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Abstrat

A Cahn-Hilliard equation is oupled to a system of stohasti di�erential equations to

model a random growth proess. We show the model is well posed and analyse the model

asymptotially (in the limit of the interfaial distane beoming small), to reover a free

boundary problem. A numerial method together with example solutions is presented.

1 Introdution and bakground

Stohasti PDEs have been used to model random growth proesses sine the introdution

of the Kardar{Parisi{Zhang (KPZ) equation [8℄. This equation restrits the topology of an

aggregate in R

d

, so that its interfae may be represented as a graph R ! R

d�1

. The KPZ

equation desribes the evolution of this graph as a fourth order stohasti PDE in d � 1

dimensions.

Models based on the evolution of a graph are very restritive on the topology. By intro-

duing an extra dimension to the model, arbitrary topologies may be desribed by writing

a PDE for a phase variable u(t; x) : R

+

� R

d

! R. Then, the growth will be that of an

aggregate fx 2 R

d

: u(t; x) � u

+

g, where u

+

depends on the model under onsideration, and

the boundary of the aggregate will be a level set fu = 0g (say). Suh phase �elds models

have been used to desribed pattern formation. One well known example is the Cahn-Hilliard

equation [7℄ for a region 
:

u

t

=��

�� =�

2

�u� f(u);

where homogeneous Neumann boundary onditions are plaed on u and �. The funtion f is

the gradient of a double well potential. The parameter � � 1 and measures the interfaial

thikness. The total phase

R




u dx is onstant in this model and no growth is inluded.

It is of interest to onsider perturbing these equations by noise [10, 9℄. For example, the

equation

u

t

=� �

2

�

2

u+�(u� u

3

) + I;
(1)

with appropriate boundary onditions. For I = 0, this is the standard Cahn{Hilliard equation.

The driving term I models the random deposition onto the aggregate. The funtion I is

expressed in terms of ru, to enourage growth normal to the surfae of the aggregate and to

onentrate the e�ets of the noise at the interfae. Two forms for I are suggested,

I

1

:= 

1

jruj+ 

2

p

jruj

_

W (t) or I

2

:= jruj

2

�



3

+ 

4

_

W (t)

�

;

�
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where 

1

; : : : ; 

4

are onstants and

_

W (t) is a \derivative" of a spae-time Wiener proess.

Numerial simulations [9℄ for I

1

suggest behaviours similar to the Eden model, whih is har-

aterised by uniform growth rates. The I

2

model is seen to depend on urvature e�ets at the

interfae. (For examples of perturbing the Cahn-Hilliard by thermal utuations, see [6, 4℄).

This model inludes random deposition of partiles, the e�et of surfae di�usion, and

makes no topologial assumptions on the aggregate. One further important physial feature

of these systems is shadowing, where ertain areas are free from deposition (beause the ow

of material is bloked). This e�et is not inluded in equation (1), but by oupling a seond

equation, Keblinski et al. [9℄ have modelled shadowing.

De�ning solutions of the above equation in a mathematially preise way is very diÆult,

beause of the multipliative foring funtions I. Weak existene theory by standard Faedo-

Galerkin onvergene arguments depends on estimates of the type E(I; u(t)) (where E denotes

average over realisations of W (t) and (�; �) is the L

2

inner produt). Spae time white noise

will never satisfy suh a property beause it does not give a well behaved proess in the mean

square sense. A smooth proess W (t) would need to be introdued.

Another approah to introduing noise into a PDE is the use of partile systems. Diretly

modelling the evolution of the depositions before they hit the aggregate is a natural tehnique

for introduing noise to the system. Indeed, Di�usion Limited Aggregation (see [12℄) is a

spatially disrete model that uses this tehnique and inorporates shadowing and arbitrary

topologies in a natural way.

We propose a model for the interation of a set of partiles evolving aording to Itô

stohasti di�erential equations (SDEs) with a Cahn-Hilliard system. The partiles represent

material that is deposited onto an aggregate, represented by the �eld u. It is a mean �eld

theory, in that we neglet thermal utuations in the aggregate. In the ontext of depositions,

it is the ututations in the trajetories of the partiles that is responsible for the omplex

morphology of the aggregate.

Consider the following oupled Cahn-Hilliard partile system on a domain 
 = [0; L℄

d

.

u

t

=�� + 

1

X

i2P(t)

jrujÆ

X

i

�� =�

2

�u� f(u);

(2)

where � � 1 is the interfaial parameter, 

1

> 0 is the oupling strength, Æ

X

(x) = 1 if

jx �Xj � R and = 0 otherwise. The funtion f is the gradient of a double well potential F

with minima u

�

, often f(u) = (u

3

� u); throughout we suppose that f is an odd polynomial

with positive leading order oeÆient. The partiles have radius R with entres X

i

2 
.

Partile i is said to be alive at time t if i 2 P(t). Further, we assume that i 2 P(t) if and

only if t 2 [�

s

i

; �

e

i

℄. Partiles are introdued to the system at positions X

s

i

at times �

s

i

and are

annihilated independently at times �

e

i

with rate



2

R

d

Z




jruj(x)Æ

X

i

(x) dx:

The position of the partile X

i

satis�es the Itô SDE

dX

i

= �(X

i

) dt+ �(X

i

) dB

i

(t); (3)

where � 2 C

1

(R

d

;R

d

) and � 2 C

1

(R

d

;R

d�d

) and B

i

are IID standard Brownian motions in

R

d

and with (for simpliity) periodi boundary onditions on 
. The Brownian motions B

i

(t)

live on a probability spae with measure P and are adapted to a �ltration F

t

. Expetations

with respet to P are denoted E.
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The outline of this paper is as follows. x2 onsiders the existene and uniqueness of (2),

�rst deriving an a priori bound for the solution and then skething the steps neessary to

prove weak solutions exist. This is skethed as many of the steps are quite standard. x3

desribes some basi properties of (2) in a non-rigorous manner, by using asymptoti analysis

and looking for an approximating free boundary problem. x4 desribes a �nite element sheme

for this system and how it has been implemented using the deal.II software pakage [1℄. The

�nal setion x5 gives some numerial simulations.

2 Existene of solutions

We now disuss the existene of solutions for the oupled Cahn-Hilliard system (2). We

show how to derive a priori bounds for this equation, following a standard argument, see for

example [13℄. With the a priori bound, standard Faedo-Galerkin arguments an be applied

to prove existene of solutions to the equations. We build up the argument for the following

deterministi equation, before adding in the random omponents:

u

t

=�� + 

1

X

i2P(t)

jrujÆ

X

i

�� =�

2

�u� f(u);

subjet to homogeneous Neumann boundary onditions on u and � on �
 and whereX

i

: R

+

!


 are ontinuous funtions of time and Æ

X

i

is the indiator funtion on a ball of radius R

entred on X

i

. For the present X

i

may be onsidered to be deterministi; we do not disuss

the random aspet until Theorem 2.2.

Throughout the present setion, we use K to denote a generi onstant. We work with

the funtion spae

V :=

n

� 2 H

2

(
):

��

�n

= 0 on �


o

and denote by j � j and (�; �) the standard norm and inner produt on L

2

(
).

The weak formulation of the above equation is ahieved by multiplying by v 2 V and

applying the boundary onditions with Green's formula:

(v; u

t

) =(v;��) + 

1

X

i2P(t)

(v; jrujÆ

X

i

) = �(rv;r�) + 

1

X

i2P(t)

(v; jrujÆ

X

i

):

Now,

�(rv;r�) = (�v; (��

2

�u))� (rv;rf(u)): (4)

Take v = u:

1

2

d

dt

juj

2

+ �

2

(�

2

u; u) + (ru; f

0

(u)ru) = 

1

X

i2P(t)

(jru(x)jÆ

X

i

; u):

Write f(s) = b

p

s

2p�1

+ b

p�1

s

2p�3

+ � � �+ b

1

s. The leading term of f

0

(s) is (2p� 1)b

p

s

2p�2

and

we an �nd  > 0 suh that

f

0

(s) � (2p� 1)b

p

s

2p�2

� :

Substituting for f

0

(s) and applying Cauhy-Shwartz, we have

1

2

d

dt

juj

2

+ �

2

j�uj

2

+ (2p� 1)b

p

Z




u

2p�2

jruj

2

dx � jruj

2

+

1

2

jruj

2

+

1

2

(

1

N)

2

juj

2

;
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where N denotes the maximum number of partiles in P(t). Standard interpolation estimates

give jruj

2

� Kjuj kuk

H

2

(
)

. Lemma 4.2 [13℄ gives that the norm k � k

H

2

(
)

is equivalent to

j�uj+ juj. Hene, for some onstant K

(+

1

2

)jruj

2

� Kjuj(j�uj+ juj) �

1

2

�

2

j�uj

2

+ (K +K

2

=2�

2

)juj

2

:

Finally, we obtain for a di�erent onstant K

d

dt

juj

2

+ �

2

j�uj

2

+ 2(2p� 1)b

2p

Z




u

2p�2

jruj

2

dx � K juj

2

:

By the Gronwall Lemma, we have uniform bounds on [0; T ℄ in L

2

(
) and by integrating we

have

Z

T

0

ku(s)k

2

H

2

(
)

ds � K:

Arguing further, we de�ne the Lyapunov funtion

V(u) :=

1

2

�

2

jruj

2

+

Z




F (u(x)) dx:

Arguing formally for a moment (beause the integral above need not be de�ned for u 2 V ),

we note that

d

dt

V(u) = (�; u

t

)

and

(�; u

t

) =�

2

(��; �) + 

1

(�;

X

i2P(t)

jrujÆ

X

i

)

=� �

2

jr�j

2

+ 

1

(�;

X

i2P(t)

jrujÆ

X

i

):

Then,

d

dt

V(u(t)) �� �

2

jr�j

2

+

1

2

j�j

2

+

1

2



2

1

N

2

jruj

2

�� �

2

jr�j

2

+

1

2

(2j�

2

�uj

2

+ 2jf(u)j

2

) +

1

2



2

1

N

2

jruj

2

�� �

2

jr�j

2

+Kkuk

2

H

2

(
)

;

where the last inequality uses the fat that W

2

(
) an be ontinuously embedded in C

0

(
)

for d = 2; 3. Thus, V(u(t)) is bounded on [0; T ℄ as

R

T

0

ku(s)k

2

H

2

(
)

ds is �nite. The argument

an be made rigorous by trunating f and showing onvergene in the limit of the trunation.

This time take v = �

2

u in (4) to gain

1

2

d

dt

j�uj

2

+ �

2

j�

2

uj

2

=(�f(u);�

2

u) + (

1

X

i2P(t)

jru(x)jÆ

X

i

;�

2

u)

=

1

�

2

j�f(u)j

2

+

1

4

�

2

j�

2

uj

2

+



2

1

N

2

�

2

jruj

2

+

1

4

�

2

j�

2

uj

2

:

Thus,

d

dt

j�uj

2

+ �

2

j�

2

uj

2

�

2

�

2

j�f(u)j

2

+



2

1

N

2

�

2

jruj

2

:
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It is proved that (see [13℄), by restriting p = 2 in three dimensions and taking an arbitrary

positive integer p in dimensions d = 1; 2, that

j�f(u)j

2

�

1

2

�

2

j�

2

uj

2

+K:

Then, we have a di�erential inequality

d

dt

j�uj

2

+ �

2

j�

2

uj

2

� K;

after using the boundedness of V. This gives a priori estimates in L

1

(0;1;H

2

(
)) and

L

2

(0; T ;H

4

(
)).

Theorem 2.1 Consider dimension d = 1; 2; 3. For every u

0

2 L

2

(
), the initial value prob-

lem (2) has a unique weak solution u in

L

1

([0; T ℄;H) \ L

2

([0; T ℄;V )):

The mapping u(t) is ontinuous in t. Let p be a positive integer, with p = 2 (i.e., f has degree

three) when d = 3, arbitrary for dimension 1 and 2. Choose initial data u

0

2 V . Then

u(t) 2 C([0; T ℄; V ) \ L

2

([0; T ℄;D(A)):

Proof This is a standard Faedo-Galerkin approximation argument. Let �

i

denote the eigen-

funtions of A. The idea is to seek solutions u

m

of the form

u

m

(t) =

m

X

i=1

g

im

(t)�

i

;

satisfying

(

du

m

dt

; �

j

) + �

2

(�u

m

;��

j

)� (f(u

m

); �

j

) = (

1

X

i

jru

m

jÆ

X

i

; �

j

); j = 1; : : : ;m:

This is an ODE and existene of solutions is elementary. Further, the a priori bounds developed

above holds for u

m

and allow us to take limits of u

m

. Standard funtional analyti arguments

give onvergene to a solution u having the properties desribed above. QED

Theorem 2.2 Let d = 2 or 3 and let f be ubi (p = 2). Suppose that � 2 C

1

(R

d

;R

d

)

and � 2 C

1

(R

d

;R

d�d

) and both funtions are globally Lipshitz. Consider initial data

u

0

2 V , initial times �

s

i

2 R

+

, and initial positions X

s

i

, for i = 1; : : : ; N (N the number

of partiles). Then, there exists a solution of (2) onsisting of the phase variable u(t) 2

C([0; T ℄; V )\L

2

(0; T ;D(A)), the onditional densities p

i

(t; y;u) on [�

s

i

; T )�C([0; T ℄; V ) (for

the probability the partile is at y at time t given a phase trajetory u), and the partile tra-

jetories X

i

(t) : [�

s

i

; �

e

i

℄ ! R

d

. The solution (u(t); p

i

(t; y;u);X

i

(t)) is uniquely de�ned by the

following properties: (i) the phase variable obeys u(0) = u

0

and for eah v 2 V ,

(v; u

t

) =(rv;r�) + 

1

X

i2P(t)

(v; jrujÆ

X

i

(t)

);

�(v; �) =�

2

(rv;ru) � (v; f(u));
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(ii) the partile trajetories X

i

(t) are ontinuous funtions [�

s

i

; �

e

i

℄ ! R

d

satisfying for �

s

i

�

t � �

e

i

X

i

(t)�X

i

(�

s

i

) =

Z

t

�

s

i

�(X

i

(s)) ds+

Z

t

�

s

i

�(X

i

(s)) dB

i

(s);

for independent Brownian motions B

i

. The annihilation time �

e

i

= �

e

i

(u), where �

e

i

(u) are

independent random variables on [�

s

i

; T ) satisfying

P�

e

i

(u) > t =

Z




p

i

(t; y;u) dy; u 2 C([0; T ℄; V ):

(iii) p

i

(t; y;u) is a delta funtion at X

s

i

at t = �

s

i

and for t > �

e

i

satis�es

dp

i

(t; y;u)

dt

= Lp

i

(t; y;u) �



2

R

d

Z




jru(x; s)jÆ

y

(x)p

i

(t; y;u) dx;

where L is the generator for an SDE with drift � and di�usion � with periodi boundary

onditions on [0; L℄

d

.

Proof The solution is onstruted as follows. Let the B

i

(t) be independent standard Brow-

nian motions on a probability spae (


1

;F

1

). Let X

�

i

for i = 1; : : : ; N be the (


1

;F

1

) random

variables taking values in C([�

s

i

;1);R

d

) whih are solutions of (3) subjet to X

�

i

(�

s

i

) = X

s

i

.

The existene and uniqueness of suh solutions are guaranteed by lassial theory under the

smoothness assumptions on � and �. Let u

(1)

(t) denote the unique weak solution of equa-

tion (2) where the partile variables X

i

are replaed by X

�

i

, given by Theorem 2.1. De�ne

independent random variables

�

i

: C([0; T ℄; V )! [�

s

i

;1)

on a seond probability spae (


2

;F

2

) suh that P�

i

(u) > t =

R




p

i

(t; y;u) dy. Let j(u)

minimise �

i

(u) over i = 1; : : : ; N (i.e., be the �rst partile to be annihilated given a phase

trajetory). Now on the joint probability spae (


1

� 


2

;F

1

� F

2

), de�ne the [0;1) valued

random variable �

e

j(u

(1)

)

:= �

j(u

(1)

)

. Finally, let u(x; s) = u

(1)

(x; s) and X

i

(s) = X

�

i

(s) for

0 � s � T

(1)

:= �

e

j(u

(1)

)

.

To generate solutions over the next time period, let u

(2)

= u

(1)

on [0; T

(1)

℄. For time

t > T

(2)

, let u

(2)

equal the weak solution of equations (2) again with partiles X

�

i

but this

time with initial data

u

(2)

(T

(1)

; x) = u

(1)

(T

(1)

; x):

Let k(u) minimise �

i

(u) over i 6= j(u) and set �

e

k(u

(2)

)

:= �

k(u

(2)

)

. Finally, let u(x; s) = u

(2)

(x; s),

P

i

(t; u) = P

(2)

i

(t; u), and X

i

(s) = X

�

i

(s) for T

(1)

� s � T

(2)

:= �

e

k(u

(2)

)

.

This proess an be iterated N times to generate solutions up to the time when all partiles

have died. A solution is generated on the time interval [0; T ℄, by solving the Cahn-Hilliard

equation on the interval where all partiles are dead. We have illustrated how the solution

for the phase variable u, partile positions X

i

, and annihilation times �

e

i

an be onstruted,

with the solutions pieed together by restarting the proesses at the annihilation times �

e

i

.

The onstrution spei�es u;X

i

; and P

i

uniquely on eah time interval [0; T

(1)

℄, (T

(1)

; T

(2)

℄,

: : : , [T

(N)

; T ℄.

QED
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3 Asymptoti Analysis

We present a non-rigorous explanation of the properties of the oupled Cahn-Hilliard partile

system (2). We show that the total phase, taken as the sum of that in the PDE

R




u(t; x)dx

and a onstant amount for eah alive partile, X

i

for i 2 P(t), is onserved. We perform an

asymptoti analysis of the equations to gain a free boundary problem. The analysis provides

onditions that the probability that phase is transferred from partile to u only at the boundary

fu � 0g tends to one.

Conservation of Phase Let the total phase of the oupled Cahn-Hilliard partile system

be denoted

W(t) =

Z




u(t; x)dx +

X

i2P(t)



1



2

R

d

: (5)

We show that on average the total phase is onstant.

For t > �

s

i

, we have from Theorem 2.2

dp

i

(t; y;u)

dt

= Lp

i

(t; y;u)�



2

R

d

Z




jruj(x)Æ

y

(x)p

i

(t; y;u) dx:

Denote the probability the partile is alive at time t (given a phase trajetory u) by P

i

(t) (resp.

P

i

(t;u)), so that P

i

(t;u) = 0 for t < �

s

i

and =

R




p

i

(t; y;u) dy for t � �

s

i

and P

i

(t) = EP

i

(t;u).

Then for t > �

s

i

,

dP

i

(t;u)

dt

=

Z




Lp

i

(t; y;u) dy �



2

R

d

Z




Z




jruj(x)Æ

y

(x)p

i

(t; y;u) dxdy

=�



2

R

d

E

h

Z




jru

�

j(x)Æ

X

i

(t)

(x) dx

�

�

�

u

�

= u

i

;

where we have used the boundary onditions to eliminate the �rst term. Now average over

the phase variable

dEP

i

(t;u)

dt

=

dP

i

(t)

dt

=�



2

R

d

E

Z




jruj(x)Æ

X

i

(t)

(x) dx:

The equation for U(t) := E

R




u(t; x) dx is

dU = 0dt+ 

1

X

i2P(t)

Z




Ejruj(x)Æ

X

i

(t)

(x) dx;

by using the boundary onditions in the Cahn-Hilliard equation to eliminate terms. Adding

the terms together, we have for t 6= �

s

i

d

dt

(U(t) +



1



2

R

d

X

i

P

i

(t)) = 0: (6)

Thus, we have that rate of hange of the expeted value of W(t) is zero for t 6= �

s

i

. When

t = �

s

i

some i, further partiles are added to the system and the value of W(t) inrease by the

number of partiles added times 

1

R

d

=

2

.

Asymptoti expansion We now perform an asymptoti expansion in small � in an e�ort

to gain a related free boundary problem. The analysis follows [3℄. Assume that the domain 


an be split up into sets 


+

[ � [ 


�

, where u � u

�

on 


�

and � = fu = (u

+

+ u

�

)=2g.

First, we perform an outer expansion away from the interfae �. Write

u = u

0

+ �u

1

+ � � � ; � = �

0

+ ��

1

+ � � � :

7



Outer order 1 expansion

u

0

t

=���

0

+ 

1

X

i2P(t)

jru

0

jÆ

X

i

��

0

=� f(u

0

):

In the outer layer, u

0

� u

�

(the minima of the potential F ). Thus the order 1 expansion is

simpli�ed to

u

0

t

= �f(u

0

) + 

1

X

i2P(t)

jru

0

jÆ

X

i

; �

0

= f(u

0

): (7)

Note that the seond equation is invertible for u

0

� u

�

and u

0

may be eliminated from these

equations. We annot assume the driving term appears at lower order. The equations are

paraboli PDEs; this ontrasts with the Cahn-Hilliard equation where the interfae motion is

veloity order � and the slow motion in the �rst order expansion an be treated as an ellipti

problem.

Near to the interfae �, the solution u varies from u

+

to u

�

over an interfae of width �.

To analyse this asymptotially, we introdue new oordinates: let r denote the signed distane

from � (with r > 0 denoting points in 


+

) and s ar length along the interfae �. Change

variables to (r; s) spae by setting

jruj

2

=u

2

r

+ 2u

r

u

s

(r

x

s

x

+ r

y

s

y

) + u

2

s

jrsj

2

�u =u

rr

+ u

ss

jrsj

2

+ u

r

�r + u

s

�s

d

dt

u(x

1

; x

2

; : : : ) =

d

dt

u(r; s) + u

r

r

t

+ u

s

s

t

:

The inner expansion is performed by hoosing z = r=� and expanding

U = U

0

+ �U

1

+ � � � ; � = �

0

+ ��

1

+ � � � :

Then, substituting into the PDE, we have

(U

t

+ �

�1

U

z

r

t

+ U

s

s

t

) =(�

�2

�

zz

+�

ss

jrsj

2

+ �

�1

�

z

�r +�

s

�s)

+ 

1

X

i2P(t)

(�

�2

U

2

z

+ 2�

�1

U

z

U

r

(r

x

s

x

+ r

y

s

y

) + U

2

s

jrsj

2

)

1=2

Æ

X

i

�� =�

2

(�

�2

U

zz

+ U

ss

jrsj

2

+ �

�1

U

z

�r + U

s

�s)� f(U):

Hene

�

zz

+ �(�U

z

r

t

+�r�

z

)� �

2

(U

t

+ U

s

s

t

� (�

ss

jrsj

2

+�

s

�s))

+ 

1

X

i2P(t)

(�

2

U

2

z

+ 2�

3

U

z

U

r

(r

x

s

x

+ r

y

s

y

) + �

4

U

2

s

jrsj

2

)

1=2

Æ

X

i

= 0

U

zz

�f(U) + �+ �U

z

�r + �

2

(U

ss

jrsj

2

+ U

s

�s) = 0:

Inner order 1 expansion:

�

0

zz

=0;

U

zz

� f(U) + �

0

=0:

The only bounded solutions that give an interfaial pro�le for U are �

0

= 0. Then the �rst

order term U

0

(s; z) =  (z), where  obeys

 

zz

� f( ) = 0;  (�1) = u

�

;  (0) = 0: (8)

As f is odd,  (x) = � (�x).
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Inner order � expansion:

�

1

zz

=U

0

z

r

t

��r�

0

z

� 

1

X

i2P(t)

jU

0

z

jÆ

X

i

:

Using �

0

= 0 and U

0

(z) =  (z), we an integrate to �nd for z > 0

h

�

1

z

i

z

0

= r

t

 (z) � 

1

X

i2P(t)

Z

z

0

 

0

(z

0

) Æ

X

i

(z

0

�; s) dz

0

+ 

1

(s; t) (9)

and again

�

1

(z) = r

t

	(z)� 

1

X

i2P(t)

P

i

(z; s; �) + 

1

(s; t)z + 

2

(s; t); (10)

where 

1

(s; t) and 

2

(s; t) are onstants of integration,

P

i

(s; z; �) :=

Z

z

0

Z

z

0

0

 

0

(z

00

)Æ

X

i

(z

00

�; s) dz

00

and 	(z) :=

R

z

0

 (z) dz. Consider the seond equation

U

1

zz

� f

0

(U

0

)U

1

+�

1

= �� 

0

(z);

where � = �r (the mean urvature of �, evaluated at z = 0). Let � := (�

z

)

2

� f

0

( (z)) with

domain L

2

(�1;1); then

�U

1

= ��

1

� � 

0

(z):

� is an operator with one eigenfuntion  

0

that has zero eigenvalue (beause of (8)). Thus

the solvability ondition for �� = g is orthogonality of g with respet to  

0

. The solvability

ondition is

Z

1

�1

�

1

(z) 

0

(z) dz + �

Z

1

�1

( 

0

(z))

2

dz = 0:

Now, substitute from (10), to get

Z

1

�1

�

r

t

	(z)� 

1

X

i2P(t)

P

i

(z; s; �) + 

1

(s; t)z + 

2

(s; t)

�

 

0

(z) dz + �

Z

1

�1

( 

0

(z))

2

dz = 0:

This implies as the integral of the odd term z 

0

(z) disappears that

Z

1

�1



2

(s; t) 

0

(z) dz = �r

t

Z

1

�1

	(z) 

0

(z) dz + 

1

X

i2P(t)

Z

1

�1

P

i

(z; s; �) 

0

(z) dz � �A;

where A :=

R

1

�1

( 

0

(z))

2

dz. Thus,

(u

+

� u

�

)

2

(s; t) = �r

t

Z

1

�1

	(z) 

0

(z) dz + 

1

X

i2P(t)

Z

1

�1

P

i

(z; s; �) 

0

(z) dz � �A:

9



Mathing onditions Consider an interfae at position Y (t; �) and suppose that Y (t; �) =

Y

0

+ �Y

1;�

+ tY

1;t

+O(t� + �

2

+ t

2

) . By hoosing Y (0; �) = Y

0

, we have Y

1;�

= 0. Look for

mathing onditions at z = (x� Y (t))=� by writing

�(z; t; �) =�(Y (t; �) + �z; t; �)

=�

0

(Y

0

; t) + ��

1

(Y

0

; t) + z � �

0

x

(Y

0

; t)) +O(�

2

+ �

2

z + �t) :

(11)

It is easy to show that

Z

z

0

 

0

(z

0

)Æ

X

i

(z

0

�; s) dz

0

!

(

 (z); kX

i

� (0; s)k � R

0; otherwise

; as z !1 with �z ! 0.

We introdue Æ

d�1

X

i

(s), whih takes value one when the ball of radius R entred at X

i

inludes

the point s on the interfae �, value zero otherwise. Taking limits with �z ! 0 and z ! �1,

we have from (9) and (11)

�

0

r

=u

�

�

r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

�

+ 

1

(s; t): (12)

Negleting the O(�z) terms from (10), we have that

�

1

(z; s; t) = (r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

)

�

Z

z

0

( (z) � u

+

) dz

0

+ u

+

z

�

+ 

1

(s; t)z + 

2

(s; t): (13)

Taking limits with �z ! 0, we an pik out the following from (11), (13), and (12):

�

1

=

2

(s; t) +

�

r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

�

Z

1

0

( (z) � u

+

) dz: (14)

Finally then, substituting for 

2

(s; t)

�

1

=

�1

u

+

� u

�

��

r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

�

Z

1

�1

	(z) 

0

(z) dz + �A

�

+ (r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

)

Z

1

0

( (z) � u

+

) dz:

Now note that

Z

Z

�Z

	(z) 

0

(z) dz =

h

	(z) (z)

i

Z

�Z

�

Z

Z

�Z

 (z)

2

dz:

Using u

+

= �u

�

, we have integrating by parts

�1

u

+

� u

�

Z

1

�1

	(z) 

0

(z) dz +

Z

1

0

 (z) � u

+

dz

=

Z

1

0

2

u

+

� u

�

 

2

� 2 + u

+

dz =

Z

1

0

�

p

u

+

�

 

p

u

+

�

2

dz =: B:

Thus,

�

1

= �(r

t

� 

1

X

i2P(t)

Æ

d�1

X

i

)B �

1

u

+

� u

�

�A: (15)
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De�ne V to be the veloity of the interfae � into 


�

, so that V = r

t

. Colleting our

results, for small �, the dynamis of � an be determined by the following free boundary

problem: Inside 


�

(7) gives that � obeys the following PDE

(f

�1

(�))

t

= ��

0

+ 

1

X

i2P(t)

jrf

�1

(�)jÆ

X

i

subjet to boundary onditions on � given by (15)

� = �

1

u

+

� u

�

�A�� V B�+B�

1

X

i2P(t)

Æ

d�1

X

i

:

This is the analogue of the Gibbs-Thompson relation. The interfae � moves with veloity

given by (12)

V =

1

u

+

� u

�

h

d�

dn

i

+

�

+



1

u

+

� u

�

X

i2P(t)

Æ

d�1

X

i

; (16)

where [

��

�n

℄

+

�

denotes the jump in

��

�n

on �. The partiles X

i

satisfy the SDE

dX

i

= �(X

i

) dt+ �(X

i

) dB

i

(t):

To understand the annihilation of the partiles, we perform asymptotis on the rate of anni-

hilation.

Inner Expansion Under the ondition �� R, the time for a partile of radius R with speed

v to ross an interfae of width � is order R=v. Aross the interfae u(r) �  (r=�). Thus, the

rate of annihilation in rossing the interfae is



2

R

Z

jruj(x)Æ

X

i

(x) dx �



2

R

d

Z

 

0

(r=�)Æ

0

((r; s)) dr ds

!



2

R

d

R

d

�

d�1

(u

+

� u

�

) =



2

R

(u

+

� u

�

)�

d�1

;

as � ! 0, where �

d

denotes the volume of a ball of radius one in dimension d. This holds

on a time interval of order R=v. Consequently, the probability of annihilation in rossing the

interfae is 1 � exp(�K

2

(u

+

� u

�

)�

d�1

=v), some onstant K > 0. Thus, if we take limits

with 

2

!1, the probability the partiles die when they hit the interfae tends to one.

Outer expansion We expet jruj to be of order e

�K=�

, some onstant K, in the interior

of 


�

(for f(u) = u

3

� u, the solution of (8) is a tanh pro�le). Thus, for a partile X that is

an order 1 distane from �,



2

R

d

Z

jruj(x)Æ

X

(x) dx �

�

d

R

d



2

R

d

e

�K=�

=

�

d

R



2

e

�K=�

;

some onstant K. Thus we expet the partiles to live for an exponentially long amount of

time when moving about the interior of 


�

.

Suppose that the time sale for the annihilation of partiles at the boundary (R=

2

(u

+

�

u

�

)�

d�1

) is muh less than the time to ross the interfae; that is,



2

�

v

(u

+

� u

�

)�

d�1

;

11



then near � a partile an be expeted to live for a time R=

2

(u

+

�u

�

)�

d�1

. Hene, substitute

our asymptoti expression for the interfae veloity V ,

r

�

t+

R



2

(u

+

� u

�

)�

d�1

�

� r(t) = R



1



2

1

(u

+

� u

�

)

2

�

d�1

X

i2P(t)

Æ

d�1

X

i

+O(�) :

Thus in the 

2

= 

1

large limit, on impat of a partile at the boundary �, the boundary

moves by a distane R

1

=

2

(u

+

� u

�

)

2

�

d�1

. Thus we see the impat of a partile on the

interfae auses the interfae to move by an amount linear in the partile radius. Further,

from (6), we have that eah partile arries an amount of phase linear in the partile volume

(i.e., R

d

).

4 A numerial method

The following numerial method has been implemented for dimension d = 2 and results are

presented in x5.

Consider a triangulation T

h

of 
 onsisting of retangular elements. Assoiated with T

h

is

the �nite element spae S

h

of funtions that are bilinear funtions on the retangular elements

of T

h

. Introdue the notation (�; �)

h

to be the L

2

(
) inner produt evaluated by numerial

quadrature based on nodal values. The quadrate rule for (�; �)

h

is hosen to give exatly (�; �)

for elements of S

h

. Mass lumping is denoted by (�; �)

L

. Choose a basis �

j

for S

h

suh that

P

�

j

= 1 and equals one at exatly one nodal value and equals zero at other nodal values.

By mass lumping, we mean

(�

k

; �

j

)

L

=

(

(1; �

j

); k = j;

0; k 6= j:

If u has oordinates u

j

with respet to �

j

then (u; �

j

)

L

= (1; �

j

)u

j

. Fix a time step �t > 0,

our �nite element method generates approximations X

n

i

; �

n

; u

n

to X

i

(n�t), �(n�t), u(n�t)

as follows: Given partile positions X

n

i

and (u

n

; �

n

) 2 S

h

� S

h

, �nd (u

n+1

; �

n+1

) 2 S

h

� S

h

suh that

�t

�1

(u

n+1

� u

n

; �)

L

+ (r�

n+1

;r�)

h

=

1

X

i2P(t)

(jru

n

jÆ

X

n

i

; �)

h

�(�

n+1

; �)

L

= ��

2

(ru

n+1

;r�)

h

� (f(u

n+1

); �)

L

;

for all � 2 S

h

, where u

0

is take to be an approximation to u(0) in S

h

. To generate X

n+1

i

, we

use the expliit Euler method:

X

n+1

i

�X

n

i

= �(X

n

i

) �t+ �(X

n

i

)B

n;i

�t

;

where B

n;i

�t

are IID Gaussian random variables with mean 0 and variane I�t. The annihilation

time of eah partile is determined after omputation of u

n+1

andX

n+1

i

: generate IID uniform

random variables U

n;i

on [0; 1℄ and annihilate partile i if

U

n;i

� �t



2

R

d

(jru

n

jÆ

X

n

i

; 1)

h

:

Let

M

ij

= (�

i

; �

j

)

L

; A

ij

= (r�

i

;r�

j

)

h

:
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Let û

n

be suh that

(û

n

; �)

h

= (u

n

; �)

h

+ 

1

�tM

X

i2P(t)

(jru

n

jÆ

X

n

i

; �)

h

; � 2 S

h

:

Using u

n

;
^
u

n

to denote oordinates of u

n

; û

n

with respet to �

j

, we are left to solve the

following nonlinear system:

1

�t

M(u

n+1

�
^
u

n

) =�A�

n+1

�M�

n+1

=� �

2

Au

n+1

+  M
^
u

n

�M�(u

n+1

);

where f(u) = �(u) �  u, the di�erene of two monotone funtions. To solve this system, we

apply an iterative method of Lions and Merier [11℄ (see also Copetti [5℄ and Barrett-Blowey [2℄

for appliations to phase-�eld equations).

Combining the two equations, we have

A

�1

�

Mu

n+1

�M
^
u

n

�t

�

+ �

2

M

�1

Au

n+1

� 
^
u

n

+ �(u

n+1

)� �1 = 0:

Note that A has a one dimensional null spae spanned by 1 as we work with Neumann

onditions and hene the Lagrange multiplier � provides a solution. Let

B(y) := A

�1

M

y �
^
u

n

�t

+ �

2

M

�1

Ay � 
^
u

n

:

Then the equation beomes

B(u

n+1

) + �(u

n+1

)� �1 = 0: (17)

Consider a guess (u

n+1

j

; �

j

) for u

n+1

and the Lagrange multiplier �. In the following iteration

� is a relaxation parameter.

(i) Compute

Z

1

:= u

n+1

j

� �B(u

n+1

j

) + �

j

�1 = 0

and solve

u

n+1

j+

1

2

+ ��(u

n+1

j+

1

2

) = Z

1

: (18)

This gives an approximation u

n+1

j+1=2

.

(ii) Now ompute u

n+1

j+1

, �

j+1

suh that

u

n+1

j+1

+ �B(u

n+1

j+1

)� �

j+1

�1 =u

n+

1

2

j+

1

2

� ��(
^
u

n

j+

1

2

)

=2u

n+1

j+1=2

� Z

1

;

To do this, note

u

n+1

j+1

+ �B(u

n+1

j+1

)� �

j+1

�1 = �; � := 2u

n+1

j+1=2

� Z

1

; (19)

Multiply by A,

Au

n+1

j+1

+ �AB(u

n+1

j+1

) = A�
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and substituting for B

Au

n+1

j+1

+ �

h

M

u

n+1

j+1

�
^
u

n

�t

+ �

2

AM

�1

Au

n+1

j+1

� A
^
u

n

i

= A�:

Let

A

1

= (�t

�1

M + �

2

AM

�1

A); B

0

= (�t

�1

M +  A)
^
u

n

:

Then we an �nd u

n+1

j+1

by solving

A

2

u

n+1

j+1

= Z

2

; A

2

= A+ �A

1

; Z

2

= A� + �B

0

:

and the Lagrange multiplier from (19)

�

j+1

=

1

�(1;1)

(1;u

n+1

j+1

� � + �B(u

n+1

j+1

)):

The iteration gives approximations u

n+1

j+1

and Lyapunov multipliers �

j

. It is shown in Copetti [5℄

that the sequene u

n+1

j

onverges to u

n+1

and (18) and (19) give that (17) holds.

The triangulation S

h

is initially uniform but is adapted aording to the size of E

�

=

k1

�

k

�1

(1

�

; jruj), where 1

�

is the indiator funtion on the element � . An element � in the

triangulation is oarsened if E

�

< E

oarsen

or re�ned if E

�

> E

re�ne

. The mesh is adapted

every N

adapt

time steps. The maximum and minimum size of a retangle is restrited. Further,

regularisation of the triangulation is performed by the software pakage (Deal.II [1℄) itself.

The sheme further implements an elementary adaptive time stepping algorithm. There

are two time sales in the interfaial veloity as indiated in (16). When a partile X

i

is an

order one distane from the interfae �, the interfae moves on a time sale � and a large time

step �t

+

is used. When the partiles X

i

are near the interfae, the interfaial dynamis are

faster and to apture this is a smaller time �t

�

is employed. The algorithm swithes between

�t

�

when E

�t

rosses a ritial value E

ritial

�t

, where E

�t

equals the maximum absolute value

of 

1

�t

+

P

i2P(t)

jru

n

jÆ

X

n

i

over nodal values.

5 Numerial results

Numerial approximations to (1) are now presented for the method developed in x4. We

present approximate solutions for the following parameter values: the domain is [�2; 2℄ �

[�2; 2℄; the initial phase u(x; y) = tanh(�(y + 1:7)=�); that is, a band of aggregate is plae

on the bottom of the domain. The interfaial parameter � = 0:02; the oupling 

1

= 100; the

annihilation rate 

2

= 50. Partiles are introdued into the system at the top of the domain,

y = 2:0, at a horizontal position x uniformly distributed on [�2; 2℄ at times 1=200; 2=200; : : : .

Initially 10 partiles are plaed in the domain uniformly over [�2; 2℄� [�1:2; 2℄. The partiles

fall from the top to the bottom of the domain aording to

dX =

�

�

x

��

y

�

dt+

�

�

x

0

�

d�(t);

where �

x

; �

y

; �

x

� 0 are varied in the three examples.

The parameters in the numerial method are hosen as follows: the time steps �t

+

=

5�10

�5

and �t

�

= 10

�5

. The time step was hanged aording to ritial value E

ritial

�t

= 0:2.

The relaxation parameter � = 0:8. Initially the domain has �ve levels initially and the adaptive

mesh has between 4 and 8 levels (so boxes of size 0:125

2

to 0:0078125

2

). The meshes are re�ned

with (E

re�ne

; E

oarsen

; N

adapt

) = (0:08; 0:03; 20).
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The �gures give the evolution of the u = 0 ontour and the development of ompliated

patterns is seen, inluding the appearane of overhangs and the development of avities in

the aggregate. Figure 1 shows the growth of a large overhang into a avity. Figure 2 used a

large value of the noise parameter �

x

. Again a omplex pattern develops. Figure 3 uses the

same parameters as in Figure 1, exept for the introdution of a horizontal drift �

x

6= 0. The

patterns are less omplex than in Figures 1-2.

One feature of the �gures is the ourrene of instabilities. In Figure 2, an island of

u � �1 appears in the seond time frame in the lower left hand orner. The island is a result

of instability in the numerial solution, rather than the aggregation dynamis. The island

disappears in the next time frame. The partiles an ause the phase to ip between u � 1

even away from the interfae. This behaviour is not well understood, but is believed to be the

result of numerial approximation.

6 Conlusion

The paper has desribed a new model for aggregation, by using a phase �eld equation oupled

to a system of SDEs. The model very naturally inorporates features of arbitrary topol-

ogy and shadowing, as well as inorporating dynamis within the aggregate itself. We have

demonstrated that the equations an be understood in a rigorous mathematial way, whih

ontrasts with some of the diÆult equations suggested by other authors. A numerial method

is suggested for solving the equations and a number of examples solutions presented. The nu-

merial method su�ers from instabilities and is also slow (it takes two days on 1 Ghz Linux

box to generate eah of the test ases). Further work should develop the linear algebra and

analyse the soure of the instability. The numerial solutions omputed exhibit e�ets known

to happen in aggregation proesses, suh as �ngering, but as the system is based on a di�use

interfaes, the patterns our on a large sale. The model will provide further insight when

solutions are omputed for smaller � and on longer time sales.
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Figure 2: �

x

= 0, �

y

= 200, �

x

= 40 at times t = 0:08465; 0:1693; 0:25395; 0:33860.
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Figure 3: �

x

= 50, �

y

= 200, �

y

= 5 at times t = 0:0547; 0:1094; 0:164; 0:21880.
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