal 4 (1993), no.2, 337-356

[5] Valentina Kiritchenko, Evgeny Smirnov, Vladlen Timorin, Convex chains for Schubert
varieties, Oberwolfach reports, 41/2011, 15-18

[6] Valentina Kiritchenko, Evgeny Smirnov, Vladlen Timorin, Schubert calculus and Gelfand—
Zetlin polytopes, preprint arXiv:1101.0278v2 [math.AG]

[7] Peter Littelmann, Cones, crystals and patterns, Transformation Groups 3 (1998), pp. 145—
179



8 Oberwolfach Report 21,/2012

Symplectic varieties with invariant Lagrangian subvarieties
DMITRY A. TIMASHEV
(joint work with Vladimir S. Zhgoon)

We consider symplectic algebraic varieties equipped with a Hamiltonian reductive
group action which contain an invariant Lagrangian subvariety. A basic example
is the cotangent bundle of an algebraic variety acted on by a reductive group; here
the zero section is an invariant Lagrangian subvariety. The main thesis of this
talk is that, though this basic example does not exhaust all possible cases (even
locally), Hamiltonian symplectic varieties with invariant Lagrangian subvarieties
behave very similar to cotangent bundles. See [4], [5] for more details.

Let (M,w) be a symplectic manifold (real or complex) or smooth complex al-
gebraic variety. (In the latter case the symplectic 2-form w is assumed to be
algebraic, of course.) We denote by V f the skew gradient of a function f, given
by the formula: df (v) = w(Vf,v), Vv e TM. Let {f, g} = w(Vf,Vg) denote the
Poisson bracket of functions on M. Recall that a submanifold or smooth subvariety
S € M is said to be:

e isotropic if w|p,s =0, Yp e S
e coisotropic if w|(p 52 =0, Vp € S;
e Lagrangian if it is both isotropic and coisotropic.

Here and below, the superscript < denotes the skew-orthogonal complement.
Let G be a Lie or algebraic group acting on M. Recall that the action G — M
is said to be Hamultonian if the following conditions are satisfied:

e (G-action preserves w;
e there exists a G-equivariant map ® : M — g*, called moment map, such
that V(®*¢) = &4, VE € g, Le., (dpyP(v), &) = w(ép,v), Vpe M, veT,M,
o {®%, ¥} = ©*([¢,n]), V&, € g
Here g = Lie G, ®* denotes the pullback of functions along the map ®, and &, is
the velocity vector field of £ on M, i.e., & (p) = &p = |,_o exp(t&)p. (The above
conditions are not independent, but it is convenient to collect them all together.)

Here is the basic example of a Hamiltonian action. Given a smooth manifold
or algebraic variety X, the cotangent bundle M = T* X comes equipped with the
canonical symplectic structure: w = ). dx; A dy;, where x; are local coordinates
on X and y; are the dual coordinates in cotangent spaces. If G acts on X, then
the induced action G —~ T*X is Hamiltonian, with the moment map given by
(®(p), &) =<(p,&éx), Ve e X, peTrX, {eg.

The zero section S < T*X is a Lagrangian submanifold /subvariety. It is G-
stable whenever G acts on X. A more general example of a (G-stable) Lagrangian
submanifold /subvariety in 7* X is the conormal bundle N*(X/Y') of a (G-stable)
submanifold /subvariety Y < X.

It is well known, by the Darboux—Weinstein theorem, that any symplectic man-
ifold M 1is isomorphic to T*S in a neighborhood of a Lagrangian submanifold
S c M (regarded as the zero section in T*S). If G —~ M is a Hamiltonian action
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of a compact Lie group and S is G-stable, then the above local symplectomor-
phism can be chosen even G-equivariant. These observations are due to Kostant
[1, Chap. 1V, §1], [5, §22].

However, if we pass to the algebraic category and replace G with a reductive al-
gebraic group assuming M be a Hamiltonian G-variety with a G-stable Lagrangian
subvariety S, then the above equivariant local symplectomorphism may not exist,
even analytically. The reason is in the structure of isotropy representations.

Namely, for any p € S, the isotropy representation G, = T),(T*S) = T,S®T;'S
splits, i.e., T),S has a G,-stable complement. (Here S is regarded as the zero section
in T7*S.) However, it may happen that 7,5 has no Gp-stable complement in T, M.

Example. Let X be the variety of complete conics, which is the blowup of the space
PS5 of plane conics in P? along the set of double lines. The group G = SL3(C) acts
on X in a natural way, with the unique closed orbit Y. Now put M = T*X,
S = N*(X/Y). It can be shown that, for a general point p € S, T,S has no
G, -stable complement in T, M, where G, = G, is the identity component.

Despite this example, our main result states that certain important invariants
of a symplectic variety with a Hamiltonian reductive group action coincide with
those for the cotangent bundle of any invariant Lagrangian subvariety. Let us
introduce these invariants.

Definition. The corank of G — M is cork M = rkw|(g,y2 and the defect of G —~
M is def M = dim(gp) n (gp)“, where p € M is a general point and gp = T,(Gp).

These two invariants are closely related to the moment map. Here are the basic

properties:
(1) Kerd,® = (gp)“ for any p € M;

(2) Imd,® = (g,)*, where g, = LieG, and + denotes the annihilator;
(3) dim ®(M) = dim Gp for general p € M;
(4)
(5)
(

def M = dim ®(M)/G, i.e., the codimension of a general G-orbit in ®(M);
5) cork M = dim M — dim ®(M) — dim ¢(M)/G;

6) cork M + def M = dim M/G.

Now let G be a connected reductive group, M an irreducible Hamiltonian G-
variety, and S < M an irreducible G-stable Lagrangian subvariety. It follows from
(1) that ®(S) is a G-fixed point in g*. Since the moment map is defined up to a
shift by a G-invariant vector, we may and will assume that ®(S5) = {0}.

Theorem 1. ®(M) = &(T*5).
Corollary. cork M = corkT*S, def M = def T*S, and dim M /G = dim(T*S5)/G.

Here are the main ideas of the proof. The first one is to deform (or, rather,
contract) M to the normal bundle N = N(M/S), which appears to be isomor-
phic to T*S. This deformation is quite standard in algebraic geometry. What is
less standard is that the Hamiltonian structure on M deforms to the canonical
Hamiltonian structure on 7*S as well.
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The second idea is to use a foliation of horospheres on S in the description of
the images of moment maps. By definition, a horosphere is an orbit of a maximal
unipotent subgroup U < G. Suppose for simplicity that S is quasiaffine and
let Y < T*S be the conormal bundle to the foliation of generic horospheres.
Knop proved in [3] that ®U) = pg, GU = T*S, and ®(T*S) = Gpg, where
Py < G is the normalizer of a generic horosphere and py = Lie Fy. In order to
extend these results to M (instead of T*S), one needs a substitute for Y. It is
constructed by choosing Py-invariant functions Fi, ..., F}, on an open subset M c
M intersecting S whose skew gradients VFy, ..., VF,, are linearly independent in
N|s and spreading S along the trajectories of these Hamiltonian vector fields. It
is possible to perform this construction in a pure algebraic way and thus produce
a smooth subvariety YW < M containing an open subset of S. By comparing
W with U via deformation, we deduce the following result, which clearly implies
Theorem 1.

Theorem 2. ®W) = ps, GW = M, and ®(M) = Gy

We conclude this report by discussing a generalization of our results to coisotropic
S. Assume additionally that gz < (7,.5)%, Yz € S. Then deformation of M to
N still exists, but N is no longer symplectic, just Poisson. However, using similar
arguments, we can prove

Theorem 3. ®(M) = &(T*S5), dim M /G = dim N/G.

A generalization of this theorem to a wider subclass of coisotropic subvarieties
would give a simple proof of the following conjecture of Elashvili, which was verified
using case by case arguments by Yakimova, de Graaf, and Charbonnel-Moreau.

Claim. indg, = ind g, Vp € g*.

Recall that the index of a Lie algebra h = Lie H is defined as ind h = dim h* /H.
To deduce the claim from a generalization of Theorem 3, it suffices to note that
S = (G x G)p is a coisotropic subvariety in M = T*G acted on by G x G (via left
and right multiplication on G) and M /(G x G) ~ g*/G, N/(G x G) ~ g5 /G).
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Syzygies and toric varieties
HAL SCHENCK

We describe three questions on syzygies and toric varieties. The first two questions
concern the interplay between the geometry of an embedding and vanishing of
cohomology. The third question concerns a recent application: computing the
syzygies of a (possibly incomplete) linear system on a toric variety is a crucial step
in applying the method of approximation complexes to find the implicit equation(s)
of the image. A Cartier divisor D on a toric variety X is given by a collection
of rays of the fan ¥ satisfying certain conditions; the global sections of the line
bundle associated to D correspond to lattice points in a polytope Pp. These lattice
points correspond to Laurant monomials, yielding a map Xs — P(H®(D)). The
divisor D is very ample if this map is an embedding, and projectively normal if
S = Sym(H°(Ox(D))) surjects onto R = @,, ., H°(mD).

Problem: The Eisenbud-Goto conjecture. Let S = k[xo,...,x,] and
assume char(k) = 0. A main invariant of a projective variety X < Proj(S) is the
Castelnuovo-Mumford regularity, defined as the smallest j such that

H'(Ox(j —1i)) =0, foralli>1.

This condition may be rephrased as Tor?(S/Ix,k); = 0 for all t > i + j and
i > 1. In [8], Eisenbud and Goto conjecture that if Ix is a prime ideal containing
no linear form, then the regularity of S/Ix is bounded by deg(X) — codim(X).
This is true for curves [11] and smooth surfaces [14], but open in general. In the
setting of toric varieties, results of Peeva-Sturmfels [20] show the conjecture holds
in codimension two.

In [15], L’vovsky gives a combinatorial interpretation of the bound for monomial
curves: regularity is bounded by the sum of the two largest gap sequences. This
suggests that for general toric varieties, there might be a combinatorial proof
of the conjecture. Two ingredients will probably be useful here. First, in [16],
Maclagan-Smith define a multigraded version of regularity, which captures the
finer structure in the toric case. Second, in [13]|, Hochster gives a formula for
computing Tor;(S/I,k),, where b € Z™. This involves associating a simplicial
complex Ay to I, such that:

Tor(I,k)y ~ H (Ay).

An explicit description of A, may be found in [24].

Problem: Property N,. If Xy is smooth and D is very ample, is the result-
ing embedding by the complete linear system projectively normal? The answer is
yes if Pp has a unimodular cover [4] or is Frobenius split [19], but unknown in
general. Examples [3] show that the smoothness hypothesis is necessary, even for
threefolds (the case of surfaces is easy). Taking this question one step further, if
the embedding is projectively normal, is the resulting ideal generated by quadrics
(again, assuming smoothness)? These are the first steps in a more general con-
struction. Suppose S = Sym(H°(Ox(D))) surjects onto P __, H*(mD) = R,
and let F, be a minimal free resolution of R over S.

meZ
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Definition 1. A very ample divisor is said to satisfy property N, if Fy = S, and
F,~®S(—q—1) forallge {1,...,p}.

Thus, Ny means projectively normal, N; means that the homogeneous ideal is
generated by quadrics, N2 means the minimal syzygies on the quadrics are linear,
and so on. In [10], Green used Koszul cohomology to show that on a curve of
genus g, if deg(D) = 2g + p + 1 then D satisfies N,.

In the toric setting, in [9], Ewald-Wessels show that if D is an ample divisor,
then (dim(X) — 1)D satisfies property No; this is also established by Liu-Trotter-
Ziegler, Ogata-Nakagawa, and Bruns-Gubeladze-Trung. Building on this, Hering-
Schenck-Smith show in [12] that (dim(X)—1+p)D satisfies property N, and prove
this bound is in general tight. With the additional assumption that dim(X) > 3,
Ogata [17] improves the bound by one. However, in general these bounds are far
from optimal, and perhaps finer combinatorial data can be used to improve the
picture. For example, [22] shows that a lattice polygon P = HY(Ox (D)) satisfies
property N, if p < [0(P)| — 3, where |0(P)| is the number of lattice points in the
boundary of P; while [21] uses the complex A} discussed above to obtain results
on N, for Segre embeddings. To give an idea of just how far current knowledge
is from being optimal, we close with a conjecture of Ottaviani-Paoletti [18], who
show that on P, O(d) does not satisfy N3g_o, and they make

Conjecture 1. The d-uple Veronese embedding of P" satisfies N3q_3.

Problem: Implicitization of toric hypersurfaces. A central problem in
geometric modeling is to find the implicit equations for a curve or surface defined
by a regular or rational map. Suppose D is a divisor and U < H°(Ox (D)) is
a basepoint free subspace with dim(U) = dim(X) + 2, such that the image of
X € P(U) is a hypersurface. Standard methods for finding the implicit equation
of X such as Grobner bases or resultants tend to be quite slow. The best method
uses an approximation complex Z, pioneered by Busé-Jouanolou [5] and Busé-
Chardin [6].

Two of the most commonly studied cases in geometric modelling are when
X = P? or P! x P!. Cox-Goldman-Zhang obtain results on these surfaces in [7],
and Botbol-Dickenstein-Dohm explore toric surfaces in general in [2]. Botbol [1]
studies higher dimensional torics. The method of approximation complexes stems
from understanding the defining equations of a Rees algebra, and with suitable
hypotheses on U, it can be shown that the determinant of the approximation
complex Z is a power of the implicit equation for the hypersurface. However, in
the toric setting, Botbol shows that the implicit equation is often given by a single
minor of the first differential in the approximation complex. Knowing the first
matrix in the approximation complex is exactly equivalent to knowing the module
of first syzygies on the space of sections U, considered as an ideal in the Cox ring
of X. In the very concrete case of four sections of Op1i,p1(2,1), [23] shows that
there are only six possible numerical types of bigraded minimal free resolution,
and that the implicit surface is singular along a union of lines exactly when Iy has
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a linear first syzygy. It would be very interesting to have a better understanding
of the multigraded syzygies of Iy and the geometry of the implicit hypersurface.

[1]
2]

3]
[4]
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The automorphism group of a complete rational variety with torus
action of complexity one

JURGEN HAUSEN
(joint work with Ivan Arzhantsev, Elaine Herppich, Alvaro Liendo)

Demazure [3] and Cox [2] investigated the automorphism group of a complete
normal toric variety and gave a description of its roots in terms of the defining
combinatorial data, i.e. the fan. Our aim is to extend these results to the more
general case of a normal complete rational variety X coming with an effective torus
action T'x X — X of complexity one, i.e. the dimension of T is one less than that
of X.

Our approach to the automorphism group of X goes via the Cox ring R(X)
which can be defined for any normal complete variety with finitely generated di-
visor class group Cl(X). The presence of the complexity one torus action im-
plies that R(X) is of a quite special nature: generators, relations as well as the

Cl(X)-grading can be encoded in a sequence A = ayg,...,a, of pairwise linearly
independent vectors in C? and an integral matrix
—ly &1 ... 0 O
P — : : P
—lo 0 ... I O
dy dv ... d. d

of size (n+m) x (r+ s), where [; are nonnegative integral vectors of length n;, the
d; are s x n; blocks, d’ is an s x m block and the columns of P are pairwise different
primitive vectors generating the column space Q"** as a convex cone. Conversely,
the data A, P always define a Cox ring R(X) = R(A, P) of a complexity one
T-variety X. The dimension of X equals s + 1 and the acting torus T has Z°
as its character lattice. The matrix P determines the grading and the exponents
occuring in the relations, whereas A is responsible for continuous aspects. For
details, we refer to [4, 5].

The crucial notion for the investigation of the automorphism group Aut(X) are
the Demazure P-roots; roughly speaking, these are finitely many integral linear
forms u on Z"** satisfying a couple of linear inequalities on the columns of P.
More precisely, denoting by v;j,vr € Z""* the columns of P, we define them as
follows.

(1) A wvertical Demazure P-root is a tuple (u, ko) with a linear form u on Z"+*
and an index 1 < kg < m satisfying
(u,vi57 = 0 for all 4, j,
{uyvgy = 0 for all k # ko,
(uyvg,y = —1.

(2) A horizontal Demazure P-root is a tuple (u,ig,i1,C), where u is a linear
form on Z" % iy # iy are indices with 0 < ig,4; < r, and C = (co, ..., ;)
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is a sequence with 1 < ¢; < n; such that

lie, = 1 for all 7 # ig, i1,
O’ 1 # Z.Oail?
(U, Vie;) = { =g
—1, =11,
lij; 'L'séi()vil? j#Ci,
<U,'Uij> > 0, 1 =10,11, J # Ci
0, 1= iOa -7 = Gi,
lu,v) = 0 for all k.

In particular, if P is given explicitly, then the Demazure P-roots can be easily
determined. Our first main result expresses the roots of the automorphism group
Aut(X) in terms of the Demazure P-roots.

Theorem. Let X be a nontoric normal complete rational variety with an effective
torus action T x X — X of complexity one. Then Aut(X) is a linear algebraic
group having T as a mazximal torus and the roots of Aut(X) with respect to T are
precisely the Z°-parts of the Demazure P-roots.

The basic idea of the proof is to relate the group Aut(X) to the group of graded
automorphisms of the Cox ring. This is firstly done more generally in the more
general setting of Mori dream spaces, i.e. normal complete varieties with a finitely
generated Cox ring R(X). The grading by the divisor class group Cl(X) defines an
action of the characteristic quasitorus Hx = Spec C[Cl(X)] on the total coordinate
space X = SpecR(X) and X is the quotient of an open subset XcX by the
action of Hx. The group of Cl(X)-graded automorphisms of R(X) is isomorphic
to the group Aut(X, Hx) of Hx-equivariant automorphisms. Moreover, the group
Biry(X) of birational automorphisms of X defined on an open subset of X having
complement of codimension at least two plays a role.

Theorem. Let X be a Mori dream space. Then there is a commutative diagram
of morphisms of linear algebraic groups where the rows are exact sequences and
the upwards inclusions are of finite index:

1 —— Hx —— Aut(X, Hx) — Biry(X) ——=1

]

l—=Hx —=Auwt(X,Hy) —— Aut(X) ——1

This means in particular that the unit component of Aut(X) coincides with that
of Biry(X) which in turn is determined by Aut(X, Hy), the group of graded auto-
morphisms of the Cox ring. Coming back to rational varieties X with torus action
of complexity one, the task then is a detailed study of the graded automorphism
group of the rings R(X) = R(A, P). The key result is a purely algebraic descrip-
tion of the “primitive homogeneous locally nilpotent derivations” on R(A, P). The
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proof of the main theorem then relates the Demazure P-roots via these derivations
to the roots of the automorphism group Aut(X).

In the second main result we describe the structure of the semisimple part
Aut(X)*® < Aut(X) of the automorphism group; recall that the semisimple part
of a linear algebraic group is a maximal connected semisimple subgroup. We call
the Z®-part a of a Demazure P-root a semisimple P-root if also —« is the Z*-part
of a Demazure P-root and we denote the set of semisimple P-roots by ®p.

Theorem. Let X be a nontoric normal complete rational variety with an effective
torus action T x X — X of complexity one. Then ®p is the root system of the
semisimple part Aut(X)% < Aut(X) and we have a splitting ®p = OV @ her
with

(I)\]gert = @ Amp—la (I)Ilgor € {@7A17A27A37A1@A1’B2}’
Cl(X)

where mp s the number of invariant prime divisors in X with infinite T -isotropy
that represent a given class D € CI(X). The numbers mp as well as the possibilities
for @1},‘” can be read off from the defining matriz P.

The last theorem implies, for example, that for every nontoric Mori dream
surface the group Aut(X)? is solvable. We apply the results moreover to almost
homogeneous rational C*-surfaces X of Picard number one, where almost homoge-
neous means that Aut(X) has an open orbit in X. It turns out that these surfaces
are always (possibly singular) del Pezzo surfaces and, up to isomorphy, there are
countably many of them. In the case that X is log terminal with only one sin-
gularity, we give classifications for fixed Gorenstein index. We consider moreover
varieties of dimension three that are almost homogeneous under the action of a
reductive group and additionally admit an effective action of a twodimensional
torus. We explicitly describe their Cox rings and list all those having a reductive
automorphism group.
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Kahler-Einstein metrics on symmetric Fano T-varieties
HENDRIK SUSS

A Kahler metric on a complex manifold is called Kdhler-Einstein if the correspond-
ing Kéhler form and the Ricci form of the manifold differ only by an constant fac-
tor. In this case the canonical class has to be ample, trivial or anti-ample. For the
first two cases the existence and uniqueness of those metrics are important results
of Aubin [1] and Yau [2]. Hence, in the case of a Calabi-Yau variety or a variety of
general type we have a canonical metric associated to the corresponding complex
manifold. In the case of a Fano variety the situation is much more complicated.
There are examples of Fano varieties admitting such a metric and of those which
do not. There are either sufficient or necessary criteria to test a variety for the
existence of a Kahler-Einstein metric, but up to now no algebraic characterization
of this property exists, although it is expected that it corresponds to some notion
of stability [3, 4]. One sufficient criterion was given by Tian [3] in terms of so called
a-invariants of the manifold X, which are known as log-canonical thresholds in the
algebraic setting. For toric Fano varieties Batyrev and Selivanova developed in [5]
the notion of symmetric toric varieties and proved the existence of Kahler-Einstein
metrics on them, by using Tian’s criterion. The aim of this work in progress is to
generalize their result to a more general class of varieties.

Assume that a torus T of dimension acts effectively on a complete variety X.
The set of points with disconnected stabilizers on X is called the exceptional set
of the torus actions. The group of T-equivariant automorphisms Auty(X) acts
naturally on the character lattice M = X(T'). If there is no fixed point of this
action except from the origin, then X is called symmetric with respect to the
torus action. If dim(X) = dim(d) — 1 then the torus action is called to be of
complexity one. In this case a Fano variety X has to be rational and one obtains
a rational quotient map 7 : X --+» X /T = P!, which is defined outside of a subset
of codimension at least two. Moreover, the equivariant automorphisms descend to
automorphisms of the quotient, hence there is also a natural Auty(X)-action on
P!. We are now able to state the main result.

Theorem. Let X be a symmetric complexity-one Fano variety. If one of the
following conditions is fulfilled:

(1) The exceptional set contains three connected components,

(2) the exceptional set contains two connected components and these are swapped
by an element of Autp(X),

(3) Autp(X) acts without fized points on P!,

then X is Kdhler-FEinstein.
This is a generalization of the theorem by Batyrev and Selivanova. The result is

obtained by calculating log-canonical thresholds using the description of algebraic
torus actions via polyhedral divisors, given in [6].
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Example. Consider the quadric threefold X = V(z1y1 + w2y + 22) < PL. The
change of variables x; — vy; induces an involution of X. The induced automor-
phism of the character lattice of the acting torus is given by u — —u and fixes
only the trivial character. Although Q) is Kdhler-Einstein we are not able to apply
the theorem, since the exceptional set consists only of one component, which is an
open subset of V(z) n X. Nevertheless, blowing up the two torus invariant conics
V(zi,yi) 0 X, i = 1,2 gives two additional exceptional components with generic
stabilizer Z/27. Moreover, the conics are obviously invariant under the involution,
hence the involution lifts to an automorphism of the blowup. Now, we are in case
(1) of the theorem and infer the existence of a Kdhler-FEinstein metric on X.
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(Non-)Displaceable Lagrangian Toric Fibers
MIGUEL ABREU

(joint work with Matthew Strom Borman, Leonardo Macarini, Dusa McDuff)

1. INTRODUCTION

Let (M,w) be a 2n-dimensional toric symplectic manifold, with moment map
w: M — R™ and moment polytope A := p(M) < R™ defined by

reAsli(x):={r,viy+a; =20, i=1,...,d,

where d is the number of facets of A, each vector v; € Z" is the primitive integral
interior normal to the facet F; of A and the a;’s are real numbers that deter-
mine [w] € H?(M;R). Recall that (M,w) is monotone, i.e. [w] = A\(27ci(w)) €
H?(M;R) with A € R*, iff A = R” can be defined as above with a; = -+ - = ag = .
Such a A will be called a monotone polytope and, in this case, 0 € A.

For every u € A := interior(A), we have that the fiber T, := p~'(u) is a
Lagrangian torus orbit in (M,w). When A is monotone T} is called the centered,
special or monotone torus fiber.
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A natural symplectic topology question is which of these Lagrangian tori can
be displaced by a Hamiltonian isotopy, i.e.

when does there exist ¢ € Ham(M,w) such that ¢(7y,) N Ty, = &?

Regarding this question, I report on recent joint work with Leonardo Macarini [1]
on non-displaceability and with Matthew Strom Borman and Dusa McDuff [2] on
displaceability.

2. SYMPLECTIC REDUCTION AND NON-DISPLACEABILITY

In [1] we remark how one can use simple symplectic reduction and cartesian
product considerations to go from basic non-displaceability examples to much more
sophisticated ones. Let us describe the symplectic reduction consideration and one
of its applications.

Let (M, &) be a toric symplectic manifold of dimension 2N with T-action gen-
erated by a moment map i : M — A ¢ (RN )*. As before, given u € 1nt(A) let
T, = ji~'(u) denote the corresponding T-orbit, a Lagrangian torus in M. Let
K c 'TI‘ be a subtorus of dimension N — n determined by an inclusion of Lie al-
gebras ¢ : RV=" — RV, The moment map for the induced action of K on M is
ik = t*ofi: M — (RN"™)*. Let ¢ € jig(M) < (RN_”) be a regular value
and assume that K acts freely on the level set Z := fi'(c) < M. Then, the
reduced space (M := Z/K,w) is a toric symplectic manifold of dimension 2n with
T := T/K-action generated by a moment map p: M — A c (R™")* =~ ker(¢*) that
fits in the commutative diagram

M>Z A c (RV)*

M —E s Ac RM)*
where 7 is the quotient projection and the vertical arrow on the right is the
inclusion (R")* = ker(t*) < (RN=m)*, Note that given T, := pt(u), with
u € int(A) < int(A), we have that 7=(T},) = Ty,.

Proposition 2.1. Let 1) € Ham(M,w). Then there is Y € Ham(M, LD) such that
’(/J(Z) Z and ©(Y(p)) = Y(r(p)), VD€ Z. Moreover, if p(T,) Ty = & then

O(Ty) n Ty = &. Hence, if T,  (M,&) is non-displaceable, then T,  (M,w) is
also non-displaceable.

Remark 2.2. This idea of using symplectic reduction to prove intersection prop-
erties of Lagrangian submanifolds was used by Tamarkin in [13]. It is also present
in the work of Borman [4] on reduction properties of quasi-morphisms and quasi-
states (see also [5]).

To apply this proposition, consider the most basic non-displaceability result in
this context.
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Theorem 2.3 ([3, 6]). For (CP",wrs) we have that Ty = Clifford torus is non-
displaceable.

The following result follows by straightforward application of Proposition 2.1.

Theorem 2.4. Let (M?*",w) be a monotone toric symplectic manifold and let
Vi,...,Vqg € Z"™ denote the primitive integral interior normals to the facets of its
monotone polytope P < (R™)*. If Zle v; = 0 then the special torus fiber Ty is
non-displaceable.

Proof. Since Zle v; = 0 we have that M can be obtained as a symplectic reduction

of CP*. The monotonicity condition implies that this reduction goes through
the Clifford torus. O

Remark 2.5. The zero-sum condition can be removed by using weighted projec-
tie spaces (with work of Woodward [14] and forthcoming work of Cho and Pod-
dar [8]), obtaining the general result in monotone case originally due to Entov-
Polterovich [9], Cho [7] and Fukaya-Oh-Ohta-Ono [10].

Remark 2.6. With the help of another basic example, i.e. the total space of
the line bundle O(—1) — CP!, and using also a simple cartesian product con-
sideration, one can also prove interesting non-displaceability results on certain
non-monotone and/or non-Fano examples, such as:

- a continuum of non-displaceable torus fibers on M = CPQﬁQ@Q with a
certain non-monotone symplectic form (cf. Example 10.3 in [11]).

- a particular non-displaceable torus fiber on the family of non-Fano ex-
amples given by Hirzebruch surfaces Hy := P(O(—k) @ C) — CP', with
2< keN (¢f Example 10.1 in [11]).

3. DISPLACEABILITY VIA EXTENDED PROBES

In [2] we introduce the method of extended probes, which is a way of displacing
Lagrangian torus fibers in toric symplectic manifolds. This is a generalization
of McDuff’s original method of probes [12]. Let us briefly recall the method of
probes, describe the simplest extended probes and present some applications.

Definition 3.1. A probe P in a moment polytope A = p(M) < R™ is a line
segment in A based at bp € Fp = interior of a facet Fp < A, with primitive
direction vector vp € Z™ such that {vp,,vpy = 1. The length ¢(P) of P is defined
as {(P) :=max{te RT : bp +tv, e Pc A}. A probe P is symmetric if it exits
A at an interior point of a facet Fp with (vp,,vp) = —1.

Theorem 3.2 ([12]). Ifu = bp + tv, with t < ¢(P)/2, then the Lagrangian torus
fiber T, = u=(u) is displaceable. Such Lagrangian torus fibers are said to be
displaceable by probes.

Remark 3.3. When P is symmetric this displaceability result is an tmmediate
corollary of Proposition 2.1.
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As one of the applications of this theorem, McDuff shows that for monotone toric
symplectic manifolds of dimension less than or equal to six, the only Lagrangian
torus fiber that cannot be displaced by probes is the special centered torus fiber
Ty. Hence, in these examples the method of probes complements perfectly the
known non-displaceability results.

The simplest examples where that is not the case are odd Hirzebruch surfaces
Hsp. 1 for k > 1. where there is only one known non-displaceable fiber and a con-
tinuum of fibers that cannot be displaced by the standard probes of Theorem 3.2.
One can improve on this using the simplest extended probes introduced in [2],
namely symmetric extended probes.

Definition 3.4. A symmetric extended probe P is formed by deflecting a probe P
with a symmetric probe Q (Figure 1): P =P u Q u P’ < A. The length {(P) of
P is defined as the sum £(P) := £(P) + £(P").

FI1GURE 1. Two ways of using symmetric extended probes.

Theorem 3.5. If
(i) u = b, + tvp € P with t < L(P)/2, or
(i) u = 2/ + tvp: € P" with ((P) +t < {(P),
then the Lagrangian torus fiber T, = pu~1(u) is displaceable (Figure 1).

This theorem can be used to prove that, in fact, Hogi1 has only one non-
displaceable torus fiber when k£ > 1.

In [2] we consider more general notions of extended probes and use them to
study displaceability of Lagrangian torus fibers on several 4-dimensional toric
symplectic manifolds and orbifolds, both compact and non-compact. Although
we improve quite a bit on the previously known results, in general these displace-
ability methods are still far from being able to perfectly complement the known
non-displaceability results.
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Multiplicity free Hamiltonian manifolds
FRIEDRICH KNOP

In 1988, Thomas Delzant, [2], proved his celebrated theorem which lies at the basis
of much of this conference:

Theorem. Let T be a torus and M a compact connected Hamiltonian T-manifold
with moment map m : M — t*. Assume that the T-action on M is effective and
that dim M = 2dimT. Then M 1is uniquely determined by its momentum image
Prr = m(M) < t. Moreover, given P < t there exists M with P = Py if and
only if P is an X(T')-simple convex polytope.

(A polytope is called X (T')-simple, if for all vertices a € P, the cone R>o(P —a)
is generated by an integral basis of the character group X' (7).)

In the talk, we presented a generalization of Delzant’s theorem to non-commu-
tative Lie groups and even loop groups.

Let K be a compact, connected Lie group and M a connected compact Hamil-
tonian K-manifold with moment map m : M — ¢*. Let t < ¢ be a Cartan
subalgebra and t, < t* a Weyl chamber. Then M is called multiplicity free if
m/K : M/K — ¢*/K is injective. Its momentum polytope is Pyr := m(M) n t4
which is indeed a convex polytope by Kirwan, [4]. The principal isotropy group
S is the isotropy group K, of a generic point = € m=1(t,).

The non-commutative generalization of the uniqueness part of Delzant’s theo-
rem is:
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Theorem (Knop [5]). Let K be a compact connected Lie group and M a compact
connected multiplicity free Hamiltonian manifold. Then M s uniquely determined
by its momentum polytope Pyr and its principal isotropy group Spy.

This theorem has been conjectured by Delzant in [3] after having it verified for
tori and groups of rank at most two.

The proof proceeds in two steps, a local part and a local-to-global part. For
x € M let m4(x) € t; be the unique intersection of the coadjoint orbit Ad K m(x)
with t,. Then m_ is a continuous map from M to t, with image P;. The local
part is the statement that every a € Pys has a neighborhood U such that U, Py,
and Sy determine m7 ' (U) uniquely. This assertion can be shown to be equivalent
to a purely invariant theoretic statement (the former “Knop conjecture”):

Theorem (Losev [7]). Let G be a connected reductive complex algebraic group and
X a smooth affine spherical G-variety. Then X is uniquely determined by the set
of highest weights occurring in the coordinate ring C[X].

The local-to-global argument is the following statement:

Theorem (Knop [5]). For every open subset U of P define
Ay (U) := Aut(m 1 (U))

(automorphisms of Hamiltonian manifolds). Then Ay is a sheaf of abelian groups
on P with
H' (P, An) =0 for all i > 1.

The case 7 = 1 in conjunction with Losev’s theorem implies Delzant’s conjecture.
Vanishing for ¢ = 2 implies a generalization of the existence part of Delzant’s
theorem, namely a characterization of those pairs (Par, Spr) which actually occur.
The answer is in terms of smooth affine spherical varieties, see [5], Thm. 11.2.

Using similar methods, one can prove an extension of Delzant’s conjecture to
loop groups. For this assume K to be simply connected.

Let LK be the group of K-valued loops and let LK be its central extension.
Let £1€* < LE* be the hyperplane of elements with central charge equal to 1. Tt
can be identified with the space of K-invariant connections on the trivial bundle
K x S — S'. Then Meinrenken-Woodward, [8], define the notion of a level-1-
Hamiltonian LK-manifold whose moment map has values in ,Elé*. There is a
finite dimensional version of this theory due to Alexeev-Malkin-Meinrenken, [1],
the so called K -valued moment maps or quasi-Hamiltonian K-manifolds.

Let 2 < t; be the fundamental alcove.

Theorem (Knop). Multiplicity free level-1-Hamiltonian LK -manifolds (or, equiv-
alently, quasi-Hamiltonian K-manifolds) are classified by L-simple pairs (P, A)
where P < A is a convex polytope and A is a discrete subgroup of t*.

Here, L-simplicity is a certain explicit condition on (P, A) which is local on P
(like X (T')-simplicity above) and which involves knowledge of all smooth affine
spherical varieties. The latter have been classified by Knop-Van Steirteghem
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[6]. This way, it is possible to construct a plethora of new examples of quasi-
Hamiltonian manifolds.
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Toric geometry and the Semple-Nash modification
BERNARD TEISSIER
(joint work with Pedro Daniel Gonzélez Pérez)

The Semple-Nash modification of an algebraic variety over a field of characteristic
zero is a birational map v: NX — X such that v*Q% has a locally free quotient
of rank d = dimX and which is minimal for this property. It is unique up to
unique X-isomorphism. Geometrically the set-theoretic fiber |v~!(z)]| is the set of
limit positions at x of tangent spaces to X at non singular points tending to x.
In [6] Semple asks whether iterating this operation leads to a non singular model
of X. The same question was asked by John Nash in the late 1960’s. Nobile
proved in [5] that the map v is an isomorphism if and only if X is non singular,
so that to answer positively Semple’s question it suffices to prove that for some k
we have N¥*1X = N*X. The case of dimension one is easily settled positively,
and Gérard Gonzalez Sprinberg proved in [4] that iterating the operation of nor-
malized Semple-Nash modification (i.e., at each step, the modification followed
by normalization) eventually resolves singularities of 2-dimensional normal toric
varieties. This eventually led to the best result on this problem to this day, which
is due to Spivakovsky (see [7]): iterating the normalized Semple-Nash modifica-
tion eventually resolves singularities of normal surfaces over an algebraically closed
field.

Our basic idea is that in higher dimensions it should be easier in the toric
case to deal with the Semple-Nash modification without normalization. Gonzalez
Sprinberg showed that the Semple-Nash modification, in characteristic zero, is
isomorphic with the blowing up of the logarithmic jacobian ideal, which is an
equivariant sheaf of ideals defined as follows:
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Let k be a field and let I be a finitely generated subgroup of a lattice M ~
Z¢. Denote by (7;)ier a set of generators. The logarithmic jacobian ideal is
the monomial ideal of the semigroup algebra k[t'] generated by the elements
tYi Tt Yia for all (41,...,1q) © F such that v, A ... A7, # 0 in Mg.

Since we wanted to describe precisely blowing-ups (and not only normalized
blowing-ups) and modifications we wrote down the basic theory of toric varieties
without any assumption of normality or of projectivity. However Sumihiro’s theo-
rem (see [8]) on the existence of a covering by invariant affine varieties of a variety
on which a torus of the same dimension acts with a dense orbit fails without the
assumption of normality, and we have to set the existence of such a covering as
part of the definition of a toric variety. Then an abstract toric variety has a com-
binatorial description: it corresponds to certain semigroups in the convex duals
of the cones of a fan, which satisfy a natural gluing-up condition. This general-
izes the definition of [2] which concerns toric varieties equivariantly embedded in
projective space.

Given a rational strictly convex cone o0 € Nr and a finitely generated semigroup
I', such that ZI' = M and R>oI' = 6 € Mgr one has the affine toric variety
Speck[t'] with its torus TM = Speck[t]. For a face 7 < o, the lattice M (;T)
spanned by I' n 7+ is in general a sublattice of finite index in M (7) = M n7+. This
corresponds to the fact that the normalization map is equivariant and its restriction
to an orbit of the normalization Speck[t"™] may not be one to one. The variety
TrAT = Speck[tF“TL] with torus 7™ (751 is an orbit closure in Speck[t!].

The semigroup I'; = I'+ M (7;T") is again a finitely generated semigroup, gener-
ating the group M and with the property that the cone R>oI'; which it generates
in MR is equal to 7.

A toric variety is a triple (IV, 3, T') consisting of a lattice IV, a fan ¥ in Ng and
a family of subsemigroups of the dual lattice M of N,

I' = (FU)UGZ

such that:

e The group ZI', generated by I',, is equal to M for all o € X.
e The cone R>(I', generated by I', is equal to ¢ for all o € 2.
e Faralloc € ¥ and 7 < o, we have I'; =T, + M (7;T,).

The toric variety T% = Upess T s is then obtained by gluing up the affine toric
varieties 7' as in the normal case.

Now if we define an abstract toric variety as an irreducible separated algebraic
variety X over k equipped with an algebraic action of a torus T™ < X of the same
dimension extending the action of the torus on itself by translation and covered
by finitely many open affine invariant subsets, then we have:

Theorem 1. (See [3]) An abstract toric variety is equivariantly isomorphic to a
variety TL .

In fact, with the natural definitions of toric morphisms, this sets up an equiva-
lence of categories, see [3] for details.
The logarithmic jacobian ideals sheafify into an equivariant sheaf of ideals on T4, .



26 Oberwolfach Report 21,/2012

Given a monomial ideal I = (t",... t") in k[t'], it determines a piecewise
linear function ord;: ¢ — R by v — miny,e;{v,m). The cones of linearity o;
correspond to the vertices (mq,...,mg) in & of the Newton polyhedron of I and

they are the cones of maximal dimension of a fan ¥; with support |o|. If to each
cone o; < o we attach the semigroup I'; = I' + {((n; — m;);j=1,...s) < d;i n M and
attach to the faces of the o; the semigroups corresponding to the gluing up rules
explained above, we see that we have a triple (N, X, I';) corresponding to a toric
variety Tg ; endowed with an equivariant proper map to T'. It is the blowing-
up of the ideal I. This construction globalizes into the blowing up of a sheaf of
equivariant ideals on a toric variety, and we can apply it to the sheaf of logarithmic
jacobian ideals to obtain an analogue of the Semple-Nash modification, which is
defined over any field.

The analogue in the toric case, in any characteristic, of Nobile’s result is an

easy combinatorial lemma: the blowing up of the logarithmic jacobian ideal is an
isomorphism if and only if the toric variety TL is non singular.
So iterating the logarithmic jacobian blowing up of a toric variety T% produces
a sequence of refinements X) of the fan ¥, with attached systems of semigroups
T'U). The goal is to prove that they stabilize: the refinement stops only when the
space is non singular, as we have seen.

Ewald and Ishida have introduced in [1] the analogue in toric geometry of
the Zariski-Riemann manifold in algebraic geometry: it is the space ZR(M) of
(additive) preorderings < on M in the following sense:

e Vm,neM, m<norn<m.
e m<nandn<pimply m <p.
e m<nimpliesm+p<n+p, Vpe M,
endowed with the topology defined by the basis of open sets

UB) ={ve ZR(M)/I c L(v)},

where 6 is a rational convex cone of Ng and L(v) is the semigroup of elements of
M which are >, 0, or non negative for the preorder v.

With this topology, the space ZR(M) is quasi compact, and it behaves like
a space of valuations. In particular the preorders defined by vectors v of the
dual lattice N of M, as m <, n <= {(m,v) < {(m,v) correspond to divisorial
valuations. A preorder v € ZR(M) picks a cone in each refinement »U) of ¥, and
to prove that the sequence of toric varieties (N, »U) U )) stabilizes, it suffices to
check that for every preorder it stabilizes along the sequence of cones picked by
that preorder. Then we have the following partial result:

Theorem 2. (See [3]) The sequence (N, %) T'W)) stabilizes for any order that
18 lexicographic with respect to some basis of N. In particular it stabilizes for the
?divisorial” preorders associated to vectors of N.
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Complexity one Hamiltonian manifolds
SUSAN TOLMAN
(joint work with Yael Karshon)

Let M be a a compact, connected n-dimensional manifold, equipped with a
symplectic form w € Q?(M). Let a torus T ~ (S)* act (faithfully) on M, pre-
serving w. Assume that there exists a moment map ®: M — t*, where t* is the
dual of the Lie algebra of T'. Then the moment image ® (M) is a convex polytope.
Moreover, for any regular value a € M, the reduced space M,eq := ®1(a)/T is
a 2(n — k)-dimensional symplectic orbifold. In particular, k < n.

If Kk =n, then (M,w, ®) is a symplectic toric manifold; these are classified.

Theorem (Delzant). The map M — ®(M) induces a one-to-one correspondence
between symplectic toric manifolds and a certain class of convex polytopes, called
“Delzant polytopes.”

The next case is when k& = n — 1. In this case, we say that (M,w,®) is a
complexity one space; moreover, M is tall if the the preimage ®~!(a) is not a
single orbit for any a € t*. Our goal is to classify tall complexity one spaces (up
to equivariant symplectomorphisms that preserve the moment map).

Note: The case n = 2 is due to Karshon [1], while in the algebraic case the
classification was completed by Timashév [4]

We will begin by giving several examples of complexity one spaces.

Example 1. Given a non-negative integer g, let ¥, be a Riemann surface of genus
g. Let M = S? x Yg, with the product symplectic structure. Finally, let St act by
rotations on the first factor.

Example 2. Suppose that (S1)™ acts on (M,w) with moment map J: M — (R™)*,
so that (M,w, J) is a symplectic toric manifold. Then (M,w,poJ) is a complexity
one space for any rational projection p: (R™)* — t*. Moreover, it is tall exactly
if p~Y(a) n J(M) is a segment (and not a point) for all a € ®(M). We will
particularly focus on two examples:
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(a) Consider the 6-dimensional symplectic toric manifold with
J(M) = {(xay,z) € [_373] X [_252] X [1a4] ‘ |$| <2 and |y| < Z},

and define p: R3 — R? by p(x,y,z) = (z,y). The moment image and
critical values for ¥ = po J appear in Figure 1.

(b) The moment image and critical values for an analogous 8-dimensional
example appear in Figure 2.

...........................................................

FIGURE 1. Moment image and critical values for Example 2a

)

FIGURE 2. Moment image and critical values for Example 2b

We will now describe the invariants of tall complexity one spaces.

The Liouville measure on M is given by integrating the volume form w” /n! with
respect to the symplectic orientation; the Duistermaat-Heckman measure as-
signs the value Squ(A) w™/n! to a subset A < t*. Note that the Duistermaat-

Heckman measure determines the moment image ® (M), because the moment im-
age is the support of the Duistermaat-Heckman measure.

Next, let Stab(z) < T denote the stabilizer of x € M, and let stab(x) denote
its Lie algebra. If ®(x) lies in the interior of a face F' of the polytope ®(M), then
stab(z) contains (Tq)(x)F)o, the annihilator to the tangent space to F' at ®(x).
We say that the orbit T" - x is exceptional if stab(x) # (TQ(m)F)O, or if Stab(z)
is not connected. Let Mex. € M /T be the set of exceptional orbits. Two sets
of exception orbits Mex. and M/ . are equivalent if there is a homeomorphism
between them that preserves the moment map and takes each exceptional orbit
to another exceptional orbit with the same stabilizer and isotropy representation.
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Note that, in Example 1, Moy = &, in Example 2a, M. is homotopic to S!, and
in Example 2b, it is homotopic to S2.

The next invariant, the genus, is the integer from the following proposition. In
Example 1, the genus is g, while in Example 2, the genus is 0.

Proposition 1. There exists a non-negative integer g and a homeomorphism
U: M/T — ¥, x (M) such that m o ¥ — @, where ¥, is a Riemann surface
of genus g and m: ¥y x t* — t* is the natural projection.

Finally, a painting is a map f: Mexc — 2,4 such that f x ®: Meyxe — 3, x t* is
one-to-one. (In particular, if ®: Mcy. — t* is one-to-one, every map f: Mexe — 2,
is a painting.) Moreover, two paintings are equivalent if — up to an orientation
preserving diffeomorphism of ¥, — they are isotopic through paintings. By the
proposition above, there is a painting associated to each complexity one space. In
Example 1, since Meyx. = ¢, the painting is trivial. In Examples 2a and 2b, the
painting is the constant map.

We can now state our main theorems [2, 3].

Theorem 1. Two tall complexity one spaces are isomorphic exactly if they have
the same (or equivalent) Duistermaat-Heckman measures, exceptional orbits, genus,
and paintings.

Theorem 2. Given a tall complexity one space M, a natural number g, and a
painting f: Mexc — X4, there exists a tall complexity one space M’ with the same
(or equivalent) Duistermaat-Heckman measure and exceptional orbits as M, but
with genus g and painting f.

These theorems are proved in two stages. First, we classify tall complexity one
spaces over small subsets of t*. Then we study how they can be glued together.

Let’s apply these theorems to our examples. In Example 2a, M. is homotopic
to S1. Hence, since 71(S?) is trivial, there is a unique tall complexity one space of
genus 0 with the same Duistermaat-Heckman measure and exceptional orbits as
Example 2a. On the other hand, if g > 0 then 71 (X,) is infinite; there are infinitely
many tall complexity one space of genus g with the same Duistermaat-Heckman
measure and exceptional orbits as Example 2a. In Example 2b, however, My is
homotopic to S?. Hence, since 72(5?) is infinite and 7 (X,) is trivial for g > 0,
the situation is reversed. There are infinitely many tall complexity one spaces for
g = 0 and a unique one for g > 0.

Note: In fact, we can describe exactly which Duistermaat-Heckman measures
and exceptional orbits arise in this way; see [3].

Note: We believe that analogous theorems apply to all complexity one spaces,
not just tall ones. However, we have not worked out all the details of the general
case, which will rely on Smale’s theorem on the diffeomorphisms of S2.

Finally, I believe that I can prove the following.

Claim. If a tall complexity one space (M,w,®) admits an invariant Kdahler struc-
ture, the painting is (up to equivalence) constant on each component of Mexc.
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In particular, at most one tall complexity one space with a given Duistermaat-
Heckman measure, exceptional orbits, and genus admits an invariant Kahler struc-
ture. In most cases, none will. The proof will roughly follow the same argument
as in
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Flips and antiflips of P-resolutions of CQS
JENIA TEVELEV

This is a report on a joint work with Paul Hacking and Giancarlo Urzua. Mo-
tivation comes form the study of the compact moduli space of stable algebraic
surfaces constructed by Kolldr and Shepherd-Barron [KSB88] and Alexeev. It
generalizes the moduli space of stable curves of Deligne and Mumford. Curves
parametrized by the boundary points of this moduli space have nodal singular-
ities (and generically just one node), but the situation is more complicated in
dimension 2. In particular, a new feature is the presence of boundary points that
correspond to irreducible surfaces with T-singularities. By definition, these singu-
larities are cyclic quotient singularities (CQS) which admit Q-Gorenstein smooth-
ing. Apart from Du Val singularities (for moduli purposes, we can ignore those)
T-singularities are cyclic quotient singularities

1
W(l, dna — 1),

where 0 < a < n, (n,a) =1, and d > 1. The parameter d is the dimension of the
versal Q-Gorenstein deformation space. If d = 1 then we say that the singularity
is the Wahl singularity. Those are most generic T-singularities.

The following situation is quite typical: let (X < X) — (0 € A), where 0 € A is
a smooth curve germ, be a (non-isotrivial) Q-Gorenstein deformation of complex
smooth projective surfaces of general type, such that the special fiber X is an
irreducible normal surface with only T-singularities. This family maps to a curve
germ in the moduli space, and one wants to know: what is the stable limit of X7
What are the smooth minimal models of the surfaces (singular and non-singular)
in the moduli space around the stable limit of X?
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These questions depend on running the relative minimal model program for
X — A, which typically means constructing flips (to simplify matters, let’s ignore
divisorial contractions in this abstract). For our purposes, we have to understand
antiflips along with flips. On the “antiflip” side, we have an extremal neighborhood
of flipping type

F7:(CTcXx)—>(Qe)),
i.e. a proper birational morphism between normal 3-folds such that the canonical
class Ky- is Q-Cartier, X~ is terminal, and the exceptional locus of F'~ consists
of a curve C~ < X~ such that Ky-.C~ < 0. We will assume that the map of
special fibers f~: X~ — Y has a property that f~1(Q) is a smooth rational curve
C~ with at most two Wahl singularities on it.
On the “flip” side, we have a proper birational morphism

(CTeFT) > (Qe))

where X'* is normal with terminal singularities, Exc(F*) = C* is a curve, and
Ky+ is Q-Cartier and Ft-ample. A flip induces a birational map X~ --» X'+
to which we also refer as flip. A flip exists and is is unique [M88]. The map of
special fibers XT — Y is a so-called P-resolution. In our case the P-resolution
can be called extremal, because f* ' (Q) is a smooth rational curve C* with at
most two Wahl singularities on it. This is very restrictive: in fact we show using a
combinatorial argument that any CQS admits at most two extremal P-resolutions.
Let’s fix one.

By [KSB88|, P-resolutions parametrize irreducible components of the formal de-
formation space Def(Y). Namely, let Def%% (X ) denote the versal Q-Gorenstein
deformation space of X*. For any rational surface singularity Z and its partial
resolution X — Z, there is an induced map Def X — Def Z of formal deforma-
tion spaces. In particular, we have a map F* : Def®¢(X*) — Def(Y). The
germ DefQ¢ (X ™) is smooth, the map F* is a closed embedding, and it identifies
Def®% (X 1) with an irreducible component of Def(Y).

Consider an extremal neighborhood with one Wahl singularity. Let ngil =
[e1,...,es] be its continued fraction. It is well-known that if Ey,..., E, are the
exceptional divisors of the minimal resolution of X~ then EJ2 = —e¢; for all 5. It

is not hard to see that the proper transform of C~ is a (—1)-curve intersecting
only one component F; transversally at one point. This data will be written as
le1,...,€,...,es] so that % =le1,...,e;—1,...,e5], where 0 < Q < A and (Q €
V) is £(1,9). Similarly, an extremal neighborhood with two Wahl singularities
can be encoded as

[fl,---;fsz] — [61,...,631]

so that the (—1)-curve intersects F, and E7, and

A
5 = [fla'"7f82717617"-;681]7

where 0 < Q2 < A and (Q €Y) is %x(1,1).
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On the other hand, an extremal P-resolution has an analogous data [ f1, ..., fs,|—
c—le1,...,es ], so that

A
5 = [fl,...,f52767617"'7651:|

where —c is the self-intersection of the proper transform of C in the minimal
resolution of X7, 0 < Q < A, and (Q€Y) is x(1,9).
For example, let Y be the CQS ﬁ(l, 3). Consider its P-resolution

[4] -3 -0

where ¢ denotes a smooth point. Here the middle curve is a (—3)-curve. There
are two sequences of extremal neighborhoods that antiflip this P-resolution:

o—12,5,3] - 1[2,3,2,2,7,3] - [2,3,2,2,2,2,5,7,3] — - - -

and
[4] — [2,2,5,4] — [2,2,3,2,2,7,4] — [2,2,3,2,2,2,2,5,7,4] — - -
It turns out that this is a general picture, and that in fact different antiflips

are connected by a flat family. Write (0 € D) = DefQ¢(X*). Let Ft: X+ — )
denote the universal contraction over D. Define a functor

G: (Schemes/D) — (Sets)
as follows: G(h: S — D) is the set of isomorphism classes of morphisms
F7: X7 —>)YxpS
such that X'~ /S is Q-Gorenstein, and for each s € S the fiber X7 — V(s is an

antiflip of f* if h(s) = 0 and an isomorphism if h(s) # 0.
Then G is represented by a scheme M — D together with a universal antiflip

F_IX_ﬁyXDM.

The morphism M — D, which is the flipping family of X, factors through
D' := DefQC(X* B*) < D. The germ (0 € D’) is a smooth surface. The scheme
M is only locally of finite type. The morphism M — D’ is a toric birational
morphism, which can be described by an explicit (locally finite) two-dimensional
fan, which describes solutions to a certain diophantine equation of the Pell type.

As a corollary, Q-Gorenstein deformations of Xt in Def@®(X*) outside of
this toric surface have no terminal antiflip. It is a very interesting question do
determine if it has a canonical antiflip.
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Quantum Kirwan map for toric orbifolds
CHRISTOPHER WOODWARD

(joint work with Eduardo Gonzalez)

Let G be a complex reductive group and X a smooth projectively-embedded
G-variety. If G acts locally freely on the semistable locus in X then the geomet-
ric invariant theory quotient X /G constructed by Mumford is a smooth proper
Deligne-Mumford stack with projective coarse moduli space. In Kirwan [14], the
natural map Hg(X) — H(X/G) from the equivariant cohomology of X with ra-
tional coefficients to the cohomology of X /G was shown to be surjective. This
sometimes allows the computation of a presentation of X /G, by computing the
kernel of the Kirwan map. For example, if G is a torus acting on a vector space
X with weights contained in half-space, then X /G is a toric stack and the kernel
is the Stanley-Reisner ideal; this recovers the presentation of the cohomology by
Danilov-Jurkiewicz [5, 12, 13].

In this report we describe a quantum version of this map, that is, a generaliza-
tion to quantum cohomology, and discuss its application to presenting the orbifold
quantum cohomology of proper smooth toric Deligne-Mumford stacks. We denote
by QHg(X) = Hg(X)®A§ the equivariant quantum cohomology of X as defined
by Givental [7], given by the equivariant cohomology tensored with a Novikov
ring A¢, and by QH (X /G) the orbifold quantum cohomology of the quotient as
defined by Abramovich-Graber-Vistoli [1]. Each of these has the structure of a
Frobenius manifold; in particular, on each tangent space there is a product whose
structure coefficients are given by sums of Gromov-Witten invariants. There is
then a quantum version of Kirwan’s map

kS QHa(X) » QH(X)G),

a formal (only the Taylor coefficients are convergent) non-linear map with the
following properties:
(1) The linearization Dyk§ : T,QHg(X) — Ty:¢ ()@H (X /G) is a homomor-
phism, for any oo € QHg(X).
(2) The leading order term (set ¢ = 0) is the classical Kirwan map onto the
untwisted sector H(X /G) ® AG < QH(X/G)
(3) The quantum Kirwan map intertwines the graph Gromov-Witten potential
Tx/a of X /G with the gauged Gromov-Witten potential 7')({;’ of X, so that
there is a commutative diagram

1) QHe(X) —— . Qu(x/q)
¢ %
A§

(4) The quantum Kirwan map is defined by virtual enumeration of affine
gauged maps, representable morphisms from weighted projective lines
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P(1,r),7 > 0 to the quotient stack X /G mapping the stacky point at
infinity P(r) to the git quotient X /G.

. . . -—G
More precisely, there is a proper Deligne-Mumford stack M,, ;(C, X) of stable
n-marked affine gauged maps equipped with a relatively perfect obstruction theory
and evaluation maps

ev x eve, : Moy 1(C, X) — (X/G)" x X |G

and using the Behrend-Fantechi machinery [3] one may define

kS (a) = Z (¢%/n!) eve s ev¥ (e, ..., Q).
n>0,deHS (X,Q)

The gauged Gromov-Witten potential is defined by virtual enumeration of Mundet-
semistable gauged maps, morphisms from P! to the quotient stack X /G satisfying
a certain semistability condition generalizing semistability for vector bundles. In
the case GG is a torus acting on a vector space, the gauged potential is closely
related to Givental’s I-function, and the diagram above has some overlap with
the “mirror theorems” of Givental [7], Lian-Liu-Yau [15], Iritani [10] and others.
However, in the formulation above, the “mirror map” is defined geometrically, not
as the solution to an algebraic equation. The properness of the moduli stack of
affine gauged maps and Mundet semistable maps is a combination of results of
Ott [16], Venugopalan [19], and Ziltener [20].

In joint work with E. Gonzalez, we further study the quantum Kirwan map
in the case that G is a torus acting on a vector space X, with weights contained
in half-space so that X /G is proper and, by assumption, smooth. We compute
a presentation for the shifted quantum cohomology on the toric stack X /G, by
showing that

(1) Dok$ is surjective (a quantum analog if Kirwan surjectivity)

(2) The kernel contains the quantum Stanley-Reisner ideal QS Rgé in Batyrev
2

(3) After a suitable completion, as in Fukaya et al [6], the map

QHo(X)/QSRY — QH(X)G)
is an isomorphism.

Many cases of this result were known previously: Batyrev [2] and Givental [8] for
the case of semi-Fano toric varieties, Iritani [10] for certain other toric varieties,
Fukaya et al [6] for toric varieties in general using open-closed Gromov-Witten
theory, and Coates-Corti-Lee-Tseng [4] for the case of weighted projective spaces.
Our proof has the interesting features that it does not use the classical result, and
does not use the open-closed Gromov-Witten invariants in Fukaya et al [6].

To prove quantum Kirwan surjectivity, one notes that for X, G as above with
dim(X) = k with weights f1,...,0%, an affine gauged map of homology class
de HS (X, Q) is specified by a morphism u = (ug,...,u) : A — X satisfying

(1) the degree of u; is at most (d, §;)



Toric Geometry 35

(2) the leading coefficients for components j such that (d,3;) € Z define a
semistable point for the action of G.

From this description one sees that Dok$§ contains the fundamental class in each
twisted sector, and is surjective. To see the Batyrev relations, one uses that the
gauged potential is a hypergeometric function of the type considered by Gelfand-
Kapranov-Zelevinsky, and commutativity of the diagram (1) implies that the
Batyrev relations are in the kernel of Dox§ [18]. Finally, to see that these are all
the relations, one notes that in the case that X /G is semi-Fano QHg(X)/QSR$
is exactly the same dimension as QH (X /G) by Kouchnirenko’s theorem, as noted
by Iritani [11, 3.10]. In general, (after completion as in Fukaya et al [6]) one can re-
duce to the semi-Fano case by varying the symplectic class by c{'(X) € HS (X, Q),
which is a version of the minimal model program for toric orbifolds in Reid [17].
Details will appear elsewhere.

REFERENCES

[1] D. Abramovich, T. Graber, and A. Vistoli. Gromov-Witten theory of Deligne-Mumford
stacks. Amer. J. Math., 130(5):1337-1398, 2008.

[2] V. V. Batyrev. Quantum cohomology rings of toric manifolds. Astérisque, (218):9-34, 1993.
Journées de Géométrie Algébrique d’Orsay (Orsay, 1992).

[3] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45-88, 1997.

[4] T. Coates, Y.-P. Lee, A. Corti, and H.-H. Tseng. The quantum orbifold cohomology of
weighted projective spaces. Acta Math., 202(2):139-193, 2009.

[5] V. I. Danilov. The geometry of toric varieties. Uspekhi Mat. Nauk, 33(2(200)):85-134, 247,
1978.

[6] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono. Lagrangian floer theory and mirror symmetry
on compact toric manifolds. arXiv:1009.1648.

[7] A. B. Givental. Equivariant Gromov-Witten invariants. Internat. Math. Res. Notices,
(13):613-663, 1996.

[8] Alexander Givental. A mirror theorem for toric complete intersections. In Topological field
theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages
141-175. Birkh&user Boston, Boston, M A, 1998.

[9] V. Guillemin and S. Sternberg. Birational equivalence in the symplectic category. Invent.
Math., 97(3):485-522, 1989.

[10] H. Iritani. Quantum D-modules and generalized mirror transformations. Topology,
47(4):225-276, 2008.

[11] H. Iritani. An integral structure in quantum cohomology and mirror symmetry for toric
orbifolds. Adv. Math., 222(3):1016-1079, 2009.

[12] J. Jurkiewicz. Chow ring of projective nonsingular torus embedding. Collog. Math.,
43(2):261-270 (1981), 1980.

[13] J. Jurkiewicz. Torus embeddings, polyhedra, k*-actions and homology. Dissertationes Math.
(Rozprawy Mat.), 236:64, 1985.

[14] F. C. Kirwan. Cohomology of Quotients in Symplectic and Algebraic Geometry, volume 31
of Mathematical Notes. Princeton Univ. Press, Princeton, 1984.

[15] B. H. Lian, K. Liu, and S.-T. Yau. Mirror principle. I. Asian J. Math., 1(4):729-763, 1997.

[16] A. Ott. Removal of singularities and Gromov compactness for symplectic vortices, 2009.
arxiv:0912.2500.

[17] M. Reid. Decomposition of toric morphisms. In Arithmetic and geometry, Vol. II, volume 36
of Progr. Math., pages 395—418. Birkhauser Boston, Boston, MA, 1983.

[18] C. Woodward. Quantum Kirwan morphism and Gromov-Witten invariants of quotients.
arXiv:1204.1765.



36 Oberwolfach Report 21/2012

[19] S. Venugopalan. Yang-Mills heat flow on gauged holomorphic maps. arxiv:1201.1933.
[20] F. Ziltener. A quantum Kirwan map, II: Bubbling. arxiv:1106.1729.

Lagrangian Floer thoery and Mirror symmetry of compact toric
manifolds

KaAoru ONO
(joint work with K. Fukaya, Y.-G. Oh, H. Ohta)

I reported some results based on our joint works [3, 4]. In general, there are ob-
structions to defining Floer cohomology of Lagrangian submanifolds. The trouble
comes from “bubbling-off” of holomorphic discs. In order to describe obstructions
and how to rectify the coboundary operator when it is possible, we introduced the
filtered A,-algebra for each relatively spin Lagrangian submanifold using moduli
spaces of bordered stable maps of genus 0 with boundary marked points. Our
theory is constructed over the Novikov ring

Ay = {Z a;T™|a; € C, \j € R, \; — +o0}.

By taking the minimal exponent with non-vanishing coefficient a;, we define an
additive valuation vy : Ag - R u {+0}. Denote the field of fractions by A and the
maximal ideal {or > 0} by A;. The de Rham version of the filtered A -algebra
associated to a relatively spin Lagrangian submanifold L in a closed symplectic
manifold (X,w) is a “quantum deformation” of the de Rham algebra with k-
ary operations m; = ZBGHQ(X7L;Z) mkﬁTSBw, k=0,1,2,,.... Here myg is the
chain level k-ary intersection operation coming from the stable compactification
of moduli space of holomorphic discs with k£ + 1 boundary marked points. The
Maurer-Cartan equation is the following:

0
Z mg(b,...,b) =0.
k=0

If b satisfies the Maurer-Cartan equation, we call b a Maurer-Cartan element or a
bounding cochain. If the left hand side of the Maurer-Cartan equation is propor-
tional to the unit 17, the constant function 1 on L, we call b a weak Maurer-Cartan

element and define PO (b) by
[0¢]
> mi(b, ..., b) = POT(b)1L.
k=0

Denote by Myeak(L) the space of weak Maurer-Cartan elements and call ‘BDL :

M(L) — A4 the potential function of L. The following theorem is proved in [2].
Theorem A. If there exist b; € Myeak(L;), @ = 0,1, such that ‘BDLO(bo) =

POL1(b1), we can rectify the original Floer coboundary operator using b;.

The cohomology H*(X; A) of the symplectic manifold (X, w) carries a family of
quantum product structures parametrized by itself H*(X; Ag), which is a part of
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the Frobenius manifold structure. Similar to this case, the filtered Ay -structure
mentioned above can be also deformed by a cycle b in X with coefficients in Ag.
We call such a deformation {m?} the bulk deformation by b. Hence we have the
potential function ‘BDL’[’ : Myeak 6(L) — A4 and a direct analog of Theorem A.

In the case of compact toric Kéhler manifold (X, J,w) of complex dimension n
and a Lagrangian torus fiber L of the moment map, we can use the subspace of
T™-invariant forms instead of all differential forms on L. When we consider bulk
deformations, we consider T™-invariant cylces. Let 7 : X — R"™ be the moment
map and denote by P its image. Then there exist primitive integral vectors v; and
real numbers ¢; such that

P={ueR"[(vj,uy—c; 20,i=1,...,m}.

For u € Int(P), we set L(u) = 7 '(u), which is a free T™-orbit. Thanks to
T"-equivariance, we find that

HI(L(u); Ao) © Myeak,p(L(w)).

We study the restriction of the potential function to H'(L(u); Ag) and call it sim-
ply the potential function. Pick a basis {e;} of H(L(u); Z) and set the coordinates
x1,...,ZTn. The leading order part of the potential function ‘BDL ()b ig written
as the sum of contributions from “meridian classes” §; € H(X, L(u);Z) around
irreducible toric divisors and have the same form as Landau-Ginzburg superpo-
tential, though we have appropriate powers of T' in coefficients . If b = > x;e;
is a critical point of ‘BDL(”)’E’, we find that the corresponding Floer cohomology
deformed by b, b is isomorphic to the ordinary cohomology of L(u). This follows
from the definition of m?’b and the fact that the ordinary cohomology of the torus
is generated by elements of degree 1. In the case of toric Fano manifolds, the
potential function is eqaul to its leading order part. However, there appear higher
order terms, in general.

We introduce variables y;(u) = e” depending on w and y; = T%y;(u). It
turns out that POLW0(T—¢iy;) as a function of y; does not depend on u. We
write it POXC(y;), which is called the potential function of the toric manifold
X with bulk b. If POX® has a critical point y = (y1,...,%n) € (A\{0})" such
that uy = (vr(y1),...vr(yn)) € Int(P), we have non-vanishing Floer cohomology
of L(uy) with bulk b and weak Maurer-Cartan element b, = > (zy);e;. Here
(2y)i = log(T~°()y;) € Ay,

For Fano toric manifolds, the quantum cohomology ring is isomorphic to the
Jacobian ring of the Landau-Ginzburg superpotential (Batyrev, Givental). Since
the potential function may not be a Laurent polynomial but an infinite series,
we need to introduce an appropriate extension of the Laurent polynomial ring.
Roughly speaking, we consider the ring of infinite series Y, ary’, with coefficients
ar € A, such that >}, a;y’ converges in Ag as long as vr(y) € Int(P). Then we
define the Jacobian ring Jac(PO°) of POX* by the quotient of the above ring
by the closure of the ideal generated by first order partial derivatives of POX°.
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By considering the variation of potential functions ‘BDX’b parametrized by
H*(X;Ap), we have the following theorem [3]:

Theorem B. There exists a ring isomorphism ksy : QHF(X; Ag) — Jac(POFH).

In fact, this isomorphism also intertwines pairings on both sides and is expected
to be the isomorphism between the Frobenius manifold structure on the quantum
cohomology and flat structures, in the sense of K. Saito, for 8O*®, once the latter
is understood properly.

We set

Crit(PO°) = Homp a1z (Jac(POX L) @4, A, A).

This set is considered as the set of idempotents, which are units in the irreducible
components of the Jacobian ring to the direct sum of local Artinian rings. We
denote by ey the idempotent of QH¥(X;A) corresponding to y € Crit(PO*).
We can show that Crit(PO°?)  7=1(Int(P)) and the existence of Lagrangian
torus fibers with non-vanishing Floer cohomology. Such Lagrangian torus fibers
are not displaceable by Hamiltonian diffeomorphisms. If all critical points are
non-degenrates, i.e., the Hessian is non-singular at each critical points, we find
that #Crit(PO°) = rank H*(X)

M. Abouzaid has obtained a criterion for a collection of objects in Fukaya
category split generates Fukaya category. Theorem B can be used to verify the
criterion adjusted to our case.

Theorem C. [1] The objects corresponding to Crit(POX ") split generates
the Fukaya category of the compact toric Kadhler manifold (X, .J,w) with bulk
deformation by b.

Using the spectral invariants of Hamiltonian diffeomorphisms, Entov and Pol-
terovich developed the theory of Calabi quasi-morphisms and partial symplectic
quasi-states. They constructed a partial symplectic quasi-state for each idem-
potent of the quantum cohomology ring. In the case of compact toric Kaahler
manifolds, they showed the existence of non-displaceable Lagrangian torus fibers.
They also introduced the notion of heavyness/superheavyness with respect to a
partial sympletic quasi-state { for the study of non-displaceablity of a subset.

In [4], we showed the following theorem and gave a relation between Entov-
Polterovich’s theory and our theory.

Theorem D. For each y € Crit(OX"), the Lagrangian torus fiber L(uy)
is superheavy with respect to the symplectic partial quasi-state associated to the
idempotent of QH(X;A) corresponding to y.
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Integrable systems, toric degenerations and Okounkov bodies
KruMARS KAVEH
(joint work with Megumi Harada)

A (completely) integrable system on a symplectic manifold is a Hamiltonian
system which admits a maximal number of first integrals (also called ‘conservation
laws’). A first integral is a function which is constant along the Hamiltonian flow;
when there are a maximal number of such, then one can describe the integral
curves of the Hamiltonian vector field implicitly by setting the first integrals equal
to constants. In this sense an integrable system is very well-behaved. For a
modern overview of this vast subject, see [2] and its extensive bibliography. The
theory of integrable systems in symplectic geometry is rather dominated by specific
examples (e.g. ‘spinning top’, ‘Calogero-Moser system’, ‘Toda lattice’). The main
contribution of this work, summarized in Theorem 1 below, is a construction of
an integrable system on (an open dense subset of) a variety X under only very
mild hypotheses. Our result therefore substantially contributes to the set of known
examples, with a corresponding expansion of the possible applications of integrable
systems theory to other research areas.

We begin with a definition. For details see e.g. [3]. Let (X,w) be a symplectic
manifold of real dimension 2n. Let {f1, fo,..., fn} be functions on X.

Definition. The functions {f1,..., fn} form an integrable system on X if they
pairwise Poisson-commute, i.e. {f;, f;} = 0 for alli,j, and if they are functionally
independent, i.e. their derivatives dfy,...,df, are linearly independent almost
everywhere on X.

We recall two examples which may be familiar to researchers in algebraic ge-
ometry.

Example. A (smooth projective) toric variety X is a symplectic manifold, equipped
with the pullback of the standard Fubini-Study form on projective space. The (com-
pact) torus action on X is in fact Hamiltonian in the sense of symplectic geometry
and its moment map image is precisely the polytope corresponding to X. The torus
has real dimension n = %dimR(X ), and its n components form an integrable sys-
tem on X.

Example. Let X = GL(n,C)/B be the flag variety of nested subspaces in C™.
For X\ a regular highest weight, consider the usual Plicker embedding X — P(V))
where V) denotes the irreducible representation of GL(n,C) with highest weight
A. Equip X with the Kostant-Kirillov-Souriau symplectic form coming from its
identification with the coadjoint orbit Oy of U(n,C) which meets the positive Weyl
chamber at precisely A\. Then Guillemin-Sternberg build an integrable system on
X by viewing the coadjoint orbit Oy as a subset of hermitian n x n matrices and
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taking eigenvalues (listed in increasing order) of the upper-left k x k submatrices
for all1 < k <n—1. This is the Guillemin-Sternberg/Gel’fand-Cetlin integrable
system on the flag variety. (See [4] for details.)

More generally, suppose now X is a projective variety and £ a very ample line
bundle on X with ring of sections

@ HO £®k

Let n = dimc(X). Pick v a Valuatlon with values in Z™ (e.g. corresponding to
some choice of flag of subvarieties) and let A(X, £,v) denote the corresponding
Okounkov body. Denote by S := S(X, L,v) € Z™ x Zx( the value semigroup of v
on the algebra of sections R(L).

Theorem 1. In the setting above, suppose that S is a finitely generated semigroup
(and hence A(X, L,v) is a rational polytope). Then there exist f1,..., fn functions
on X such that

e the f; are continuous on X and differentiable on an open dense subset U
of X,

o the f; pairwise Poisson-commute on U,

e theimage of X under p := (f1,..., fn) : X — R™ is precisely the Okounkov
body A(X, L,v).

We also show that the integrable systems constructed in this way behave well
with respect to GIT /symplectic quotients. Some important examples of Theorem 1
include: (1) flag varieties of general reductive algebraic groups, (2) weight varieties
(which are GIT quotients of flag varieties) and (3) spherical varieties. The moment
images of the integrable systems in (1) (respectively (2)) are the string polytopes
of Littelmann-Berenstein-Zelevinsky (respectively their corresponding slices).

Remark. Among other things, our theorem addresses a question posed to us by
Julius Ross and by Steve Zelditch: does there exist, in general, a ‘reasonable’ map
from a variety X to its Okounkov body? At least under the technical assumption
that the value semigroup S 1is finitely generated, our theorem suggests that the
answer s yes.

We now we briefly sketch the idea of our proof. The essential ingredient is
the toric degeneration from X to the (not necessarily normal) toric variety X
corresponding to the semigroup S(X, L,v) (see [1] and [7]). The normalization
of Xy is the toric variety associated to the polytope A(X, L,v). Let f: X — C
denote the flat family with special fiber f=1(0) =~ Xo and f~!(t) = X; = X for
t # 0. Since toric varieties are integrable systems (see example above), the idea
is to “pull back” the integrable system on Xy to one on X. To accomplish this
we use the so-called ‘gradient Hamiltonian vector field’ (first defined by Ruan and
also used by Nishinou-Nohara-Ueda, cf. [6, 5]) on X', where we think of X as a
symplectic space by embedding it into an appropriate weighted projective space.
The main technicality which must be overcome to make this sketch rigorous is to
appropriately deal with the singular points of X such that the f; are continuous



Toric Geometry 41

on all of X (not just on smooth points). It turns out that, in order to deal with
this issue, we need a subtle generalization of the famous Lojasiewicz inequality.
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Noncommutative toric geometry
ALASTAIR CRAW
(joint work with A. Quintero Vélez)

Noncommutative toric geometry is the study of noncommutative algebras that
arise from collections of reflexive sheaves on affine toric varieties. As with the
classical study of toric geometry, the goal is to exploit the rich interplay between
algebra, combinatorics and geometry. The main results presented in this talk,
which introduce a noncommutative analogue of the cellular resolutions of Bayer—
Sturmfels [1] appeared recently in the paper [5].

The input data is a Gorenstein toric variety X = Spec C[o¥ n M| of dimension
n, together with the choice of a collection & := (Ey, E1, ..., E,) of distinct rank
one reflexive sheaves on X. The main objects of study are

e the algebra A = Endg, (Dyc;<, Fi) via a quiver Q with potential W;
e the CW-complex A in a real n-torus call a ‘higher quiver’;
e partial resolutions Yy — X obtained by variation of GIT quotient.

Many authors have studied noncommutative algebras via quivers with potential,
especially for algebras of global dimension three. Here the algebra need not be
the Jacobian algebra, leading us to new families of examples in dimension greater
than three. Toric algebras and higher superpotentials have also been studied by
Bocklandt [2], Bocklandt—Schedler—Wemyss [3] and Broomhead [4].

To illustrate the main idea we present a fundamental example. Let X = C"/G
for a finite abelian subgroup G < SL(n,C), and consider & = (E, : p € GV).
Given the sequence

(1) 0 M 7d _de8

Cl(X) — 0,
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we obtain a real n-torus (S1)" = (M ®z R)/M. For p e GV, let A(p) denote the
union of all M-translates of the unit cube {¢ + (a1,...,a,) € R"|0 < o; < 1} for
any lattice point £ € deg_l(Ep). The Higher McKay quiver is the CW complex

A= Ap)
peGY

in (S1)". We write Ay, for the set of k-cells in A, and we orient each 1-cell in A so
that it points in the positive direction in R”. To illustrate A, consider the action
of Z/6 generated by the diagonal matrix diag(e, e2¢3) for € = €27%/6:

r T
é;/_% xy‘wéi\/ud)/u © ©

The induced quiver @ = (Ap, A1) with vertices the 0-cells and arrows the oriented
1-cells is the McKay quiver. The boundary of each 2-cell comprises a pair of
paths pT that share the same head and tail, and we obtain a two-sided ideal
of relations in the path algebra CQ by setting J := (p* —p~ € CQ : I n €
Ay such that p* determine the boundary of 1), and we have

A= Endg, (@KKTE@) ~ Clz1,...,20] % G = CQ/T.

Let {e; € A :ie€ Ay} denote the idempotents in A, and let e: A x A — {0, +1} be
an incidence function on A.

Theorem 0.1. The minimal projective (A, A)-bimodule resolution of A is the
cellular resolution determined by A in the following sense: it is of the form P* — A
where for 0 < k < n we have

Py = @ Aenm) ® [n] ® ey A

nel'y

and dp (1@ [n]®1) = Dcod(n =1 M) - (5,7,77 R[] ® 5:7/77, where the elements

(577/77, 5:7/17 € A measure the difference between n and the codimension-one cell n'.
Put simply, the higher quiver A encodes refined information about A, just as
the fan of a toric variety encodes refined geometric information about the variety.

Returning to the general case, consider & on X and set A := Endgy (Doc;<, Li)-
The quiver of sections @ of & has vertex set Qo = {0,1,...,r} and arrows from ¢
to j defined by indecomposable, torus-invariant sections of Hom(E;, E). As with
the McKay quiver, @ can be realised as an infinite, M-periodic quiver in R¢ with
basis the torus-invariant divisors in X. Choosing the standard inner product on
R?, we consider the image of () under the orthogonal projection f: R¢ - M ®; R
and obtain an abstract quiver (arrows may a priori intersect) in the real n-torus
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(SH" = (M ®z R)/M. Nevertheless, a problem remains: how to fill in 2-cells,
3-cells and so on when we know only the vertices and edges?

The solution is to introduce the potential. A cycle p in Q) is anticanonical if it
arises from the divisor >} ., 1) D, in Hom(E;, E;) = H%(0x) =~ H(wx) for some
1, where the second isomorphism holds since X is Gorenstein. The potential is

W = Z .

p anticanonical cycle

One can define the partial derivative 0,/ with respect to any path ¢. The paths
q for which d,W is the sum of precisely two paths determine a two-sided ideal

Jw = (p" —p~ € CQ : I ¢ such that 0qW =pt —p =0),

and we say that A is a consistent toric algebra iff A = CQ/Jw. Note that there
are no signs in W; rather, we add a single sign in defining the generators p™ — p~
(which is possible precisely because our generators are binomials). The idea is
to build A by first defining the CW-complexes A(i) for 0 < ¢ < r in terms of
anticanonical cycles that pass through vertex i € Q). Roughly, we set

A(i) = M-translates of { CW-complex determined by the images under f }

of anticanonical cycles from ¢ +— ¢+ (1,...,1)

In practice one must first understand the orthogonal projection f in order to check
whether A is well-defined. The main result of [5] does this for several families,
thereby extending Theorem 0.1 beyond the orbifold case as follows.

Theorem 0.2. Let A be a consistent toric algebra that is either:

(i) of dimension 3, arising from a consistent dimer model on a 2-torus; or
(ii) of dimension 4, arising from a tilting bundle on a smooth toric Fano 3-fold.

Then the higher quiver A < (SY)" exists, and the minimal projective (A, A)-
bimodule resolution of A is the cellular resolution as in Theorem 0.1.

More generally, we conjecture that the statement of Theorem 0.2 holds for every
consistent toric algebra of global dimension equal to n = dim X.
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Operational K-theory for toric varieties
DAVE ANDERSON

(joint work with Sam Payne)

The equivariant singular and Chow cohomology rings of a smooth toric variety are
well understood, as is the Grothendieck ring of equivariant algebraic vector bun-
dles. Specifically, these rings are computed as the rings of piecewise polynomials
or piecewise exponential functions on the fan associated to the toric variety. The
primary goal of the work described in this talk is to extend these descriptions to
singular varieties.

Let M =~ 7Z" be the character group of the dense torus 7', and let N =
Hom(M,Z). Let A be a fan in N consisting of rational polyhedral cones, and
write |A| € Ng for its support. For each cone o in the fan, there is a quotient
M, = M /(o n M), together with natural maps M, — M, whenever o 2 7. The
ring of piecewise polynomial functions on A is

PP*(A) = {continuous f: |A] - R s.t. f|, lies in Sym™ M, for all o € A}.

Analogously, the ring of piecewise exponential functions (or piecewise Laurent poly-
nomials) is

PLP(A) = {continuous f: |A| - R s.t. f|, lies in Z[M,] for all o € A},

where Z[M] = Z[e*", ... e*!] is the character group, interpreted as exponential
functions on Ng.

When the toric variety X = X(A) is smooth, these combinatorially defined
rings have nice geometric interpretations:

Theorem 1 (cf. [1]). The equivariant (singular or Chow) cohomology of a smooth
toric variety X = X (A) is

H*X = A% X = PP*(A).

Theorem 2 (cf. [2, 11]). The equivariant K-theory ring of a smooth toric variety
X =X(A) is
K7 X = PLP(A).

Both of these statements are false for singular toric varieties in general. How-
ever, since the right-hand sides are canonically defined rings associated to any
toric variety, one is led to seek a geometric interpretation that works for singular
varieties. An extension of Theorem 1 was given by Payne:

Theorem 3 (cf. [8]). The equivariant operational Chow cohomology of any toric
variety X = X(A) is
A%LX = PP*(A).
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Here the left-hand side comes from the operational bivariant Chow theory of Fulton
and MacPherson [3, §9]. Our first main result extends Theorem 2, by introducing
an (equivariant) operational K-theory.

Theorem 4 (Anderson-Payne). The equivariant operational K -theory of any toric
variety X = X(A) is

opK7X = PLP(A).

Similar results have been obtained by Ray and Williams [9] for the K-theory of
equivariant topological vector bundles of weighted projective spaces, under some
restrictions on the weights.

As with operational Chow cohomology, the operational K-ring opK3(X) is
defined so that it acts on a corresponding “homology” theory. For any variety Y
with an action of T, let KX (Y') be the K-theory of equivariant coherent sheaves
on Y. This plays the role of a homology theory—it is covariant for equivariant
proper maps. An element of opK?%.(X) is a collection ¢ = (¢4) of endomorphisms
cg: KI(Y) - KX (Y), one for each equivariant map g: ¥ — X. These collections
are required to satisfy some compatibility axioms, modelled on the classical cap
product.

Despite its apparently unwieldy definition, we show that operational K-theory
is in some respects better behaved than the K-theory of vector bundles. For
example, motivated by similar theorems for Chow cohomology [4, 10], we prove:

Theorem 5 (Anderson-Payne). Let X be any complete T-linear variety. Then
there is a natural isomorphism

opK7(X) = Hompr) (K5 (X), R(T)).
(Here R(T) =~ Z|M] is the representation ring of T'.)

The notion of a T-linear variety is based on a definition of Totaro [10], and includes
all toric varieties, as well as spherical varieties and Schubert varieties.

In the special case where T is trivial, Theorem 5 implies that opK°(X) is a
finitely generated and torsion-free Z-module. This stands in contrast to ordinary
K-theory of vector bundles—even for simplicial projective toric threefolds, K°(X)
may be uncountably generated [6].

Although their statements only involve Grothendieck groups, the proofs of both
Theorems 4 and 5 invoke higher algebraic K-theory. A key part of the proof of
Theorem 4 is an equivariant version of a result of Gillet [5]: when X’ — X is an
equivariant envelope, the sequence

KI'X'xx X') > K'X') - KT(X) -0

is exact. With this in hand, formal methods used by Kimura [7] in the Chow case
reduce the problem to the smooth case, where the theorem is known.
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The Topology of Toric Origami Manifolds
TARA HOLM
(joint work with Ana Rita Pires)

In the past 30 years, there has been a flurry of research on the topology of
compact symplectic manifolds that are equipped with Hamiltonian group actions.
A key tool is the momentum map, whose components are perfect Morse-Bott
functions with critical set the fixed points of the group action. Important classes
of examples include toric symplectic manifolds and generalized flag vari-
eties. Compact toric symplectic manifolds are in one-to-one correspondence with
Delzant polytopes. The cohomology rings of both toric manifolds and flag vari-
eties are concentrated in even degrees. The cohomology ring of a toric variety may
be described in terms of generators and relations by the Jurkiewicz-Danilov
Theorem. The equivariant cohomology of a compact toric symplectic manifold is
the Stanley-Reisner ring of the corresponding Delzant polytope. The equivari-
ant cohomology of both toric manifolds and flag varieties injects as a subring of
the equivariant cohomology of the fixed point set, with image given by the GKM
description.

There have been a number of generalizations of toric varieties that enjoy the
same cohomological properties. Building on work of Hattori and Masuda [HtMs,
Ms], Masuda and Panov defined a torus manifold to be a 2n-dimensional closed
connected orientable smooth manifold M equipped with an effective smooth action
of an n-dimensional torus T = (S')” with non-empty fixed set [MsPn]. They
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characterize those torus manifolds whose equivariant cohomology ring has the
Stanley-Reisner description, and determine when it has the GKM description.

Folded symplectic forms were introduced by Eliashberg and Martinet [E,
Mr|. They are closed 2-forms that are non-degenerate except along a hypersurface
Z < M, where the form has 1-dimensional kernel. As in the symplectic case, these
admit a Darboux theorem. Cannas da Silva proved that any manifold with
a stable almost complex structure is folded symplectic [C]. In particular, every
compact orientable 4-manifold is folded symplectic, and the form can be chosen
to be in any cohomology class. The folded form is origami if the null-foliation
on Z is fibrating, with compact, connected, oriented fibers. Cannas da Silva,
Guillemin and Woodward; and Cannas da Silva, Guillemin and Pires have studied
the geometry of origami manifolds [CGW, CGPr].

We may define Hamiltonian group actions on folded symplectic manifolds. A
Hamiltonian torus action is toric if dim(T) = 1 dim(M). Chris Lee has made
a systematic study of toric 4-folds in his thesis [L]. Cannas da Silva, Guillemin
and Pires proved that compact toric origami manifolds are classified by origami
templates (P, F), where P is a collection of Delzant polytopes and F a collection
of facets in the polytopes in P. The image of the toric origami manifold under
the momentum map is the superposition of the polytopes in the collection P, as
shown on the left in the figure below. In contrast to the symplectic case, this need

not be convex.

epp L

F1GURE 1: When the origami template is acyclic, we may unfold the
template to see the combinatorics of (P, F) better.

Toric origami manifolds need not be orientable. For example, the real projective
plane and the Klein bottle are 2-dimensional toric origami manifolds. Origami
templates for some 4-dimensional manifolds are shown in Figure 2. When they
are orientable, toric origami manifolds provide many examples of torus manifolds.
If the origami template is acyclic and the fold is coorientable, then the toric origami
manifold is orientable.

o— @
FIGURE 2: Origami templates for S* and RP*, and a non-acyclic template.
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A torus manifold M is locally standard if every point in M has an invariant
neighbourhood U weakly equivariantly diffeomorphic to an open subset W < C"
invariant under the standard T™-action on C".

Lemma 1. Suppose that (M, Z,w,®,T) is a toric origami manifold with coéri-
ented folding hypersurface. Then M 1is locally standard.

This allows us to deduce a wide range of facts about the ordinary and equi-
variant cohomology of M, using Masuda and Panov’s work on torus manifolds.
We may also prove some of these results directly, using topological tools familiar
from symplectic geometry. We provide a straight-forward topological proof of the
following, similar in spirit to arguments in [HsK].

Theorem 2. Let T & M be a compact toric origami manifold with acyclic origami
template and cooriented folding hypersurface. Then the cohomology H*(M;Q) is
concentrated in even degrees.

This immediately implies that the Leray-Serre spectral sequence that computes
the equivariant cohomology of M must collapse at the Es-term. We may apply
results of Franz and Puppe [FPp] to deduce that the equivariant cohomology may
be described in terms of the one-skeleton. We can then give a GKM description
of the equivariant cohomology. We expect the Theorem 2 to hold with integer
coefficients, with the same conclusions about equivariant cohomology with Z co-
efficients.
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Higher order toric projective duality
SANDRA D1 Rocco
(joint work with Alicia Dickenstein and Ragni Piene)

Higher order dual varieties can be considered as generalizations of the classical
notion of discriminant. Let A < Z" be a finite subset of lattice points. The
discriminant of A, A4, is a homogeneous polynomial in N + 1 = |A| variables
with the following property:

Aulcoy..yen) =0
<=
5(%1,.- ., %n) = Dueq CaT® has at least one multiple root in (C*)".

The discriminant A 4 is in fact the defining equation of an irreducible codimension
one irreducible sub variety of the dual projective space IP{CV ", via the following
general notion of duality.

Definition. Let i : X < PY be an embedding of an algebraic variety. The dual
variety is defined as:

XY ={H e PN’ s.t. H is tangent to X at some smooth point z € X, }

The expected codimension of X, is one and, when this is the case, the defin-
ing homogeneous polynomial A; is the discriminant of . The polynomial A4 is
therefore well defined when the dual variety X’ of an associated toric embedding
ia: X4 — PAI=1 hag the expected codimension one and Ay = A,

When the codimension of the dual variety is higher than one the embedding is
said to be dually defective. Classifying the exceptions (i.e. defective embeddings)
and find a formula for A4 constitutes an active area of algebraic geometry and
combinatorics. Defective embeddings have been studied and classified for example
in [8, 7]. More recently a number of results on the A-discriminants have appeared:

The case N = n + 2 has beed characterized in [4].

The case N = n + 3,n + 4 has been studied in [1]

When X 4 is non singular a characterization can be found in [6].
The case when X 4 is Q-factorial has been studied in [2].

A description of the tropical dual variety can be found in [5].

In order to give a generalization involving multiple roots of higher multiplicity
we need to formally define the concept of “higher tangency” for an hyperplane.
Let £ := i*(Opn(1)). The vector space L/mF+1L is the fibre at x € X, of the
k-th principal parts (or jet) sheaf P% (L), which has generic rank (":k) It we
identify HO(PN,0(1))® Ox ~ OF ! there is a natural map (of coherent sheaves)
called the k-th jet map:

Jrt O = PX(L)
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which is given fiberwise by the linear map
Jra s HPY,0(1) - HY(X, £) - H(X, L/m; ' L)

induced by the map of Ox-modules £ — L/m**1L. So if s € HY(X, L) then
Jk,z(s) is the order k truncation of the Taylor series expansion of s with respect
to the local coordinates x1,...,x, and itt can be written as

0s 0s 1 0%s 1 025

Jka(s) = (s(z), a—xl(x), e E(.ﬁ[‘)), 56_ﬁ(x)’ . §ﬁ(3§)), cl)e

The space P(image(j1,2)) = P(P%(L)z) = Tx ., = P" is the embedded tangent
space at the point x. More generally, the linear space P(image(jr,»)) = ’]I"j(@ is
called the k-th osculating space at x.

Definition We say that a hyperplane H is tangent to X to order £ at a smooth
point z if ’]I"}(’m C H. The k-th dual variety is

X® .= {HePNY |H 2T, _ for some z € Xem}-

In particular, X() = XV. Alternatively, one can define X(¥) as the closure of
the image of the map

(1) Yt P((Ker jix) ¥ [ x, o) — PV,

where X _.st denotes the open set of X where the rank of ji is constant. Note
that X*) < X(*=1)_ Moreover, X @ is contained in the singular locus of XV, since
a necessary condition for a point H € XV to be smooth, is that the intersection
H ~ X has a singular point of multiplicity 2: if H 2 ']I";(,m for k > 2, then H n X
has a singular point of multiplicity > k + 1.

When X is non singular P% (L) is a vector bundle and when jj, is surjective
Ker ji, is also locally free. This allows convenient Chern class computations.

Definition. We say that the embedding 7: X < P™ is k-jet spanned at a smooth
point x € X if the k-th osculating space to X at x has the maximal dimension,
("Zk) —1, or, equivalently, the map jy, . is surjective. We say that ¢ is k-jet spanned
if it is k-jet spanned at all smooth points z € X.

Lemma [9, 3]. Assume X is a smooth variety of dimension n, and that the
embedding i: X < PV is k-jet spanned. Then

(1) the embedding ¢ is k-defective if and only if ¢, (P% (L)) = 0;

(2) if i is not k-defective, then deg X *) = deg(vyx)cn(PY(L));

(3) if 7 is generically (k+1)-jet spanned, then the embedding is not k-defective;

(4) if i is (k + 1)-jet ample, then deg(yx) = 1, and thus deg, X*) = deg X (¥,
The concept of jet ampleness is in general stronger than jet spannedness, but
for non singular toric varieties the two notions coincide. In toric geometry many
geometrical properties have been related to the associated polytope. This is also
the case for higher duality.

Theorem [3] Let i be a 2-jet spanned toric embedding of a smooth threefold
X, corresponding to a lattice polytope P of dimension three. Then dim(X®)) =
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|P ~Z3| — 7 unless if (X, £) = (P3,0(2)), in which case P = 2A3 and the second
dual variety X2 is empty. Moreover:
1) deg X =120if (X, L) = (P3,0(3)).
2) deg X@) =6(8(a+b+c)—7)if (X,L) = (P(Op1 (a), Op (b), Op1(c)), 2€),
where a,b,c > 1 and £ denotes the tautological line bundle.
3) In all other cases,

deg(y2)(deg X)) = 62V ol(P) — 57F + 28E — 8V + 58V ol(P°) + 51F; + 20E;

where Vol(P), F', E (resp. Vol(P°), Fy, E1) denote the (lattice) volume,
area of facets, length of edges of P (resp. of the convex hull of the interior
lattice points of P), and V' is the number of vertices of P.

The tropical higher order dual variety can be defined by extending the (n + 1) x

(N + 1) matrix
— 1 ... 1
=)

By considering higher order derivatives of the monomial z%, for a € A one can
define a ("Zk) x (N + 1) matrix A* and show that X = UyeKer(A)OTb(Y)
where the action is the (C*)" action induced on PV by the columns of A.
Theorem [3] The tropicalization of the cone over Xﬁlk), trop(ngk)) c RVFL s
equal to the Minkowski sum

tmp(yfgk)) = Rowspan(A) + trop(Rowspan(A(k))).

Its image W(tTOp(Y}gk))) in RVT1/ ~ gives the tropicalization of the k-th dual

variety X E‘k) .
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Open Gromov-Witten invariants on toric manifolds
S1U-CHEONG LAU
(joint work with K.W. Chan, N.C. Leung, H.H. Tseng)

Let X be a compact toric manifold of complex dimension n and ¢ € H?(X,C)
be a complexified Kahler class of X. When —Kx is numerically effective, we
extract the open Gromov-Witten invariants of X from its mirror map. This gives
an open analogue of closed-string mirror symmetry discovered by Candelas-de la
Ossa-Green-Parkes [1]. Namely, under mirror symmetry, the computation of open
Gromov-Witten invariants is transformed to a PDE problem of solving Picard-
Fuchs equations.

The mirror of (X,q) is defined to be a certain holomorphic function W, on
(C*)™ called the superpotential®. Closed-string mirror symmetry states that the
deformation of W, encodes Gromov-Witten invariants of X. More precisely, it
states that there is an isomorphism

QH*(X,q) = Jac(W,)

as Frobenius algebras, where QH™*(X, q) denotes the small quantum cohomology
ring of (X, ¢q) and

C[zf1, ..., 231
Jac(Wy) := a[jvl ’ ,Znam]/
<21 azl" yeesZn aZ:

is the Jacobian ring of Wj,.

Based on physical arguments, Hori-Vafa [6] gave a recipe to write down a Lau-
rent polynomial W’ from the fan configuration of X. It turns out that W/ only
records the ‘leading order terms’ and is not equal to W, in general. The difference
W, — W, is called instanton corrections.

Traditionally, the instanton corrections are written down from the PDE ap-
proach. Namely, one writes down a Picard-Fuchs system using the fan configura-
tion of X, and solves it explicitly for the ‘mirror map’ §(q). Then define

Wtf T = a(a):
When the anti-canonical line bundle — K x is numerically effective, qu F fits into
the mirror symmetry framework mentioned above, namely

QH*(X,q) = Jac(W,; ")

as Frobenius algebras [5, 7].

On the other hand, the instanton corrections are realized by Fukaya-Oh-Ohta-
Ono [4] using open Gromov-Witten invariants as follows. Let T < X be a
Lagrangian toric fiber and mo(X,T) be the set of homotopy classes of maps
(A,0A) — (X, T), where A denotes the closed unit disk. For 5 € mo(X,T),

IMore precisely W is a formal series over the Novikov field. Here we assume it is convergent
in some neighborhood of ¢ = 0, and thus defines a holomorphic function on (C*)".
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the moduli space Mi(3) of stable disks representing  and its virtual funda-
mental class [M1(8)] € H,(T) are defined by use of Kuranishi structures. The
one-pointed Gromov-Witten invariant associated to 3 is defined as

ng = J ev*[pt]
[M1(B)]

where [pt] € H™(T) is the point class and ev : M;() — T is the evaluation map.
Then
WqL F = Z np VA B
Bema(X,T)
gives another definition of the instanton-corrected superpotential, where Zg is
an explicitly written monomial for each 3. Notice that the above formal sum

involves infinitely many terms in general, and is well-defined over the Novikov
field. Fukaya-Oh-Ohta-Ono [3] proved that

QH*(X,q) = Jac(WqLF)

as Frobenius algebras.

While qu Fand I/VqLF originates from totally different approaches, they lead to
the same mirror symmetry statements. The following conjecture is made in a joint
work with Chan, Leung and Tseng [2]:

Conjecture 1 ([2]). Let X be a toric manifold with —Kx numerically effective,
and let WEE and WEE be the superpotentials in the mirror as introduced above.
Then

(1) W = whr,

Conjecture 1 can be proved under the technical assumption that W converges
analytically (instead of just being a formal sum):

Theorem 2 ([2]). Let X be a toric manifold with —K x numerically effective, and
let WEE and WEF be the superpotentials in the mirror as explained above. Then

WPF _ WLF

provided that each coefficient of WEE converges in an open neighborhood around
q=0.

The above technical assumption on the convergence of W' is satisfied when
dim X = 2, or when X is of the form P(Kg @ Oy) for some toric Fano manifold
Y.

The function WL is a generating function of open Gromov-Witten invariants
ng (and thus can be regarded as an object in the ‘A-side’), whereas WPFFE arises
from solving Picard-Fuchs equations (and so is an object in the ‘B-side’). Using this
equality, the task of computing the open Gromov-Witten invariants is transformed
to solving Picard-Fuchs equations which has been known to experts. Thus the
above equality gives a mirror symmetry method to compute open Gromov-Witten
invariants.
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Classifying Toric Degenerations of Fano Threefolds
NATHAN OWEN ILTEN
(joint work with Jan Arthur Christophersen)

Let V be a smooth Fano variety over C with very ample anticanonical divisor.
Consider the following

Problem. Classify all toric Fano varieties with at most Gorenstein singularities
to which V' degenerates in its anticanonical embedding.

Before addressing this problem, we first discuss how to construct many (but not
all) toric degenerations of a given Fano variety V. Let I be a simplicial complex,
and Ax the corresponding Stanley-Reisner ring. This graded ring gives rise to
a projective Stanley-Reisner scheme P(K) = Proj Ax. We call K unobstructed if
Tfl;c vanishes, where Tfhc is the second cotangent cohomology of the ring Ax. We
call I Fano if it is the join I = T % Ay of a triangulated sphere T" and simplex
Aj. Note that if T' is unobstructed, then so is K.

Let Hy denote the Hilbert scheme parametrizing subvarieties of P(| — Ky|)
with the same Hilbert polynomial as V. The variety V' corresponds to a point
[V] € Ha, and it follows from standard vanishing results that this point is smooth,
and thus lies on a single irreducible component Cy < Hy . If we assume that [V]
is a general point on Cy,, we then have the following:

Proposition 1 ([1, cf. Proposition 2.3|). Let V' be a Fano variety as above, and K
an unobstructed Fano simplicial complex such that V has an embedded degeneration
to P(K). Let P be any reflexive polytope with corresponding toric Fano variety X .
If P has a reqular unimodular triangulation of the form KC, then V' has an embedded
degeneration to X .

Thus, in order to construct toric degenerations of the smooth Fano variety V,
we would like to find an unobstructed Fano simplicial complex K such that V'
degenerates to P(K). This can be done for rank one index one Fano threefolds of
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degree 4 < d < 16, that is, those with Pic(V) = (~=Ky) and 4 < (—Ky )3 < 16.
Indeed, let Ty = 0Agz, the boundary complex of the tetrahedron, Ts = 0Ag * 0A1,
the bipyramid over the boundary of a triangle, and for even 8 < d < 16 let Ty be
the unique triangulation of the two-sphere on d/2 + 2 vertices such that the degree
of each vertex is either 4 or 5. Note that Ty may be constructed from T,; 5 via an
edge subdivision. By [4], these triangulations are all unobstructed.

Theorem 2 ([1, cf. Corollary 3.3]). For even 4 < d < 16, let Vy be a general rank
one index one Fano threefold of degree d. Then Vg has an embedded degeneration
to P(Td * Ao)

Combining this with Proposition 1, we are able to construct many toric degen-
erations of V;. In fact, by using some slightly more elaborate arguments we are
able to return to our original problem and completely classify all degenerations of
smooth Fano threefolds of degree < 12 to Gorenstein toric Fano varieties, see [2,
Theorem 1.1]. In addition to the above construction, an important ingredient in
this classification is local obstruction calculus, which we carry out with the help
of the computer package VersalDeformations [3].

We are also interested in Fano varieties of higher dimension, and thus in unob-
structed triangulations of S™ for n > 3. Let A,, denote the boundary complex of
the dual of the n-associahedron: faces of A,, correspond to triangulations of the
n-gon. For example, Ay = 0A;, and As; is the boundary complex of the 5-gon.

Theorem 3 ([1, c¢f. Theorem 5.3]). The simplicial complex A,, is unobstructed
for allm > 4.

By [5], the Grassmannian G(2,n) degenerates to P(A,, * A,_1). Thus, we may
use the above theorem to find many new toric degenerations of G(2,n) and linear
sections thereof.

The sequence T, of unobstructed simplicial complexes generalizes to higher
dimensions:

Theorem 4 ([1, cf. Theorem 6.2]). Let n > r > 4. Then there is a sequence of
unobstructed triangulated spheres Ko = Ay * Ap—ris, K1,..., Kinoryr—3) = An
such that K; is an edge subdivision of IC;_1.
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Example. Takingn = 6 and r = 4, we recover the sequence Thg, Ti2, T14. Indeed,
Tio = As = Ay, and Ty = Ag. Taking n = 5 and r = 4, this extends to include
Ty = Ay =« Ay = Ay.
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(Almost) Lagrangian fibre bundles
REYER SJAMAAR

Let B be a connected n-manifold. An almost Lagrangian fibre bundle over B is a
triple £ = (M,w, ), where M is a 2n-manifold, w is a nondegenerate 2-form on
M, called the almost symplectic form, which has the property that dw = 7*n for
some closed 3-form n on B, and m: M — B is a locally trivial fibre bundle with
the property that w restricts to 0 on every fibre of . The 3-form 7 is uniquely
determined by w and is called the twisting form of L. For simplicity we will
furthermore assume that the fibres of m are compact and connected. We call L a
Lagrangian fibre bundle if n = 0, i.e. w is a symplectic form.

Example. Let p: B — R" be a local diffeomorphism and let 3 be a 2-form on B.
Let T be the circle R/Z. The angle form on T is dq, where q is the coordinate
on R. Let M be the product B x T", equipped with the nondegenerate 2-form
w = Z;L=1 dpj ~ndq; +7*3, where m: M — B is the projection onto the first factor.
The functions p; are the action variables and the (multivalued) functions q; are
the angle variables. The triple L = (M,w, ) is an almost Lagrangian fibre bundle
with twisting form n = df.

Almost Lagrangian fibre bundles arise in nonholonomic mechanics and their
basic structure is to a large extent analogous to that of Lagrangian fibre bundles.
To begin with, a result of Fasso and Sansonetto [6] asserts the existence of local
action-angle variables on any almost Lagrangian fibre bundle £. This means that
every point in B has an open neighbourhood U such that the restriction of £ to
U is of the kind described in the above example.

The global structure of £ can be analysed as done by Duistermaat [4] in the
Lagrangian case. Duistermaat’s results were refined by Dazord and Delzant [2];
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see also Zung [13] and my obituary notice [12]. One notes that every 1-form a on
B produces a vector field v(«) on M:

QY B) 5 QY M) 25 X(M), a7 (a) — whr* (@) = v(a).

This vector field is tangent to the fibres of m and we denote its time 1 flow by ¢(«).
Similarly, every cotangent vector a € T;* B produces a vector field vy (cv) on the fibre
7=1(b), whose time 1 flow we call ¢ (). The map ¢p: TFB x 71 (b) — 7 1(b) so
defined is a transitive action of the abelian Lie group 7B, and the kernel of the
action is the period lattice P, at b. Collecting these actions for all b € B we get an
action
T*Bxg M — M

with kernel the lattice bundle P = [ [,.5 P». Here we view the cotangent bundle
T*B as a bundle of Lie groups over B, and each fibre of this bundle of groups is
acting on the corresponding fibre of M. To obtain an effective action we divide
by the kernel. The quotient ' = T*B/P is a bundle of tori over B and M is a
T'-torsor in the sense that the action

TXBM—>M

of T on the bundle M is simply transitive on each fibre. Moreover, the subbundle
P is a Lagrangian submanifold of 7* B and the cotangent symplectic form on T* B
descends to the quotient bundle of tori T'.

The existence of the Lagrangian lattice bundle P means that the base B of
our almost Lagrangian fibre bundle £ is equipped with a tropical affine struc-
ture, i.e. an atlas whose transition maps are in the tropical affine group G =
GL(n,Z) x R". (See e.g. [7, Chapter 1].) This atlas gives rise to the monodromy
class u(P) € H'(B,G), which depends not on £, but only on the lattice bundle
P. The monodromy p(P) is trivial if and only if £ admits global action variables,
that is to say the tropical affine structure on B is pulled back from R by a local
diffeomorphism p: B — R".

Just as a circle bundle on a space X is characterized up to isomorphism by its
Chern class in H'(X,U(1)) ~ H?*(X,Z), a T-torsor M on B is characterized up
to isomorphism by its Chern class ¢(M) € H*(B,T) =~ H?*(B, P). (See e.g. [8, Ch.
5].) The following theorem says that every T-torsor possesses a nondegenerate
form w which turns it into an almost Lagrangian fibre bundle, and that the de
Rham class of the corresponding twisting form is determined by the Chern class
of the torsor.

Theorem. FEvery T-torsor m: M — B possesses a compatible almost symplectic
form w. Its twisting form n € Z3(B) satisfies [n] = dpxc(M).

Here “Z*” denotes closed k-forms and dp4: H*(B, P) — H3(B,R) is the map
in cohomology induced by a differential operator dp, which is defined as follows:
the exterior derivative d: Q'(B) — Z2(B) kills sections of P (because P is La-
grangian) and so descends to an operator dp: I'(B,T) — Z?(B).

Any 2-form o on B acts on £ = (M, w, ) by the formulao-£ = (M, w+7*0, 7).
This action changes the twisting form by the exact 3-form dg.
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Theorem. The compatible almost symplectic form on a T-torsor m: M — B 1is
unique up to the action of Q?(B).

The theory of (almost) Lagrangian fibre bundles invites comparison with sym-
plectic toric geometry. The fundamental theorem of symplectic toric geometry,
due to Delzant [3], states that a compact symplectic manifold equipped with a
completely integrable Hamiltonian torus action is determined up to isomorphism
by its moment polytope.

Given a suitable (“Delzant”) polytope, one can recover the corresponding sym-
plectic manifold as a symplectic quotient of a linear action of a larger torus on a
symplectic vector space. This observation appears to be due to Audin [1]; see also
Guillemin [9, Ch.frm[o]-] and Duistermaat and Pelayo [5].

An alternative construction of the Delzant space corresponding to a polytope
can be found in [11, §3.4]: one starts with the cotangent bundle of the torus
and performs symplectic cuts (in the sense of Lerman [10]) along all the facets of
the polytope. One can replace the cotangent bundle of the torus by an almost
Lagrangian fibre bundle and perform a similar cutting process, but this remains
to be explored.
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Topological toric manifolds
MIKIYA MASUDA
(joint work with Hiroaki Ishida, Yukiko Fukukawa)

In this report, a toric manifold is a compact non-singular toric variety. As is well-
known, there is a bijective correspondence between toric manifolds and complete
non-singular fans. I reported a topological generalization of this classical fact,
worked jointly with H. Ishida and Y. Fukukawa ([5]).

Previous to us, two topological analogues of a toric manifold have been intro-
duced and a theory similar to toric geometry is developed for them using topo-
logical technique. One topological analogue is what is now called a quasitoric
manifold* introduced by Davis-Januszkiewicz [2] around 1990 and the other is a
torus manifold introduced by Masuda [6]> and Hattori-Masuda [3] around 2000.

A quasitoric manifold is a closed smooth manifold M of even dimension, say
2n, with an effective smooth action of (S')™, such that M is locally equivariantly
diffeomorphic to a representation space of (S!)" and the orbit space M /(S1)" is a
simple convex polytope. A projective toric manifold with the restricted action of
the compact torus is a quasitoric manifold but there are many quasitoric manifolds
which do not arise this way. For example CP?#CP? with a smooth action of
(81)? is quasitoric but not toric because it does not allow a complex (even almost
complex) structure, as is well-known. Davis-Januszkiewicz [2] show that quasitoric
manifolds M are classified in terms of pairs (Q,v) where @ is a simple convex
polytope identified with the orbit space M /(S!)™ and v is a function on the facets
of () with values in Z" satisfying a certain unimodularity condition.

A torus manifold is a closed smooth manifold M of even dimension, say 2n,
with an effective smooth action of (S!)" having a fixed point. An orientation
datum called an omniorientation is often incorporated in the definition of a torus
manifold. The action of (S1)™ on a toric or quasitoric manifold has a fixed point,
so they are torus manifolds. A typical and simple example of a torus manifold
which is neither toric nor quasitoric is 2n-sphere S?" with a natural smooth action
of (81)™ for n > 2. The orbit space S2"/(S1)" is contractible but there are many
torus manifolds whose orbit spaces by the torus action are not contractible unlike in
the case of toric or quasitoric manifolds. Although the family of torus manifolds
is much larger than that of toric or quasitoric manifolds, one can associate a
combinatorial object A(M) called a multi-fan to an omnioriented torus manifold
M. Roughly speaking, a multi-fan is also a collection of cones but cones may
overlap unlike ordinary fans. When M arises from a toric manifold, the multi-fan
A(M) agrees with the ordinary fan associated with M. In general, the multi-fan
A(M) does not determine M, but it contains a lot of geometrical information on

IDavis-Januszkiewicz [2] uses the terminology toric manifold but it was already used in
algebraic geometry as the meaning of smooth toric variety, so Buchstaber-Panov [1] started
using the word quasitoric manifold.

’In [6], the notion of unitary toric manifold is introduced. It is a torus manifold with invariant
unitary (or weakly almost complex) structure.
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M, e.g. genera of M such as signature, Hirzebruch T} (or x,) genus and elliptic
genus can be described in terms of A(M).

In the talk, I explained a third topological analogue of a toric manifold intro-
duced in [5], which we believe is the correct topological analogue. Remember that
a toric manifold of complex dimension n is a compact smooth algebraic variety
with an effective algebraic action of (C*)™ having an open dense orbit. It is known
that a toric manifold is covered by finitely many invariant open subsets each equiv-
ariantly and algebraically isomorphic to a direct sum of complex one-dimensional
algebraic representation spaces of (C*)™. Based on this observation we define our
topological analogue of a toric manifold as follows.

Definition. We say that a closed smooth manifold X of dimension 2n with an
effective smooth action of (C*)™ having an open dense orbit is a (compact) topo-
logical toric manifold if it is covered by finitely many invariant open subsets each
equivariantly diffeomorphic to a direct sum of complex one-dimensional smooth
representation spaces of (C*).

We remark that there are many more smooth representations of (C*)™ than
algebraic ones. This stems from the fact that since C* = R.g x S as smooth
groups, any smooth endomorphism of C* is of the form

(1) g |g|b+¢—_1c(‘;%|)“ with (b ++/—1c,v) € C x Z

and this endomorphism is algebraic if and only if b = v and ¢ = 0. Therefore the
group Hom(C*, C*) of smooth endomorphisms of C* is isomorphic to C x Z while
the group Homg;,(C*,C*) of algebraic endomorphisms of C* is isomorphic to Z.
This implies that topological toric manifolds are much more abundant than toric
manifolds.

Nevertheless, topological toric manifolds have similar topological properties to
toric manifolds. For instance, the orbit space of a topological toric manifold X by
the restricted compact torus action is a manifold with corners whose faces (even
the orbit space itself) are all contractible and any intersection of faces is connected
unless it is empty, so the orbit space looks like a simple polytope. This implies
that the cohomology ring H*(X;Z) of X is generated by degree two elements as
a ring like the toric or quasitoric case.

As a combinatorial counterpart to a topological toric manifold, we introduced
in [5] the notion of a topological fan generalizing the notion of a simplicial fan
in toric geometry. A simplicial fan of dimension n is a collection of simplicial
cones in R™ satisfying certain conditions. It can be regarded as a pair (2, v) of an
abstract simplicial complex ¥ and a map v: ) — Z", where ¥ is the underlying
simplicial complex of the fan, £(!) is the set of vertices in ¥ which correspond to
one-dimensional cones in the fan, and v assigns primitive integral vectors lying on
the one-dimensional cones. We note that the target group Z" of the map v should
actually be regarded as the group Homg;, (C*, (C*)") of algebraic homomorphisms
from C* to (C*)™.
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We define a topological fan of dimension n to be a pair A = (X, 8) of an abstract
simplicial complex ¥ and a map £: () — Hom(C*, (C*)") satisfying certain
conditions, where Hom(C*, (C*)™) denotes the group of smooth homomorphisms
from C* to (C*)™. We may think of a topological fan as a collection of cones
in Hom(C*, (C*)™) by forming cones C using the ¥ and . As observed in (1),
Hom(C*, (C*)™) is isomorphic to C" x Z", so we may regard $ as a map to
C™ x Z™ and write 8 = (b + v/—1c,v) accordingly. Then an ordinary simplicial
fan is a topological fan with b = v and ¢ = 0. Cones obtained from the pair (X, b),
which are the projected images of the cones C on the real part of the first factor of
C™ x Z™, do not overlap and define an ordinary simplicial fan over R while cones
formed from the pair (X3, v), which are the projected images of C on the second
factor of C™ x Z", may overlap and define a multi-fan. A topological fan A is called
complete if the ordinary fan (X,b) is complete, and non-singular if the multi-fan
(3, v) is non-singular, i.e. if {v({i})}icsr is a part of a Z-basis of Z" for any I € .

Theorem ([5]). There is a bijective correspondence between
{Omnioriented topological toric manifolds of dimension 2n}

and

{Complete non-singular topological fans of dimension n}

generalizing the well-known bijection in toric geometry.

Remark. Recently, Zung-Minh [8] note that the above theorem can be recovered
from their viewpoint. See [4], [7] for further development on topological toric
manifolds.
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Combinatorial questions related to stringy E-polynomials of
Gorenstein polytopes

BENJAMIN NILL
(joint work with Jan Schepers)

1. MOTIVATION

Over the last three decades mirror symmetry has spurred interest in finding
the Hodge numbers of irreducible Calabi-Yau manifolds (over C). The ‘Hodge
diamond’ of a Calabi-Yau threefold is completely described by knowing (h''!, h%1).
So far ten thousands of these pairs have been found [5], however, all of them in
the range of h''! 4+ h?! < 502. Therefore, the main question attributed to Yau is
still open:

Are there only finitely many Hodge numbers of n-dimensional irreducible
Calabi- Yau manifolds?

2. THE BATYREV-BORISOV CONSTRUCTION AND GORENSTEIN POLYTOPES

The vast amount of examples of CY-folds are CICY: (resolutions of) complete
intersection Calabi-Yau varieties in toric varieties associated to reflexive polytopes
A < R%, see [6, 7]. Reflexive polytopes are lattice polytopes that appear as dual
pairs [1]. In 1994 Batyrev realized that anticanonical hypersurfaces in these toric
varieties are Calabi-Yau, and they can be crepantly resolved (for d < 4). Moreover,
he proved that Hodge numbers for Calabi-Yau manifolds constructed in this way
by A and its dual A* have mirror-symmetric Hodge numbers. In 1996 Batyrev
and Borisov generalized these results to CICYs [2]. A CICY Y of codimension
in a Gorenstein toric Fano variety X is associated to a Minkowski decomposition
of a reflexive polytope A = Ay + --- + A, into lattice polytopes. Batyrev and
Borisov showed that the stringy E-polynomial of Y

Eg(Y) =) (=P hP (V) uPo?
P.q
can be computed in a purely combinatorial way. (Here, hg??(Y) denote the
stringy Hodge numbers of the possibly singular Y, see [1, 2]).

In 2001 Borisov and Mavlyutov simplified this formula as follows. Let P =
Aqx---x A, be the Cayley polytope of Ay, ..., A, see [3]. Then Pisa (d+r—1)-
dimensional Gorenstein polytope of index r, i.e., 7P is a reflexive polytope (up to
a translation). Gorenstein polytopes also appear as dual pairs P, P*, see e.g. [3].
In [4] it is shown that Eq (YY) equals

1 . ~ ~
S () F(F ) $(F*, ),

FEg(Pt) :=
t( ) (UU)T o Fep

where F'* is the face of P* corresponding to F. The occuring S-polynomials will
be described in the next section. Notice that this formula makes sense for any
Gorenstein polytope! In fact, in [3] Batyrev and the first author conjecture that
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these stringy E-functions of Gorenstein polytopes should share all the properties
of stringy E-polynomials of Calabi-Yau manifolds. In particular:

Theorem 2.1 ([8]). Stringy E-functions of Gorenstein polytopes are polynomials.

Is it still open, whether the degree of Fg (P, t) equals the expected degree
dim(P) + 1 — 2r. Coming back to the original motivation, Question 4.21 in [3]
asks whether there are (up to multiples) only finitely many stringy E-polynomials
of Gorenstein polytopes with fixed number dim(P) + 1 — 2r. This would give an
affirmative answer of Yau’s conjecture for all CYCls.

3. A CLOSER LOOK AT S-POLYNOMIALS

Let P be any lattice polytope of dimension d. The polynomial S (P,t) € Z[t]
mixes information about lattice points with the combinatorics of the polytope. In
[4] it is defined as

S(Pt):i= Y, (=D FREE) g ppx(8),
G<F<P
where we sum over all faces F' of P and where [F, P] denotes the interval in
the Eulerian poset of faces of P. Here, the h*-polynomial is a transform of the
famous Ehrhart polynomial counting lattice points in multiples [3], while the toric
g-polynomial is associated to posets of faces, see [10]. (Remark: for reasons which
will become below we use here Stanley’s notation for the g-polynomial which differs
from the one used in [3, 8].) Borisov and Mavlyutov [4] showed the following non-
obvious result using algebro-geometric reasoning:

Theorem 3.1 ([4]). S-polynomials of lattice polytopes have non-negative coeffi-
cients.

Is there a combinatorial proof of this result?
If P=ois just a simplex, then in [3] it is observed that S(o,t) equals

Lx(t Z # (interior lattice points of height & in TI(S x 1)) ",
keN

where II denotes the parallelepiped spanned. By convention, I%(t) = 1.
Let T be a regular lattice triangulation of P. Here is our observation:

= > ) Ipo(t),

oeT
where
lpro(t) = Y, (=D hy (o)) g py# (D).
o<F<P
Conjecture: Ip 1 ,(t) has non-negative coeflicients.

This would give a canonical way to write S (P,t) as a sum of nonnegative poly-
nomials clearly separating the lattice data from the combinatorial information.
Some final remarks:
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(1) For 0 = &, lp1,&(t) equals precisely Stanley’s local h-polynomials, see
[10]:

D1 (FDTEE b () goppyx (1)
G<F<P

One of the main results in [10] is the proof of their non-negativity.
(2) The previous definition looks similar to the definition of the S-polynomials.

Indeed, the g—polynomials are exactly the Ehrhart analogues of local h-
polynomials as defined by Stanley in [10]! He conjectured in Conjec-
ture 7.14 in [10] also their non-negativity which was later proved by Karu
[11] in 2008 — five years after the (at that time unnoticed) proof of Borisov
and Mavlyutov.

(3) Karu proved in [11, Corollary 1.2] in our notation

hE(t) = Z S(F,t) gir.p (1),

F<F<P

a result proved independently by the second author in [9, Prop.2.9].

(4) As an immediate corollary of these observations we can prove an (un-
published) conjecture of Stapledon: If 7 is unimodular, then S (P,t) is
unimodal. Namely, since [* = 0 for 0 = ¢J in this case, §(P, t) equals
lp,T & which is unimodal by [10, Thm.7.9].
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Autoequivalences of toric surfaces
DaviD PLooG
(joint work with Nathan Broomhead)

The derived category D?(X) of a smooth, projective variety X can be interpreted
in two ways: On the one hand, it provides a natural homological structure sitting
above K-theory K(X) or cohomology H*(X,Q). On the other hand, derived
categories give rise to an interesting equivalence relation for varieties X and Y,
by way of D%(X) =~ D’(Y); this is called ‘Fourier-Mukai partners’ or ‘derived
equivalence’. From both points of view, it is natural to study derived symmetries
of X, i.e. autoequivalences of the derived category D°(X).

The geometric automorphisms Aut(X) appear as autoequivalences via f —
Rfy. Furthermore, every line bundle L € Pic(X) gives rise to the line bundle
twist L ® -, which is an exact autoequivalence of Coh(X) and hence an element
of Aut(D’(X)). Furthermore, the shift functor [1] is an obvious autoequivalence
of D°(X). These types of symmetries are available on any variety and are thus
called ‘standard’; they combine to the subgroup

A(X) := (Pic(X) » Aut(X)) x Z[1].

Certain varieties possess a larger class of derived symmetries. Here are some
known results for surfaces (always smooth and projective over an algebraically
closed field; we write C): If X is a del Pezzo surface, i.e. w;(l ample, or has ample
wx, a condition stronger than being of general type, then Aut(D°(X)) = A(X)
by a famous result of Bondal and Orlov [1]. By contrast, abelian surfaces always
have autoequivalences beyond the standard ones by Mukai’s classical [8] and the
same holds for K3 surfaces due to the existence of spherical twists [10].

We describe the autoequivalences of toric surfaces. As the anti-canonical bun-
dle w;(l of a toric surface X is big, we expect rather few non-standard derived
symmetries. They may exist, however, and part of our result is that they will
be related to spherical twists coming from —2-curves. Assume that C' ¢ X is a
—2-curve, i.e. a smooth, rational curve with C? = —2. Then the structure sheaf
of C has the following properties:

Oc ®wx = Oc, Hom(O¢,O¢) = C, Ext'(O¢, O¢) = 0, Ext*(O¢,O¢) = C,

where the first equality follows from adjunction, the second from C being con-
nected, the third from C' being rigid and the last from Serre duality. An object
with these properties is called spherical [10] and gives rise to an autoequivalence
of D*(X), the spherical twist To,, defined by distinguished triangles coming from
the cones of the natural evaluation maps

Hom'(Oc, A) - OC — A - T@C (A)

for any A € D°(X). This actually is a functor; see for example [5, §8.1]. It should
be thought of a categorical lift of the reflection in K(X) along the class [O¢]
of Euler-square x(Oc,O¢) = 2. This interpretation is supported by the easily
checked properties To (Oc) = O¢[1] and T (A) = A whenever Hom*(O¢, A) =
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0. Note that line bundles of any degree on C', considered as torsion sheaves on X,
are spherical; in particular, Oc(—1) is.
After introducing some notation

A(X) :={C < X irreducible (—2)-curve}, a possibly infinite set;
Pica(X) :=(Ox(C) | C € A), as a subgroup of Pic(X);
B(X) :=(To,u) | C € A(X),i =0,-1), as a subgroup of Aut(D°(X)).
we are ready to present our first main result:

Theorem 1. Let X be a smooth, projective surface and consider the conditions

(1) The anti-canonical bundle is big.

(2) The —2-curves on X form disjoint chains of type A.

(3) Pic(X) = Pica(X) @ P where P is an Aut(X)-invariant complement.
If X satisfies (1) and (2) then Aut(D®(X)) is generated by Pic(X), Aut(X), Z[1]
and B(X). If X satisfies (1)-(3) then there is the following decomposition of
Aut(D*(X))

Aut(D?(X)) = B(X) x (P x Aut(X)) x Z[1].

The application to toric surfaces will be given in a moment. We point out that
this is one of very few cases where the autoequivalence group of a variety can be
fully described — apart from the minimal case of ample w;—gl already mentioned
above, the structure is known only for abelian varieties, a result of Orlov [9].

Let us state that condition (1) is needed to invoke Kawamata’s [7]. Condition
(2) allows to draw on [6] of Ishii and Uehara where they also show the general
relation To, To.(1)(A) = Ox(C) ® L. This leads to Pic(X) n B(X) = Pica(X),
and [6] also prove Aut(X) n B(X) = 1. These properties hint at the semi-direct
product decomposition for Aut(D?(X)) of the theorem but we need condition (3)
in order to make it work.

Turning to toric surfaces, conditions (1) and (2) are well-known in toric geom-
etry. Regarding (3), recall that toric varieties were introduced by Demazure [3]
who completely described their automorphism groups. We only need a corollary
of this achievement: Aut(X) is generated by its identity component together with
Aut(3(X)), the group of automorphisms of a fan ¥ for X.

Theorem 2. If X is a smooth, projective, toric surface, then the conditions (1)
and (2) of Theorem 1 are satisfied. All but three such surfaces admit a splitting
Pica(X) < Pic(X). An Aut(X)-invariant complement ezists if and only if an
Aut(X(X))-invariant complement exists.

We describe the three exceptions mentioned in the theorem by drawing the
lattice generators for the rays in their fans as polygons:

AL O

We follow with a series of examples where invariant splittings do exist: This is
the case for ‘generic’ toric surfaces, i.e. when the group of fan automorphisms is
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trivial. For a more interesting case, suppose Aut(X(X)) = Z/2 and that the action
exchanges two rays which do not correspond to —2-curves, and whose generators
form a Z-basis for N. T series of toric surfaces given by fans over the following
polygons satisfy these conditions:

Excluding the two marked curves, the remaining torus invariant divisors form a
basis for Pic(X), and the subset of these divisors which are not —2-curves generate
an Aut(X(X))-invariant complement to Pica (X).

For the following example, computer algebra was used to make sure that no
invariant complement exists. This shows that condition (3) of Theorem 1 is nec-

essary.

Finally, we mention that [2, §5] deals with further surfaces to which Theorem 1
applies. These are certain complexity one surfaces, i.e. having a C* action but not
necessarily toric.
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After the hike on Wednesday evening there was a session for younger researchers
to talk about their work in the form of a ten minute talk followed by five minutes
of discussion. This is the collection of their abstracts.
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On the Isotropy of Stacky Polytopes
REBECCA GOLDIN
(joint work with Megumi Harada, David Johannsen, and Derek Krepski)

A stacky polytope (introduced in [1] following [2]) is a triple (V, A, 3), where N
is a rank d finitely generated abelian group, A < (N x R)* =~ R% is a rational
simple polytope with n facets, and 8 is a map Z" — N with finite cokernel,
sending basis vectors e; to vectors normal (not nec. primitive) to facets of A. To
a stacky polytope, one can associate a toric Deligne-Mumford stack X realized as
a symplectic reduction [C™//G] of C™ by a linear action of a compact (not nec.
connected) abelian Lie group G.

We characterized the combinatorial conditions under which an associated toric
DM stack X is a global quotient of a manifold by a finite group. At every vertex p
of the polytope, let V,, the integral span of {$(e;)} of the normal vectors associated
to the facets touching p. Then X is a global quotient if an only if V), equals the Z-
span of all the normal vectors {$(e;)}i=1,... n- This generalizes a condition known
when N is free.
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Lower bounds for Gromov width of U(n) and SO(n) coadjoint orbits.
MILENA PABINIAK

Gromov width of a symplectic manifold (M?™,w) is
Gromov(M*™,w) = sup{nr? | (B*"(r), wstandard) — (M*™,w) symplectically }.

Let G = U(n) or SO(n), and T be its maximal torus. The coadjoint orbit, Oy,
through A € t* is a symplectic manifold, with Kostant-Kirillov form wg . We use
the torus action coming from the Gelfand-Tsetlin system to construct symplectic
embeddings of balls and prove

Gromov(Ox,wk k) = min{{a}, A\); a; a coroot, (o, A) > 0}.

In many known cases the Gromov width is given by the above formula (complex
Grassmannians [KT], complete flag manifolds satisfying some additional integral-
ity conditions [Z]). It is also an upper bound in the case of regular orbits of any
compact connected Lie group (with additional integrality condition; [Z]).
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Twist functors
ANDREAS HOCHENEGGER
(joint work with David Ploog)

In this talk, I reported on a work in progress together with David Ploog.

The starting point was the following observation. Let m: F» — F» a blowup of
the second Hirzebruch surface in a point on the unique (—2)-curve C < Fo. We
can associate to this curve C' an autoequivalence of D°(F3), the so-called spherical
twist To as introduced by Seidel and Thomas in [1]. This notion is not stable
under blowups. Namely, the twist functor T g associated to F' = 7*C' is no longer
an equivalence.

But there is a decomposition DY(Fy) = (Qp,Dr) such that Tz becomes an
equivalence after restriction to the two parts. Moreover, this decomposition coin-
cides with Db(Fy) = (Og(—1), D*(F>)), where F is the exceptional divisor.
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Torus actions on complex manifolds
HIROAKI ISHIDA

Whenever a compact torus G = (S1)™ acts on a connected smooth manifold M
effectively, it follows from the slice theorem that each orbit G - x satisfies that
dimp G - = 2m — dimg M.

Suppose that M is a compact connected complex manifold of complex dimension
n and that G = (S!)™-action on M preserves the complex structure on M. If the
equality above holds for some x € M, then we can find a G-equivariant principal
C™ "-bundle C™™" — Ma — M, where Ma is a non-singular toric variety of
complex dimension m. In case m = n, this result is nothing but the main theorem
in [1] which states that a compact connected complex manifold M of complex
dimension n with an effective (S!)"-action preserving the complex structure on
M and having a fixed point is actually a complete nonsingular toric variety.
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Partially ample line bundles on toric varieties
NATHAN BROOMHEAD
(joint work with Artie Prendergast-Smith)

The notion of ampleness is fundamental to algebraic geometry. There is a coho-
mological characterizsation (Serre): a line bundle is ample if a sufficiently high
power of it kills cohomology of any given coherent sheaf in positive degrees. A
natural extension is the idea of a g-ample line bundle for ¢ € N: those for which
a sufficiently high power kills cohomology in degrees above ¢. It remains an open
problem to give a good description of the (not necessarily convex) cone of g-ample
line bundles on a variety. In [1] we give such a description in the case of projective
toric varieties. We use results of [2] and a toric method of calculating cohomology.
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GKM-sheaves and equivariant cohomology
THOMAS BAIRD

In [2] Goresky, Kottwitz and MacPherson observed that for a large class of
interesting T-spaces X (e.g. toric manifolds and flag varieties), the equivariant
cohomology is encoded in a graph I'x (now called GKM-graphs). In recent work
[1] this framework was expanded to assign GKM data to a class of T-spaces that
includes all compact, smooth T-manifolds. To a T-manifold we define a GKM-
hypergraph equipped with GKM-sheaf Fx such that H%(X) ~ HY(Fx) if X is
equivariantly formal.
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Losev-Manin moduli spaces and toric varieties associated to root
systems

MARK BLUME

Losev and Manin introduced fine moduli spaces L,, of stable n-pointed chains of
projective lines. The moduli space L, is isomorphic to the toric variety X (A4, _1)
associated with the root system A,_1. In general, a root system R of rank n
defines an n-dimensional smooth projective toric variety X (R) associated with its
fan of Weyl chambers. We discuss the relation between L,, and X (4,_1), and
generalisations of the Losev-Manin moduli spaces for the other families of classical
root systems. Further we consider moduli stacks of pointed chains of projective
lines related to the Losev-Manin moduli spaces that coincide with certain toric
stacks described in terms of the Cartan matrices of root systems of type A.
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