Introduction to Computational Stochastic
PDEs, CUP, 2014

Here are the typos/errors that we know about in the first edition. Detailed corrections to MATLAB codes are given
on-line!. Let us know if you find anymore.
12th September 2024

Chapter 1. p17 In Definition 1.60, the Hilbert—-Schmidt norm should be defined as

1/2

(o)

ILlasw.my = | D ILg, 17|

J=1
(the norm on the right is the one in H not in U).

p21 Lemma 1.78 (Dini’s lemma) requires additionally the assumption that f is continuous (to guarantee that
f(x) = fu(x) = € for the limit point x). In the application of Dini’s lemma for the proof of Theorem
1.80 (Mercer’s theorem), this holds true for g(x) = G (x, x).

Chapter 2. p42 Figure 2.1 is misprinted.

p56 In the first displayed equation of the proof, the first term in the integrand should be p(x)(e(x)’)? (the
e(x) has one too many dashes).

p79 The right-hand side of (2.109) should be ¢ i — Ihﬁlfqz(N).

Assumption 2.64 in general can only be verified for constant boundary data g; H>-regularity results
usually include an extra term on the right-hands side to account for g # 0 — see (Renardy and Rogers,
2004, Theorem 8.53) or (McLean, 2000, Theorem 4.10).

Chapter 3. p116 meshgrid is misused in Example 3.40 and Algorithm 3.6. See exa_3.40.m.
p132 Following the comment on p487 below, the last line of the proof should be

l|u(t,) — @,]] < E exp(LnAt).

Chapter 4. p159 Nensen’s inequality — Jensen’s inequality (in proof of T4.58 (iii)).

p179 Bayes’ theorem is due to the Reverend Thomas Bayes and the apostrophe is written after and not, as in
Exercise 4.11, before the s. In the same exercise, px,y is incorrectly defined and it should be

P(X =xi,Y =y;) = Pxy(k,j)
(interchange j and k).

Chapter 5. p185 In the second displayed equation on the left-hand side, delete the comma

p203 By "If the process is Gaussian" in Theorem 5.29, we mean X is Gaussian in the sense of Definition 4.38,
which immediately implies that the £; are Gaussian. It can be shown that, if all the finite-dimensional
distributions are Gaussian, and sample paths X € Lz(‘J'), then X is also Gaussian in the sense of
Definition 4.38. See Theorem 2 of Rajput, B. S. & Cambanis, S. Gaussian processes and Gaussian
measures. Ann. Math. Stat. 43, 1944-1952.

p204 The uniform convergence in (5.39) is a consequence of Mercer’s Theorem (Theorem 1.80). In
particular, write X (¢) — X (¢) = X(¢t) — u(t) — Z]]'=1 V9 (1)é;. Then, E(X(7) - X;(0))? =C(t,1) -
ZJJ-:1 vilg;(t) |> > 0 from the KL expansion (as & 7 has mean zero and unit variance). This converges

to zero as J — oo uniformly in ¢ by Mercer’s Theorem (or directly by Lemma 1.78 as C and ¢; are
continuous).

Chapter 6. p235 In Algorithm 6.3, the normalisation by variance in Ay in the increments AW ; is missing. To account
for this, as f(v;) Av; = (€/27) x 2(n/€)/(J — 1) = 715, the last line should be Z=Z*sqrt (1/(J-1)).
See also quad_sinc.m.

Thttps://github.com/tonyshardlow/picspde



p239 In Equation (6.34), the outer sum over k has not been carried over from the previous line and should

read
N-1 ) M-1 )
ZR(tn) — Z elZﬂkn/N Z el(7R+mAV)t”\/fmAWkM+m~
k=0 m=0

p279 The first two entries in the second column of the matrix V displayed above Example 7.41 should be
025, +1 and @2, 42, DOt T2y, 41 aNd Top,40.

Chapter 7. p291 In Algorithm 7.10 (turn_band_wm.m), £ should be an even function of s (missing modulus).

p305 In Lemma 7.67, the quantity My (u) is infinite as stated and cannot be used for proving Theorem 7.68.
We show here how to prove Theorem 7.68 using the Garsia—Rodemich-Rumsey (GRR) inequality for
D = (0,1). For an alternative approach, see M. Talagrand, ‘Lower Bounds for Stochastic Processes’,
Springer, 2021 (e.g., Section 2.5 Continuity of Gaussian Processes).
Let ¥W(¢) = exp(¢?), and p(t) =14, for t € [0, 1].
(Note: GRR applies to a wider class of ¥ and p, which we do not describe here — see Garsia,
Rodemich, and Rumsey (1971) for details. GRR can also be developed for dimension d > 1 — see
Garsia, ‘Continuity properties of Gaussian processes with multidimensional time parameter’, Berkeley
Symp. on Math. Statist. and Prob., 1972).

Lemma (Garsia—Rodemich—-Rumsey). Let f be a continuous function on [0, 1] and suppose that

My(f) = / / (lf(s()s —C; )|) ds dt < oo.

Then, for all s,t € [0, 1],
[s—z]
1£(s) = F(0)] < / ¥ (4M°(f)) dp(r).
0 l"

Lemma (Lemma 7.67 revised for D = (0,1)). Let D = (0,1). Fix g,€ > 0. For a constant Ce
depending only on € and q, we have, for any u € C(D),

ju(x) = u(y)| < (Ce +logdMo) [x -y, x.yeD, ()
where we assume
Mo () _/ / ex (”(x) ”|§y)) dx dy < co. )

Proof. Then,

Mot - / / o (u(x) —u(y)) drdy / / (|u<x> u<y>|) i dy
e = y|? p(x—y)
for W(1r) = exp(r?) and p(t) = t9. My(u) is finite by assumption and the GRR lemma applies. Note

that ¥(r) > 1 for > 0 and so My(u) > 1. Further, ¥~ (¢) = y/log(r) and p’(t) = g 197! forall t > 1.
For any € > 0, there exists C¢ such that, for any r € (0, 1),

Viog(4Mo(u)/r2) = \log(4Mo(u)) + 2| log ]|
1
< +log(4Mo(u)) + Cer™€.

(aslog4My(u) > 1and Va + b < +Ja+b/2+/afora, b > 0). Then, from GRR, foranyx,y € D = (0, 1),

[x=yl
Ju(x) - u(y)| < /0 ’ log(41‘/fr02(u))qrq—1 0

< log #Mo (u)|x — y| + C. -2
=

For a possibly different C, this completes the proof of (1). O

[logr|

I —y|77€.
€



This version of Lemma 7.67 can be used in the proof of Theorem 7.68.

Theorem (Theorem 7.68 revised). Let D be a bounded domain and {u(x): X € 5} be a mean-zero
Gaussian random field such that, for some L, s > 0,

E[lu(x) —~u(y)’|] < Llx -yl5.  Vx.y €D. 3)
For any p > 1, there exists a random variable K such that ¥ € LP(Q) and
u@) —u@)| < K@lx -yl veyeD, as. “)

Proof. We can find a truncated Karhunen—Logéve expansion u;(x) such that u;(-,w) € C(D) for all
w € Q. Fix p > 1 and let

_ug(x) —uy(y)

VBLx —y[i5

The random variables in the Karhunen—Logve expansion are iid with mean zero and hence E [A T+l \ A J] =

Ay(x,y): x,y €D.

A;. Further, the function 7 — exp(z?) is convex and Jensen’s inequality implies that ]E[eAZM \A 1] >

2 . 2. . . . L
€%7. That is, e*7 is a submartingale and Doob’s submartingale inequality gives

2A;(x.y)?

E| sup e

< 4E[ 07,
1<j<J

Note that E[Ay (x,y)?] < Lllx - ylI5/8 Lllx — y||5 < 1/8 for every x, y. Consequently, A; ~ N(0, o)
where the variance satisfies 0> < 1/8. As 1/20%> =2 > 1/40?,

1 2 25,2 1 242
E[eZAJ(x’Y)Z] = —/ezx e 27 ax < /e_x 40" gy = V2.
V202 JR V2ro? JR

We conclude that

20 (x,y)?

E| sup e S‘/E, Vx,yeﬁ.

1<j<J

M, (u) ::/‘/supem-’("’y)2 dx dy.
D JD JeN

As D is bounded, M, € L'(Q). Therefore, by Lemma 7.67 (revised), we have

Let

s— 2 =y
luy (x, ) —uy (y, w)| < K(w)|lx -yl %, va,yeD.

for K (w) = V8L({/log4M; (1) + C.). We may write exp(pK) = ¢(M;) where
o(t) = exp(p\/g(\llogm +C,)).

The function ¢ is concave and so, by Jensen’s inequality, E[exp(pK)] = E[¢(M1)] < ¢(E[M;]) < oo.
We conclude that eX € LP(Q).

Asuy(x) — u(x) as J — oo almost surely, this gives (??). O

Chapter 8.
Chapter 9.

Chapter 10. p442-469 meshgrid is misused in Examples 10.12 and 10.40 and in Algorithms 10.5 and 10.10. See
exa_10.40.m.

Appendix.

p487 The discrete Gronwall inequality (Lemma A.14) is incorrect. It should either be



Lemma 1. Consider z,, > 0 such that z,, < a + bz,—1 forn = 1,2,... and a,b > 0. If b = 1, then

Zn < zo+na. If b # 1, then
a

Zn < b"zo+ 1_b(l -b").
or
Lemma 2. Consider z, > 0 such that
n-1
Zn < a+bsz, forn=0,1,2...
k=0

and constants a,b > 0. Then, z,, < a(1 + b)" < aexp(bn).
The first lemma is (Stuart and Humphries, 1997, Theorem 1.1.12).
To prove the second lemma, notice it is true for n = 0. Assume it is true for zg, . .., z,-1. Then,

n—-1

Zn Sa+b2zk by (*)
k=0

n-1
<a+b Z a(1+b)* by induction assumption
k=0
1-(1+b)"
=a+ ab#l-:b)) by geometric summation formula
1-(1+b)"
carab O (b)Y = 1) = a(1 +b)".

-b

@)

Therefore, z, < a(l +b)" foralln =0, 1,2, ... by induction. Finally, z,, < aexp(bn) as 1 +x < exp(x) for

x > 0. The second lemma can be used in the proof of Theorems 3.55 and 10.34.



