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Here are the typos/errors that we know about in the first edition. Detailed corrections to MATLAB codes are given
on-line1. Let us know if you find anymore.
12th September 2024

Chapter 1. p17 In Definition 1.60, the Hilbert–Schmidt norm should be defined as

∥𝐿∥HS(𝑈,𝐻 ) ≔
©­«

∞∑︁
𝑗=1

∥𝐿𝜙 𝑗 ∥2ª®¬
1/2

,

(the norm on the right is the one in 𝐻 not in𝑈).
p21 Lemma 1.78 (Dini’s lemma) requires additionally the assumption that 𝑓 is continuous (to guarantee that

𝑓 (𝑥) − 𝑓𝑛 (𝑥) ≥ 𝜖 for the limit point 𝑥). In the application of Dini’s lemma for the proof of Theorem
1.80 (Mercer’s theorem), this holds true for 𝑔(𝑥) = 𝐺 (𝑥, 𝑥).

Chapter 2. p42 Figure 2.1 is misprinted.
p56 In the first displayed equation of the proof, the first term in the integrand should be 𝑝(𝑥) (𝑒(𝑥)′)2 (the

𝑒(𝑥) has one too many dashes).
p79 The right-hand side of (2.109) should be 𝑐1 |𝑢̂ − 𝐼ℎ𝑢̂ |2𝐻2 (Δ∗ ) .

Assumption 2.64 in general can only be verified for constant boundary data 𝑔; 𝐻2-regularity results
usually include an extra term on the right-hands side to account for 𝑔 ≠ 0 – see (Renardy and Rogers,
2004, Theorem 8.53) or (McLean, 2000, Theorem 4.10).

Chapter 3. p116 meshgrid is misused in Example 3.40 and Algorithm 3.6. See exa_3.40.m.
p132 Following the comment on p487 below, the last line of the proof should be

∥𝑢(𝑡𝑛) − 𝑢̃𝑛∥ ≤ 𝐸 exp(𝐿𝑛Δ𝑡).

Chapter 4. p159 Nensen’s inequality → Jensen’s inequality (in proof of T4.58 (iii)).
p179 Bayes’ theorem is due to the Reverend Thomas Bayes and the apostrophe is written after and not, as in

Exercise 4.11, before the s. In the same exercise, 𝑝𝑋,𝑌 is incorrectly defined and it should be

P(𝑋 = 𝑥𝑘 , 𝑌 = 𝑦 𝑗 ) = 𝑃𝑋,𝑌 (𝑘, 𝑗)

(interchange 𝑗 and 𝑘).

Chapter 5. p185 In the second displayed equation on the left-hand side, delete the comma
p203 By "If the process is Gaussian" in Theorem 5.29, we mean 𝑋 is Gaussian in the sense of Definition 4.38,

which immediately implies that the 𝜉 𝑗 are Gaussian. It can be shown that, if all the finite-dimensional
distributions are Gaussian, and sample paths 𝑋 ∈ 𝐿2 (T), then 𝑋 is also Gaussian in the sense of
Definition 4.38. See Theorem 2 of Rajput, B. S. & Cambanis, S. Gaussian processes and Gaussian
measures. Ann. Math. Stat. 43, 1944–1952.

p204 The uniform convergence in (5.39) is a consequence of Mercer’s Theorem (Theorem 1.80). In
particular, write 𝑋 (𝑡) − 𝑋𝐽 (𝑡) = 𝑋 (𝑡) − 𝜇(𝑡) −

∑𝐽
𝑗=1

√
𝜈 𝑗𝜙 𝑗 (𝑡)𝜉 𝑗 . Then, E(𝑋 (𝑡) − 𝑋𝐽 (𝑡))2 = 𝐶 (𝑡, 𝑡) −∑𝐽

𝑗=1 𝜈 𝑗 |𝜙 𝑗 (𝑡) |2 ≥ 0 from the KL expansion (as 𝜉 𝑗 has mean zero and unit variance). This converges
to zero as 𝐽 → ∞ uniformly in 𝑡 by Mercer’s Theorem (or directly by Lemma 1.78 as 𝐶 and 𝜙 𝑗 are
continuous).

Chapter 6. p235 In Algorithm 6.3, the normalisation by variance in Δ𝜈 in the increments ΔW 𝑗 is missing. To account
for this, as 𝑓 (𝜈 𝑗 ) Δ𝜈 𝑗 = (ℓ/2𝜋) × 2(𝜋/ℓ)/(𝐽 − 1) = 1

𝐽−1 , the last line should be Z=Z*sqrt(1/(J-1)).
See also quad_sinc.m.

1https://github.com/tonyshardlow/picspde
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p239 In Equation (6.34), the outer sum over 𝑘 has not been carried over from the previous line and should
read

𝑍̃𝑅 (𝑡𝑛) =
𝑁−1∑︁
𝑘=0

𝑒i2𝜋𝑘𝑛/𝑁
𝑀−1∑︁
𝑚=0

𝑒i(−𝑅+𝑚Δ𝜈) 𝑡𝑛
√︁
𝑓 (𝜈𝑘𝑀+𝑚) ΔW𝑘𝑀+𝑚.

p279 The first two entries in the second column of the matrix 𝑉 displayed above Example 7.41 should be
𝑢̃2𝑛1+1 and 𝑢̃2𝑛1+2, not 𝑢̃2𝑛2+1 and 𝑢̃2𝑛2+2.

Chapter 7. p291 In Algorithm 7.10 (turn_band_wm.m), f should be an even function of s (missing modulus).
p305 In Lemma 7.67, the quantity 𝑀0 (𝑢) is infinite as stated and cannot be used for proving Theorem 7.68.

We show here how to prove Theorem 7.68 using the Garsia–Rodemich-Rumsey (GRR) inequality for
𝐷 = (0, 1). For an alternative approach, see M. Talagrand, ‘Lower Bounds for Stochastic Processes’,
Springer, 2021 (e.g., Section 2.5 Continuity of Gaussian Processes).
Let Ψ(𝑡) = exp(𝑡2), and 𝑝(𝑡) = 𝑡𝑞 , for 𝑡 ∈ [0, 1].
(Note: GRR applies to a wider class of Ψ and 𝑝, which we do not describe here — see Garsia,
Rodemich, and Rumsey (1971) for details. GRR can also be developed for dimension 𝑑 > 1 — see
Garsia, ‘Continuity properties of Gaussian processes with multidimensional time parameter’, Berkeley
Symp. on Math. Statist. and Prob., 1972).
Lemma (Garsia–Rodemich–Rumsey). Let 𝑓 be a continuous function on [0, 1] and suppose that

𝑀0 ( 𝑓 ) =
∫ 1

0

∫ 1

0
Ψ

(
| 𝑓 (𝑠) − 𝑓 (𝑡) |
𝑝(𝑠 − 𝑡)

)
𝑑𝑠 𝑑𝑡 < ∞.

Then, for all 𝑠, 𝑡 ∈ [0, 1],

| 𝑓 (𝑠) − 𝑓 (𝑡) | ≤
∫ |𝑠−𝑡 |

0
Ψ−1

(
4𝑀0 ( 𝑓 )
𝑟2

)
𝑑𝑝(𝑟).

Lemma (Lemma 7.67 revised for 𝐷 = (0, 1)). Let 𝐷 = (0, 1). Fix 𝑞, 𝜖 > 0. For a constant 𝐶𝜖
depending only on 𝜖 and 𝑞, we have, for any 𝑢 ∈ 𝐶 (𝐷),

|𝑢(𝑥) − 𝑢(𝑦) | ≤
(
𝐶𝜖 +

√︁
log 4𝑀0

)
|𝑥 − 𝑦 |𝑞−𝜖 , 𝑥, 𝑦 ∈ 𝐷, (1)

where we assume

𝑀0 (𝑢) :=
∫ 1

0

∫ 1

0
exp

(
𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑞

)2
𝑑𝑥 𝑑𝑦 < ∞. (2)

Proof. Then,

𝑀0 (𝑢) =
∫ 1

0

∫ 1

0
exp

(
𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦 |𝑞

)2
𝑑𝑥 𝑑𝑦 =

∫ 1

0

∫ 1

0
Ψ

(
|𝑢(𝑥) − 𝑢(𝑦) |
𝑝(𝑥 − 𝑦)

)
𝑑𝑥 𝑑𝑦

for Ψ(𝑡) = exp(𝑡2) and 𝑝(𝑡) = 𝑡𝑞 . 𝑀0 (𝑢) is finite by assumption and the GRR lemma applies. Note
that Ψ(𝑡) ≥ 1 for 𝑡 ≥ 0 and so 𝑀0 (𝑢) ≥ 1. Further, Ψ−1 (𝑡) =

√︁
log(𝑡) and 𝑝′ (𝑡) = 𝑞 𝑡𝑞−1 for all 𝑡 ≥ 1.

For any 𝜖 > 0, there exists 𝐶𝜖 such that, for any 𝑟 ∈ (0, 1),√︁
log(4𝑀0 (𝑢)/𝑟2) =

√︁
log(4𝑀0 (𝑢)) + 2| log 𝑟 |

≤
√︁

log(4𝑀0 (𝑢)) +
1

log 4𝑀0 (𝑢)
| log 𝑟 |

≤
√︁

log(4𝑀0 (𝑢)) + 𝐶𝜖 𝑟−𝜖 .

(as log 4𝑀0 (𝑢) > 1 and
√
𝑎 + 𝑏 ≤

√
𝑎+𝑏/2

√
𝑎 for 𝑎, 𝑏 > 0). Then, from GRR, for any 𝑥, 𝑦 ∈ 𝐷 = (0, 1),

|𝑢(𝑥) − 𝑢(𝑦) | ≤
∫ |𝑥−𝑦 |

0

√︄
log

(
4𝑀0 (𝑢)
𝑟2

)
𝑞 𝑟𝑞−1 𝑑𝑟

≤
√︁

log 4𝑀0 (𝑢) |𝑥 − 𝑦 |𝑞 + 𝐶𝜖
𝑞

𝑞 − 𝜖 |𝑥 − 𝑦 |
𝑞−𝜖 .

For a possibly different 𝐶𝜖 , this completes the proof of (1). □
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This version of Lemma 7.67 can be used in the proof of Theorem 7.68.
Theorem (Theorem 7.68 revised). Let 𝐷 be a bounded domain and

{
𝑢(𝒙) : 𝒙 ∈ 𝐷

}
be a mean-zero

Gaussian random field such that, for some 𝐿, 𝑠 > 0,

E
[
|𝑢(𝒙) − 𝑢(𝒚) |2

]
≤ 𝐿∥𝒙 − 𝒚∥𝑠2, ∀𝒙, 𝒚 ∈ 𝐷. (3)

For any 𝑝 ≥ 1, there exists a random variable 𝐾 such that 𝑒𝐾 ∈ 𝐿 𝑝 (Ω) and

|𝑢(𝒙) − 𝑢(𝒚) | ≤ 𝐾 (𝜔)∥𝒙 − 𝒚∥ (𝑠−𝜖 )/22 , ∀𝒙, 𝒚 ∈ 𝐷, 𝑎.𝑠. (4)

Proof. We can find a truncated Karhunen–Loève expansion 𝑢𝐽 (𝒙) such that 𝑢𝐽 (·, 𝜔) ∈ 𝐶 (𝐷) for all
𝜔 ∈ Ω. Fix 𝑝 ≥ 1 and let

Δ𝐽 (𝒙, 𝒚) ≔
𝑢𝐽 (𝒙) − 𝑢𝐽 (𝒚)√︁

8 𝐿∥𝒙 − 𝒚∥𝑠2
, 𝒙, 𝒚 ∈ 𝐷.

The random variables in the Karhunen–Loève expansion are iid with mean zero and henceE
[
Δ𝐽+1

��Δ𝐽 ] =
Δ𝐽 . Further, the function 𝑡 ↦→ exp(𝑡2) is convex and Jensen’s inequality implies that E

[
𝑒Δ

2
𝐽+1

��Δ𝐽 ] ≥
𝑒Δ

2
𝐽 . That is, 𝑒Δ2

𝐽 is a submartingale and Doob’s submartingale inequality gives

E

[
sup

1≤ 𝑗≤𝐽
𝑒2Δ 𝑗 (𝒙,𝒚 )2

]
≤ 4E

[
𝑒2Δ𝐽 (𝒙,𝒚 )2

]
.

Note that E
[
Δ𝐽 (𝒙, 𝒚)2] ≤ 𝐿∥𝒙 − 𝒚∥𝑠2/8 𝐿∥𝒙 − 𝒚∥𝑠2 ≤ 1/8 for every 𝒙, 𝒚. Consequently, Δ𝐽 ∼ N(0, 𝜎2)

where the variance satisfies 𝜎2 ≤ 1/8. As 1/2𝜎2 − 2 ≥ 1/4𝜎2,

E
[
𝑒2Δ𝐽 (𝒙,𝒚 )2

]
=

1
√

2𝜋𝜎2

∫
R
𝑒2𝑥2

𝑒−𝑥
2/2𝜎2

𝑑𝑥 ≤ 1
√

2𝜋𝜎2

∫
R
𝑒−𝑥

2/4𝜎2
𝑑𝑥 =

√
2.

We conclude that

E

[
sup

1≤ 𝑗≤𝐽
𝑒2Δ 𝑗 (𝒙,𝒚 )2

]
≤
√

2, ∀𝒙, 𝒚 ∈ 𝐷.

Let
𝑀1 (𝑢) ≔

∫
𝐷

∫
𝐷

sup
𝐽∈N

𝑒2Δ𝐽 (𝒙,𝒚 )2
𝑑𝒙 𝑑𝒚.

As 𝐷 is bounded, 𝑀1 ∈ 𝐿1 (Ω). Therefore, by Lemma 7.67 (revised), we have

|𝑢𝐽 (𝒙, 𝜔) − 𝑢𝐽 (𝒚, 𝜔) | ≤ 𝐾 (𝜔)∥𝒙 − 𝒚∥ (𝑠−𝜖 )/22 , ∀𝒙, 𝒚 ∈ 𝐷.

for 𝐾 (𝜔) =
√

8𝐿 (
√︁

log 4𝑀1 (𝑢) + 𝐶𝜖 ). We may write exp(𝑝𝐾) = 𝜙(𝑀1) where

𝜙(𝑡) = exp(𝑝
√

8𝐿 (
√︁

log 4𝑡 + 𝐶𝜖 )).

The function 𝜙 is concave and so, by Jensen’s inequality, E[exp(𝑝𝐾)] = E[𝜙(𝑀1)] ≤ 𝜙(E[𝑀1]) < ∞.
We conclude that 𝑒𝐾 ∈ 𝐿 𝑝 (Ω).
As 𝑢𝐽 (𝒙) → 𝑢(𝒙) as 𝐽 → ∞ almost surely, this gives (??). □

Chapter 8.

Chapter 9.

Chapter 10. p442–469 meshgrid is misused in Examples 10.12 and 10.40 and in Algorithms 10.5 and 10.10. See
exa_10.40.m.

Appendix.

p487 The discrete Gronwall inequality (Lemma A.14) is incorrect. It should either be
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Lemma 1. Consider 𝑧𝑛 ≥ 0 such that 𝑧𝑛 ≤ 𝑎 + 𝑏𝑧𝑛−1 for 𝑛 = 1, 2, . . . and 𝑎, 𝑏 ≥ 0. If 𝑏 = 1, then
𝑧𝑛 ≤ 𝑧0 + 𝑛𝑎. If 𝑏 ≠ 1, then

𝑧𝑛 ≤ 𝑏𝑛𝑧0 +
𝑎

1 − 𝑏 (1 − 𝑏𝑛).

or

Lemma 2. Consider 𝑧𝑛 ≥ 0 such that

𝑧𝑛 ≤ 𝑎 + 𝑏
𝑛−1∑︁
𝑘=0

𝑧𝑘 , for 𝑛 = 0, 1, 2 . . . (*)

and constants 𝑎, 𝑏 ≥ 0. Then, 𝑧𝑛 ≤ 𝑎(1 + 𝑏)𝑛 ≤ 𝑎 exp(𝑏𝑛).

The first lemma is (Stuart and Humphries, 1997, Theorem 1.1.12).
To prove the second lemma, notice it is true for 𝑛 = 0. Assume it is true for 𝑧0, . . . , 𝑧𝑛−1. Then,

𝑧𝑛 ≤ 𝑎 + 𝑏
𝑛−1∑︁
𝑘=0

𝑧𝑘 by (*)

≤ 𝑎 + 𝑏
𝑛−1∑︁
𝑘=0

𝑎(1 + 𝑏)𝑘 by induction assumption

= 𝑎 + 𝑎𝑏 1 − (1 + 𝑏)𝑛
1 − (1 + 𝑏) by geometric summation formula

≤ 𝑎 + 𝑎𝑏 1 − (1 + 𝑏)𝑛
−𝑏 = 𝑎 + 𝑎𝑏((1 + 𝑏)𝑛 − 1) = 𝑎(1 + 𝑏)𝑛.

Therefore, 𝑧𝑛 ≤ 𝑎(1 + 𝑏)𝑛 for all 𝑛 = 0, 1, 2, . . . by induction. Finally, 𝑧𝑛 ≤ 𝑎 exp(𝑏𝑛) as 1 + 𝑥 ≤ exp(𝑥) for
𝑥 ≥ 0. The second lemma can be used in the proof of Theorems 3.55 and 10.34.
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