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Abstra
t

A Cahn-Hilliard equation is 
oupled to a system of sto
hasti
 di�erential equations to

model a random growth pro
ess. We show the model is well posed and analyse the model

asymptoti
ally (in the limit of the interfa
ial distan
e be
oming small), to re
over a free

boundary problem. A numeri
al method together with example solutions is presented.

1 Introdu
tion and ba
kground

Sto
hasti
 PDEs have been used to model random growth pro
esses sin
e the introdu
tion

of the Kardar{Parisi{Zhang (KPZ) equation [8℄. This equation restri
ts the topology of an

aggregate in R

d

, so that its interfa
e may be represented as a graph R ! R

d�1

. The KPZ

equation des
ribes the evolution of this graph as a fourth order sto
hasti
 PDE in d � 1

dimensions.

Models based on the evolution of a graph are very restri
tive on the topology. By intro-

du
ing an extra dimension to the model, arbitrary topologies may be des
ribed by writing

a PDE for a phase variable u(t; x) : R

+

� R

d

! R. Then, the growth will be that of an

aggregate fx 2 R

d

: u(t; x) � u

+

g, where u

+

depends on the model under 
onsideration, and

the boundary of the aggregate will be a level set fu = 0g (say). Su
h phase �elds models

have been used to des
ribed pattern formation. One well known example is the Cahn-Hilliard

equation [7℄ for a region 
:

u

t

=��

�� =�

2

�u� f(u);

where homogeneous Neumann boundary 
onditions are pla
ed on u and �. The fun
tion f is

the gradient of a double well potential. The parameter � � 1 and measures the interfa
ial

thi
kness. The total phase

R




u dx is 
onstant in this model and no growth is in
luded.

It is of interest to 
onsider perturbing these equations by noise [10, 9℄. For example, the

equation

u

t

=� �

2

�

2

u+�(u� u

3

) + I;
(1)

with appropriate boundary 
onditions. For I = 0, this is the standard Cahn{Hilliard equation.

The driving term I models the random deposition onto the aggregate. The fun
tion I is

expressed in terms of ru, to en
ourage growth normal to the surfa
e of the aggregate and to


on
entrate the e�e
ts of the noise at the interfa
e. Two forms for I are suggested,

I

1

:= 


1

jruj+ 


2

p

jruj

_

W (t) or I

2

:= jruj

2

�




3

+ 


4

_

W (t)

�

;

�
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where 


1

; : : : ; 


4

are 
onstants and

_

W (t) is a \derivative" of a spa
e-time Wiener pro
ess.

Numeri
al simulations [9℄ for I

1

suggest behaviours similar to the Eden model, whi
h is 
har-

a
terised by uniform growth rates. The I

2

model is seen to depend on 
urvature e�e
ts at the

interfa
e. (For examples of perturbing the Cahn-Hilliard by thermal 
u
tuations, see [6, 4℄).

This model in
ludes random deposition of parti
les, the e�e
t of surfa
e di�usion, and

makes no topologi
al assumptions on the aggregate. One further important physi
al feature

of these systems is shadowing, where 
ertain areas are free from deposition (be
ause the 
ow

of material is blo
ked). This e�e
t is not in
luded in equation (1), but by 
oupling a se
ond

equation, Keblinski et al. [9℄ have modelled shadowing.

De�ning solutions of the above equation in a mathemati
ally pre
ise way is very diÆ
ult,

be
ause of the multipli
ative for
ing fun
tions I. Weak existen
e theory by standard Faedo-

Galerkin 
onvergen
e arguments depends on estimates of the type E(I; u(t)) (where E denotes

average over realisations of W (t) and (�; �) is the L

2

inner produ
t). Spa
e time white noise

will never satisfy su
h a property be
ause it does not give a well behaved pro
ess in the mean

square sense. A smooth pro
ess W (t) would need to be introdu
ed.

Another approa
h to introdu
ing noise into a PDE is the use of parti
le systems. Dire
tly

modelling the evolution of the depositions before they hit the aggregate is a natural te
hnique

for introdu
ing noise to the system. Indeed, Di�usion Limited Aggregation (see [12℄) is a

spatially dis
rete model that uses this te
hnique and in
orporates shadowing and arbitrary

topologies in a natural way.

We propose a model for the intera
tion of a set of parti
les evolving a

ording to Itô

sto
hasti
 di�erential equations (SDEs) with a Cahn-Hilliard system. The parti
les represent

material that is deposited onto an aggregate, represented by the �eld u. It is a mean �eld

theory, in that we negle
t thermal 
u
tuations in the aggregate. In the 
ontext of depositions,

it is the 
u
tutations in the traje
tories of the parti
les that is responsible for the 
omplex

morphology of the aggregate.

Consider the following 
oupled Cahn-Hilliard parti
le system on a domain 
 = [0; L℄

d

.

u

t

=�� + 


1

X

i2P(t)

jrujÆ

X

i

�� =�

2

�u� f(u);

(2)

where � � 1 is the interfa
ial parameter, 


1

> 0 is the 
oupling strength, Æ

X

(x) = 1 if

jx �Xj � R and = 0 otherwise. The fun
tion f is the gradient of a double well potential F

with minima u

�

, often f(u) = (u

3

� u); throughout we suppose that f is an odd polynomial

with positive leading order 
oeÆ
ient. The parti
les have radius R with 
entres X

i

2 
.

Parti
le i is said to be alive at time t if i 2 P(t). Further, we assume that i 2 P(t) if and

only if t 2 [�

s

i

; �

e

i

℄. Parti
les are introdu
ed to the system at positions X

s

i

at times �

s

i

and are

annihilated independently at times �

e

i

with rate




2

R

d

Z




jruj(x)Æ

X

i

(x) dx:

The position of the parti
le X

i

satis�es the Itô SDE

dX

i

= �(X

i

) dt+ �(X

i

) dB

i

(t); (3)

where � 2 C

1

(R

d

;R

d

) and � 2 C

1

(R

d

;R

d�d

) and B

i

are IID standard Brownian motions in

R

d

and with (for simpli
ity) periodi
 boundary 
onditions on 
. The Brownian motions B

i

(t)

live on a probability spa
e with measure P and are adapted to a �ltration F

t

. Expe
tations

with respe
t to P are denoted E.
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The outline of this paper is as follows. x2 
onsiders the existen
e and uniqueness of (2),

�rst deriving an a priori bound for the solution and then sket
hing the steps ne
essary to

prove weak solutions exist. This is sket
hed as many of the steps are quite standard. x3

des
ribes some basi
 properties of (2) in a non-rigorous manner, by using asymptoti
 analysis

and looking for an approximating free boundary problem. x4 des
ribes a �nite element s
heme

for this system and how it has been implemented using the deal.II software pa
kage [1℄. The

�nal se
tion x5 gives some numeri
al simulations.

2 Existen
e of solutions

We now dis
uss the existen
e of solutions for the 
oupled Cahn-Hilliard system (2). We

show how to derive a priori bounds for this equation, following a standard argument, see for

example [13℄. With the a priori bound, standard Faedo-Galerkin arguments 
an be applied

to prove existen
e of solutions to the equations. We build up the argument for the following

deterministi
 equation, before adding in the random 
omponents:

u

t

=�� + 


1

X

i2P(t)

jrujÆ

X

i

�� =�

2

�u� f(u);

subje
t to homogeneous Neumann boundary 
onditions on u and � on �
 and whereX

i

: R

+

!


 are 
ontinuous fun
tions of time and Æ

X

i

is the indi
ator fun
tion on a ball of radius R


entred on X

i

. For the present X

i

may be 
onsidered to be deterministi
; we do not dis
uss

the random aspe
t until Theorem 2.2.

Throughout the present se
tion, we use K to denote a generi
 
onstant. We work with

the fun
tion spa
e

V :=

n

� 2 H

2

(
):

��

�n

= 0 on �


o

and denote by j � j and (�; �) the standard norm and inner produ
t on L

2

(
).

The weak formulation of the above equation is a
hieved by multiplying by v 2 V and

applying the boundary 
onditions with Green's formula:

(v; u

t

) =(v;��) + 


1

X

i2P(t)

(v; jrujÆ

X

i

) = �(rv;r�) + 


1

X

i2P(t)

(v; jrujÆ

X

i

):

Now,

�(rv;r�) = (�v; (��

2

�u))� (rv;rf(u)): (4)

Take v = u:

1

2

d

dt

juj

2

+ �

2

(�

2

u; u) + (ru; f

0

(u)ru) = 


1

X

i2P(t)

(jru(x)jÆ

X

i

; u):

Write f(s) = b

p

s

2p�1

+ b

p�1

s

2p�3

+ � � �+ b

1

s. The leading term of f

0

(s) is (2p� 1)b

p

s

2p�2

and

we 
an �nd 
 > 0 su
h that

f

0

(s) � (2p� 1)b

p

s

2p�2

� 
:

Substituting for f

0

(s) and applying Cau
hy-S
hwartz, we have

1

2

d

dt

juj

2

+ �

2

j�uj

2

+ (2p� 1)b

p

Z




u

2p�2

jruj

2

dx � 
jruj

2

+

1

2

jruj

2

+

1

2

(


1

N)

2

juj

2

;
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where N denotes the maximum number of parti
les in P(t). Standard interpolation estimates

give jruj

2

� Kjuj kuk

H

2

(
)

. Lemma 4.2 [13℄ gives that the norm k � k

H

2

(
)

is equivalent to

j�uj+ juj. Hen
e, for some 
onstant K

(
+

1

2

)jruj

2

� Kjuj(j�uj+ juj) �

1

2

�

2

j�uj

2

+ (K +K

2

=2�

2

)juj

2

:

Finally, we obtain for a di�erent 
onstant K

d

dt

juj

2

+ �

2

j�uj

2

+ 2(2p� 1)b

2p

Z




u

2p�2

jruj

2

dx � K juj

2

:

By the Gronwall Lemma, we have uniform bounds on [0; T ℄ in L

2

(
) and by integrating we

have

Z

T

0

ku(s)k

2

H

2

(
)

ds � K:

Arguing further, we de�ne the Lyapunov fun
tion

V(u) :=

1

2

�

2

jruj

2

+

Z




F (u(x)) dx:

Arguing formally for a moment (be
ause the integral above need not be de�ned for u 2 V ),

we note that

d

dt

V(u) = (�; u

t

)

and

(�; u

t

) =�

2

(��; �) + 


1

(�;

X

i2P(t)

jrujÆ

X

i

)

=� �

2

jr�j

2

+ 


1

(�;

X

i2P(t)

jrujÆ

X

i

):

Then,

d

dt

V(u(t)) �� �

2

jr�j

2

+

1

2

j�j

2

+

1

2




2

1

N

2

jruj

2

�� �

2

jr�j

2

+

1

2

(2j�

2

�uj

2

+ 2jf(u)j

2

) +

1

2




2

1

N

2

jruj

2

�� �

2

jr�j

2

+Kkuk

2

H

2

(
)

;

where the last inequality uses the fa
t that W

2

(
) 
an be 
ontinuously embedded in C

0

(
)

for d = 2; 3. Thus, V(u(t)) is bounded on [0; T ℄ as

R

T

0

ku(s)k

2

H

2

(
)

ds is �nite. The argument


an be made rigorous by trun
ating f and showing 
onvergen
e in the limit of the trun
ation.

This time take v = �

2

u in (4) to gain

1

2

d

dt

j�uj

2

+ �

2

j�

2

uj

2

=(�f(u);�

2

u) + (


1

X

i2P(t)

jru(x)jÆ

X

i

;�

2

u)

=

1

�

2

j�f(u)j

2

+

1

4

�

2

j�

2

uj

2

+




2

1

N

2

�

2

jruj

2

+

1

4

�

2

j�

2

uj

2

:

Thus,

d

dt

j�uj

2

+ �

2

j�

2

uj

2

�

2

�

2

j�f(u)j

2

+




2

1

N

2

�

2

jruj

2

:
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It is proved that (see [13℄), by restri
ting p = 2 in three dimensions and taking an arbitrary

positive integer p in dimensions d = 1; 2, that

j�f(u)j

2

�

1

2

�

2

j�

2

uj

2

+K:

Then, we have a di�erential inequality

d

dt

j�uj

2

+ �

2

j�

2

uj

2

� K;

after using the boundedness of V. This gives a priori estimates in L

1

(0;1;H

2

(
)) and

L

2

(0; T ;H

4

(
)).

Theorem 2.1 Consider dimension d = 1; 2; 3. For every u

0

2 L

2

(
), the initial value prob-

lem (2) has a unique weak solution u in

L

1

([0; T ℄;H) \ L

2

([0; T ℄;V )):

The mapping u(t) is 
ontinuous in t. Let p be a positive integer, with p = 2 (i.e., f has degree

three) when d = 3, arbitrary for dimension 1 and 2. Choose initial data u

0

2 V . Then

u(t) 2 C([0; T ℄; V ) \ L

2

([0; T ℄;D(A)):

Proof This is a standard Faedo-Galerkin approximation argument. Let �

i

denote the eigen-

fun
tions of A. The idea is to seek solutions u

m

of the form

u

m

(t) =

m

X

i=1

g

im

(t)�

i

;

satisfying

(

du

m

dt

; �

j

) + �

2

(�u

m

;��

j

)� (f(u

m

); �

j

) = (


1

X

i

jru

m

jÆ

X

i

; �

j

); j = 1; : : : ;m:

This is an ODE and existen
e of solutions is elementary. Further, the a priori bounds developed

above holds for u

m

and allow us to take limits of u

m

. Standard fun
tional analyti
 arguments

give 
onvergen
e to a solution u having the properties des
ribed above. QED

Theorem 2.2 Let d = 2 or 3 and let f be 
ubi
 (p = 2). Suppose that � 2 C

1

(R

d

;R

d

)

and � 2 C

1

(R

d

;R

d�d

) and both fun
tions are globally Lips
hitz. Consider initial data

u

0

2 V , initial times �

s

i

2 R

+

, and initial positions X

s

i

, for i = 1; : : : ; N (N the number

of parti
les). Then, there exists a solution of (2) 
onsisting of the phase variable u(t) 2

C([0; T ℄; V )\L

2

(0; T ;D(A)), the 
onditional densities p

i

(t; y;u) on [�

s

i

; T )�C([0; T ℄; V ) (for

the probability the parti
le is at y at time t given a phase traje
tory u), and the parti
le tra-

je
tories X

i

(t) : [�

s

i

; �

e

i

℄ ! R

d

. The solution (u(t); p

i

(t; y;u);X

i

(t)) is uniquely de�ned by the

following properties: (i) the phase variable obeys u(0) = u

0

and for ea
h v 2 V ,

(v; u

t

) =(rv;r�) + 


1

X

i2P(t)

(v; jrujÆ

X

i

(t)

);

�(v; �) =�

2

(rv;ru) � (v; f(u));
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(ii) the parti
le traje
tories X

i

(t) are 
ontinuous fun
tions [�

s

i

; �

e

i

℄ ! R

d

satisfying for �

s

i

�

t � �

e

i

X

i

(t)�X

i

(�

s

i

) =

Z

t

�

s

i

�(X

i

(s)) ds+

Z

t

�

s

i

�(X

i

(s)) dB

i

(s);

for independent Brownian motions B

i

. The annihilation time �

e

i

= �

e

i

(u), where �

e

i

(u) are

independent random variables on [�

s

i

; T ) satisfying

P�

e

i

(u) > t =

Z




p

i

(t; y;u) dy; u 2 C([0; T ℄; V ):

(iii) p

i

(t; y;u) is a delta fun
tion at X

s

i

at t = �

s

i

and for t > �

e

i

satis�es

dp

i

(t; y;u)

dt

= Lp

i

(t; y;u) �




2

R

d

Z




jru(x; s)jÆ

y

(x)p

i

(t; y;u) dx;

where L is the generator for an SDE with drift � and di�usion � with periodi
 boundary


onditions on [0; L℄

d

.

Proof The solution is 
onstru
ted as follows. Let the B

i

(t) be independent standard Brow-

nian motions on a probability spa
e (


1

;F

1

). Let X

�

i

for i = 1; : : : ; N be the (


1

;F

1

) random

variables taking values in C([�

s

i

;1);R

d

) whi
h are solutions of (3) subje
t to X

�

i

(�

s

i

) = X

s

i

.

The existen
e and uniqueness of su
h solutions are guaranteed by 
lassi
al theory under the

smoothness assumptions on � and �. Let u

(1)

(t) denote the unique weak solution of equa-

tion (2) where the parti
le variables X

i

are repla
ed by X

�

i

, given by Theorem 2.1. De�ne

independent random variables

�

i

: C([0; T ℄; V )! [�

s

i

;1)

on a se
ond probability spa
e (


2

;F

2

) su
h that P�

i

(u) > t =

R




p

i

(t; y;u) dy. Let j(u)

minimise �

i

(u) over i = 1; : : : ; N (i.e., be the �rst parti
le to be annihilated given a phase

traje
tory). Now on the joint probability spa
e (


1

� 


2

;F

1

� F

2

), de�ne the [0;1) valued

random variable �

e

j(u

(1)

)

:= �

j(u

(1)

)

. Finally, let u(x; s) = u

(1)

(x; s) and X

i

(s) = X

�

i

(s) for

0 � s � T

(1)

:= �

e

j(u

(1)

)

.

To generate solutions over the next time period, let u

(2)

= u

(1)

on [0; T

(1)

℄. For time

t > T

(2)

, let u

(2)

equal the weak solution of equations (2) again with parti
les X

�

i

but this

time with initial data

u

(2)

(T

(1)

; x) = u

(1)

(T

(1)

; x):

Let k(u) minimise �

i

(u) over i 6= j(u) and set �

e

k(u

(2)

)

:= �

k(u

(2)

)

. Finally, let u(x; s) = u

(2)

(x; s),

P

i

(t; u) = P

(2)

i

(t; u), and X

i

(s) = X

�

i

(s) for T

(1)

� s � T

(2)

:= �

e

k(u

(2)

)

.

This pro
ess 
an be iterated N times to generate solutions up to the time when all parti
les

have died. A solution is generated on the time interval [0; T ℄, by solving the Cahn-Hilliard

equation on the interval where all parti
les are dead. We have illustrated how the solution

for the phase variable u, parti
le positions X

i

, and annihilation times �

e

i


an be 
onstru
ted,

with the solutions pie
ed together by restarting the pro
esses at the annihilation times �

e

i

.

The 
onstru
tion spe
i�es u;X

i

; and P

i

uniquely on ea
h time interval [0; T

(1)

℄, (T

(1)

; T

(2)

℄,

: : : , [T

(N)

; T ℄.

QED
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3 Asymptoti
 Analysis

We present a non-rigorous explanation of the properties of the 
oupled Cahn-Hilliard parti
le

system (2). We show that the total phase, taken as the sum of that in the PDE

R




u(t; x)dx

and a 
onstant amount for ea
h alive parti
le, X

i

for i 2 P(t), is 
onserved. We perform an

asymptoti
 analysis of the equations to gain a free boundary problem. The analysis provides


onditions that the probability that phase is transferred from parti
le to u only at the boundary

fu � 0g tends to one.

Conservation of Phase Let the total phase of the 
oupled Cahn-Hilliard parti
le system

be denoted

W(t) =

Z




u(t; x)dx +

X

i2P(t)




1




2

R

d

: (5)

We show that on average the total phase is 
onstant.

For t > �

s

i

, we have from Theorem 2.2

dp

i

(t; y;u)

dt

= Lp

i

(t; y;u)�




2

R

d

Z




jruj(x)Æ

y

(x)p

i

(t; y;u) dx:

Denote the probability the parti
le is alive at time t (given a phase traje
tory u) by P

i

(t) (resp.

P

i

(t;u)), so that P

i

(t;u) = 0 for t < �

s

i

and =

R




p

i

(t; y;u) dy for t � �

s

i

and P

i

(t) = EP

i

(t;u).

Then for t > �

s

i

,

dP

i

(t;u)

dt

=

Z




Lp

i

(t; y;u) dy �




2

R

d

Z




Z




jruj(x)Æ

y

(x)p

i

(t; y;u) dxdy

=�




2

R

d

E

h

Z




jru

�

j(x)Æ

X

i

(t)

(x) dx

�

�

�

u

�

= u

i

;

where we have used the boundary 
onditions to eliminate the �rst term. Now average over

the phase variable

dEP

i

(t;u)

dt

=

dP

i

(t)

dt

=�




2

R

d

E

Z




jruj(x)Æ

X

i

(t)

(x) dx:

The equation for U(t) := E

R




u(t; x) dx is

dU = 0dt+ 


1

X

i2P(t)

Z




Ejruj(x)Æ

X

i

(t)

(x) dx;

by using the boundary 
onditions in the Cahn-Hilliard equation to eliminate terms. Adding

the terms together, we have for t 6= �

s

i

d

dt

(U(t) +




1




2

R

d

X

i

P

i

(t)) = 0: (6)

Thus, we have that rate of 
hange of the expe
ted value of W(t) is zero for t 6= �

s

i

. When

t = �

s

i

some i, further parti
les are added to the system and the value of W(t) in
rease by the

number of parti
les added times 


1

R

d

=


2

.

Asymptoti
 expansion We now perform an asymptoti
 expansion in small � in an e�ort

to gain a related free boundary problem. The analysis follows [3℄. Assume that the domain 



an be split up into sets 


+

[ � [ 


�

, where u � u

�

on 


�

and � = fu = (u

+

+ u

�

)=2g.

First, we perform an outer expansion away from the interfa
e �. Write

u = u

0

+ �u

1

+ � � � ; � = �

0

+ ��

1

+ � � � :
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Outer order 1 expansion

u

0

t

=���

0

+ 


1

X

i2P(t)

jru

0

jÆ

X

i

��

0

=� f(u

0

):

In the outer layer, u

0

� u

�

(the minima of the potential F ). Thus the order 1 expansion is

simpli�ed to

u

0

t

= �f(u

0

) + 


1

X

i2P(t)

jru

0

jÆ

X

i

; �

0

= f(u

0

): (7)

Note that the se
ond equation is invertible for u

0

� u

�

and u

0

may be eliminated from these

equations. We 
annot assume the driving term appears at lower order. The equations are

paraboli
 PDEs; this 
ontrasts with the Cahn-Hilliard equation where the interfa
e motion is

velo
ity order � and the slow motion in the �rst order expansion 
an be treated as an ellipti


problem.

Near to the interfa
e �, the solution u varies from u

+

to u

�

over an interfa
e of width �.

To analyse this asymptoti
ally, we introdu
e new 
oordinates: let r denote the signed distan
e

from � (with r > 0 denoting points in 


+

) and s ar
 length along the interfa
e �. Change

variables to (r; s) spa
e by setting

jruj

2

=u

2

r

+ 2u

r

u

s

(r

x

s

x

+ r

y

s

y

) + u

2

s

jrsj

2

�u =u

rr

+ u

ss

jrsj

2

+ u

r

�r + u

s

�s

d

dt

u(x

1

; x

2

; : : : ) =

d

dt

u(r; s) + u

r

r

t

+ u

s

s

t

:

The inner expansion is performed by 
hoosing z = r=� and expanding

U = U

0

+ �U

1

+ � � � ; � = �

0

+ ��

1

+ � � � :

Then, substituting into the PDE, we have

(U

t

+ �

�1

U

z

r

t

+ U

s

s

t

) =(�

�2

�

zz

+�

ss

jrsj

2

+ �

�1

�

z

�r +�

s

�s)

+ 


1

X

i2P(t)

(�

�2

U

2

z

+ 2�

�1

U

z

U

r

(r

x

s

x

+ r

y

s

y

) + U

2

s

jrsj

2

)

1=2

Æ

X

i

�� =�

2

(�

�2

U

zz

+ U

ss

jrsj

2

+ �

�1

U

z

�r + U

s

�s)� f(U):

Hen
e

�

zz

+ �(�U

z

r

t

+�r�

z

)� �

2

(U

t

+ U

s

s

t

� (�

ss

jrsj

2

+�

s

�s))

+ 


1

X

i2P(t)

(�

2

U

2

z

+ 2�

3

U

z

U

r

(r

x

s

x

+ r

y

s

y

) + �

4

U

2

s

jrsj

2

)

1=2

Æ

X

i

= 0

U

zz

�f(U) + �+ �U

z

�r + �

2

(U

ss

jrsj

2

+ U

s

�s) = 0:

Inner order 1 expansion:

�

0

zz

=0;

U

zz

� f(U) + �

0

=0:

The only bounded solutions that give an interfa
ial pro�le for U are �

0

= 0. Then the �rst

order term U

0

(s; z) =  (z), where  obeys

 

zz

� f( ) = 0;  (�1) = u

�

;  (0) = 0: (8)

As f is odd,  (x) = � (�x).
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Inner order � expansion:

�

1

zz

=U

0

z

r

t

��r�

0

z

� 


1

X

i2P(t)

jU

0

z

jÆ

X

i

:

Using �

0

= 0 and U

0

(z) =  (z), we 
an integrate to �nd for z > 0

h

�

1

z

i

z

0

= r

t

 (z) � 


1

X

i2P(t)

Z

z

0

 

0

(z

0

) Æ

X

i

(z

0

�; s) dz

0

+ 


1

(s; t) (9)

and again

�

1

(z) = r

t

	(z)� 


1

X

i2P(t)

P

i

(z; s; �) + 


1

(s; t)z + 


2

(s; t); (10)

where 


1

(s; t) and 


2

(s; t) are 
onstants of integration,

P

i

(s; z; �) :=

Z

z

0

Z

z

0

0

 

0

(z

00

)Æ

X

i

(z

00

�; s) dz

00

and 	(z) :=

R

z

0

 (z) dz. Consider the se
ond equation

U

1

zz

� f

0

(U

0

)U

1

+�

1

= �� 

0

(z);

where � = �r (the mean 
urvature of �, evaluated at z = 0). Let � := (�

z

)

2

� f

0

( (z)) with

domain L

2

(�1;1); then

�U

1

= ��

1

� � 

0

(z):

� is an operator with one eigenfun
tion  

0

that has zero eigenvalue (be
ause of (8)). Thus

the solvability 
ondition for �� = g is orthogonality of g with respe
t to  

0

. The solvability


ondition is

Z

1

�1

�

1

(z) 

0

(z) dz + �

Z

1

�1

( 

0

(z))

2

dz = 0:

Now, substitute from (10), to get

Z

1

�1

�

r

t

	(z)� 


1

X

i2P(t)

P

i

(z; s; �) + 


1

(s; t)z + 


2

(s; t)

�

 

0

(z) dz + �

Z

1

�1

( 

0

(z))

2

dz = 0:

This implies as the integral of the odd term z 

0

(z) disappears that

Z

1

�1




2

(s; t) 

0

(z) dz = �r

t

Z

1

�1

	(z) 

0

(z) dz + 


1

X

i2P(t)

Z

1

�1

P

i

(z; s; �) 

0

(z) dz � �A;

where A :=

R

1

�1

( 

0

(z))

2

dz. Thus,

(u

+

� u

�

)


2

(s; t) = �r

t

Z

1

�1

	(z) 

0

(z) dz + 


1

X

i2P(t)

Z

1

�1

P

i

(z; s; �) 

0

(z) dz � �A:

9



Mat
hing 
onditions Consider an interfa
e at position Y (t; �) and suppose that Y (t; �) =

Y

0

+ �Y

1;�

+ tY

1;t

+O(t� + �

2

+ t

2

) . By 
hoosing Y (0; �) = Y

0

, we have Y

1;�

= 0. Look for

mat
hing 
onditions at z = (x� Y (t))=� by writing

�(z; t; �) =�(Y (t; �) + �z; t; �)

=�

0

(Y

0

; t) + ��

1

(Y

0

; t) + z � �

0

x

(Y

0

; t)) +O(�

2

+ �

2

z + �t) :

(11)

It is easy to show that

Z

z

0

 

0

(z

0

)Æ

X

i

(z

0

�; s) dz

0

!

(

 (z); kX

i

� (0; s)k � R

0; otherwise

; as z !1 with �z ! 0.

We introdu
e Æ

d�1

X

i

(s), whi
h takes value one when the ball of radius R 
entred at X

i

in
ludes

the point s on the interfa
e �, value zero otherwise. Taking limits with �z ! 0 and z ! �1,

we have from (9) and (11)

�

0

r

=u

�

�

r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

�

+ 


1

(s; t): (12)

Negle
ting the O(�z) terms from (10), we have that

�

1

(z; s; t) = (r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

)

�

Z

z

0

( (z) � u

+

) dz

0

+ u

+

z

�

+ 


1

(s; t)z + 


2

(s; t): (13)

Taking limits with �z ! 0, we 
an pi
k out the following from (11), (13), and (12):

�

1

=


2

(s; t) +

�

r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

�

Z

1

0

( (z) � u

+

) dz: (14)

Finally then, substituting for 


2

(s; t)

�

1

=

�1

u

+

� u

�

��

r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

�

Z

1

�1

	(z) 

0

(z) dz + �A

�

+ (r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

)

Z

1

0

( (z) � u

+

) dz:

Now note that

Z

Z

�Z

	(z) 

0

(z) dz =

h

	(z) (z)

i

Z

�Z

�

Z

Z

�Z

 (z)

2

dz:

Using u

+

= �u

�

, we have integrating by parts

�1

u

+

� u

�

Z

1

�1

	(z) 

0

(z) dz +

Z

1

0

 (z) � u

+

dz

=

Z

1

0

2

u

+

� u

�

 

2

� 2 + u

+

dz =

Z

1

0

�

p

u

+

�

 

p

u

+

�

2

dz =: B:

Thus,

�

1

= �(r

t

� 


1

X

i2P(t)

Æ

d�1

X

i

)B �

1

u

+

� u

�

�A: (15)
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De�ne V to be the velo
ity of the interfa
e � into 


�

, so that V = r

t

. Colle
ting our

results, for small �, the dynami
s of � 
an be determined by the following free boundary

problem: Inside 


�

(7) gives that � obeys the following PDE

(f

�1

(�))

t

= ��

0

+ 


1

X

i2P(t)

jrf

�1

(�)jÆ

X

i

subje
t to boundary 
onditions on � given by (15)

� = �

1

u

+

� u

�

�A�� V B�+B�


1

X

i2P(t)

Æ

d�1

X

i

:

This is the analogue of the Gibbs-Thompson relation. The interfa
e � moves with velo
ity

given by (12)

V =

1

u

+

� u

�

h

d�

dn

i

+

�

+




1

u

+

� u

�

X

i2P(t)

Æ

d�1

X

i

; (16)

where [

��

�n

℄

+

�

denotes the jump in

��

�n

on �. The parti
les X

i

satisfy the SDE

dX

i

= �(X

i

) dt+ �(X

i

) dB

i

(t):

To understand the annihilation of the parti
les, we perform asymptoti
s on the rate of anni-

hilation.

Inner Expansion Under the 
ondition �� R, the time for a parti
le of radius R with speed

v to 
ross an interfa
e of width � is order R=v. A
ross the interfa
e u(r) �  (r=�). Thus, the

rate of annihilation in 
rossing the interfa
e is




2

R

Z

jruj(x)Æ

X

i

(x) dx �




2

R

d

Z

 

0

(r=�)Æ

0

((r; s)) dr ds

!




2

R

d

R

d

�

d�1

(u

+

� u

�

) =




2

R

(u

+

� u

�

)�

d�1

;

as � ! 0, where �

d

denotes the volume of a ball of radius one in dimension d. This holds

on a time interval of order R=v. Consequently, the probability of annihilation in 
rossing the

interfa
e is 1 � exp(�K


2

(u

+

� u

�

)�

d�1

=v), some 
onstant K > 0. Thus, if we take limits

with 


2

!1, the probability the parti
les die when they hit the interfa
e tends to one.

Outer expansion We expe
t jruj to be of order e

�K=�

, some 
onstant K, in the interior

of 


�

(for f(u) = u

3

� u, the solution of (8) is a tanh pro�le). Thus, for a parti
le X that is

an order 1 distan
e from �,




2

R

d

Z

jruj(x)Æ

X

(x) dx �

�

d

R

d




2

R

d

e

�K=�

=

�

d

R




2

e

�K=�

;

some 
onstant K. Thus we expe
t the parti
les to live for an exponentially long amount of

time when moving about the interior of 


�

.

Suppose that the time s
ale for the annihilation of parti
les at the boundary (R=


2

(u

+

�

u

�

)�

d�1

) is mu
h less than the time to 
ross the interfa
e; that is,




2

�

v

(u

+

� u

�

)�

d�1

;
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then near � a parti
le 
an be expe
ted to live for a time R=


2

(u

+

�u

�

)�

d�1

. Hen
e, substitute

our asymptoti
 expression for the interfa
e velo
ity V ,

r

�

t+

R




2

(u

+

� u

�

)�

d�1

�

� r(t) = R




1




2

1

(u

+

� u

�

)

2

�

d�1

X

i2P(t)

Æ

d�1

X

i

+O(�) :

Thus in the 


2

= 


1

large limit, on impa
t of a parti
le at the boundary �, the boundary

moves by a distan
e R


1

=


2

(u

+

� u

�

)

2

�

d�1

. Thus we see the impa
t of a parti
le on the

interfa
e 
auses the interfa
e to move by an amount linear in the parti
le radius. Further,

from (6), we have that ea
h parti
le 
arries an amount of phase linear in the parti
le volume

(i.e., R

d

).

4 A numeri
al method

The following numeri
al method has been implemented for dimension d = 2 and results are

presented in x5.

Consider a triangulation T

h

of 
 
onsisting of re
tangular elements. Asso
iated with T

h

is

the �nite element spa
e S

h

of fun
tions that are bilinear fun
tions on the re
tangular elements

of T

h

. Introdu
e the notation (�; �)

h

to be the L

2

(
) inner produ
t evaluated by numeri
al

quadrature based on nodal values. The quadrate rule for (�; �)

h

is 
hosen to give exa
tly (�; �)

for elements of S

h

. Mass lumping is denoted by (�; �)

L

. Choose a basis �

j

for S

h

su
h that

P

�

j

= 1 and equals one at exa
tly one nodal value and equals zero at other nodal values.

By mass lumping, we mean

(�

k

; �

j

)

L

=

(

(1; �

j

); k = j;

0; k 6= j:

If u has 
oordinates u

j

with respe
t to �

j

then (u; �

j

)

L

= (1; �

j

)u

j

. Fix a time step �t > 0,

our �nite element method generates approximations X

n

i

; �

n

; u

n

to X

i

(n�t), �(n�t), u(n�t)

as follows: Given parti
le positions X

n

i

and (u

n

; �

n

) 2 S

h

� S

h

, �nd (u

n+1

; �

n+1

) 2 S

h

� S

h

su
h that

�t

�1

(u

n+1

� u

n

; �)

L

+ (r�

n+1

;r�)

h

=


1

X

i2P(t)

(jru

n

jÆ

X

n

i

; �)

h

�(�

n+1

; �)

L

= ��

2

(ru

n+1

;r�)

h

� (f(u

n+1

); �)

L

;

for all � 2 S

h

, where u

0

is take to be an approximation to u(0) in S

h

. To generate X

n+1

i

, we

use the expli
it Euler method:

X

n+1

i

�X

n

i

= �(X

n

i

) �t+ �(X

n

i

)B

n;i

�t

;

where B

n;i

�t

are IID Gaussian random variables with mean 0 and varian
e I�t. The annihilation

time of ea
h parti
le is determined after 
omputation of u

n+1

andX

n+1

i

: generate IID uniform

random variables U

n;i

on [0; 1℄ and annihilate parti
le i if

U

n;i

� �t




2

R

d

(jru

n

jÆ

X

n

i

; 1)

h

:

Let

M

ij

= (�

i

; �

j

)

L

; A

ij

= (r�

i

;r�

j

)

h

:
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Let û

n

be su
h that

(û

n

; �)

h

= (u

n

; �)

h

+ 


1

�tM

X

i2P(t)

(jru

n

jÆ

X

n

i

; �)

h

; � 2 S

h

:

Using u

n

;
^
u

n

to denote 
oordinates of u

n

; û

n

with respe
t to �

j

, we are left to solve the

following nonlinear system:

1

�t

M(u

n+1

�
^
u

n

) =�A�

n+1

�M�

n+1

=� �

2

Au

n+1

+ 
 M
^
u

n

�M�(u

n+1

);

where f(u) = �(u) � 
 u, the di�eren
e of two monotone fun
tions. To solve this system, we

apply an iterative method of Lions and Mer
ier [11℄ (see also Copetti [5℄ and Barrett-Blowey [2℄

for appli
ations to phase-�eld equations).

Combining the two equations, we have

A

�1

�

Mu

n+1

�M
^
u

n

�t

�

+ �

2

M

�1

Au

n+1

� 

^
u

n

+ �(u

n+1

)� �1 = 0:

Note that A has a one dimensional null spa
e spanned by 1 as we work with Neumann


onditions and hen
e the Lagrange multiplier � provides a solution. Let

B(y) := A

�1

M

y �
^
u

n

�t

+ �

2

M

�1

Ay � 

^
u

n

:

Then the equation be
omes

B(u

n+1

) + �(u

n+1

)� �1 = 0: (17)

Consider a guess (u

n+1

j

; �

j

) for u

n+1

and the Lagrange multiplier �. In the following iteration

� is a relaxation parameter.

(i) Compute

Z

1

:= u

n+1

j

� �B(u

n+1

j

) + �

j

�1 = 0

and solve

u

n+1

j+

1

2

+ ��(u

n+1

j+

1

2

) = Z

1

: (18)

This gives an approximation u

n+1

j+1=2

.

(ii) Now 
ompute u

n+1

j+1

, �

j+1

su
h that

u

n+1

j+1

+ �B(u

n+1

j+1

)� �

j+1

�1 =u

n+

1

2

j+

1

2

� ��(
^
u

n

j+

1

2

)

=2u

n+1

j+1=2

� Z

1

;

To do this, note

u

n+1

j+1

+ �B(u

n+1

j+1

)� �

j+1

�1 = �; � := 2u

n+1

j+1=2

� Z

1

; (19)

Multiply by A,

Au

n+1

j+1

+ �AB(u

n+1

j+1

) = A�

13



and substituting for B

Au

n+1

j+1

+ �

h

M

u

n+1

j+1

�
^
u

n

�t

+ �

2

AM

�1

Au

n+1

j+1

� 
A
^
u

n

i

= A�:

Let

A

1

= (�t

�1

M + �

2

AM

�1

A); B

0

= (�t

�1

M + 
 A)
^
u

n

:

Then we 
an �nd u

n+1

j+1

by solving

A

2

u

n+1

j+1

= Z

2

; A

2

= A+ �A

1

; Z

2

= A� + �B

0

:

and the Lagrange multiplier from (19)

�

j+1

=

1

�(1;1)

(1;u

n+1

j+1

� � + �B(u

n+1

j+1

)):

The iteration gives approximations u

n+1

j+1

and Lyapunov multipliers �

j

. It is shown in Copetti [5℄

that the sequen
e u

n+1

j


onverges to u

n+1

and (18) and (19) give that (17) holds.

The triangulation S

h

is initially uniform but is adapted a

ording to the size of E

�

=

k1

�

k

�1

(1

�

; jruj), where 1

�

is the indi
ator fun
tion on the element � . An element � in the

triangulation is 
oarsened if E

�

< E


oarsen

or re�ned if E

�

> E

re�ne

. The mesh is adapted

every N

adapt

time steps. The maximum and minimum size of a re
tangle is restri
ted. Further,

regularisation of the triangulation is performed by the software pa
kage (Deal.II [1℄) itself.

The s
heme further implements an elementary adaptive time stepping algorithm. There

are two time s
ales in the interfa
ial velo
ity as indi
ated in (16). When a parti
le X

i

is an

order one distan
e from the interfa
e �, the interfa
e moves on a time s
ale � and a large time

step �t

+

is used. When the parti
les X

i

are near the interfa
e, the interfa
ial dynami
s are

faster and to 
apture this is a smaller time �t

�

is employed. The algorithm swit
hes between

�t

�

when E

�t


rosses a 
riti
al value E


riti
al

�t

, where E

�t

equals the maximum absolute value

of 


1

�t

+

P

i2P(t)

jru

n

jÆ

X

n

i

over nodal values.

5 Numeri
al results

Numeri
al approximations to (1) are now presented for the method developed in x4. We

present approximate solutions for the following parameter values: the domain is [�2; 2℄ �

[�2; 2℄; the initial phase u(x; y) = tanh(�(y + 1:7)=�); that is, a band of aggregate is pla
e

on the bottom of the domain. The interfa
ial parameter � = 0:02; the 
oupling 


1

= 100; the

annihilation rate 


2

= 50. Parti
les are introdu
ed into the system at the top of the domain,

y = 2:0, at a horizontal position x uniformly distributed on [�2; 2℄ at times 1=200; 2=200; : : : .

Initially 10 parti
les are pla
ed in the domain uniformly over [�2; 2℄� [�1:2; 2℄. The parti
les

fall from the top to the bottom of the domain a

ording to

dX =

�

�

x

��

y

�

dt+

�

�

x

0

�

d�(t);

where �

x

; �

y

; �

x

� 0 are varied in the three examples.

The parameters in the numeri
al method are 
hosen as follows: the time steps �t

+

=

5�10

�5

and �t

�

= 10

�5

. The time step was 
hanged a

ording to 
riti
al value E


riti
al

�t

= 0:2.

The relaxation parameter � = 0:8. Initially the domain has �ve levels initially and the adaptive

mesh has between 4 and 8 levels (so boxes of size 0:125

2

to 0:0078125

2

). The meshes are re�ned

with (E

re�ne

; E


oarsen

; N

adapt

) = (0:08; 0:03; 20).
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The �gures give the evolution of the u = 0 
ontour and the development of 
ompli
ated

patterns is seen, in
luding the appearan
e of overhangs and the development of 
avities in

the aggregate. Figure 1 shows the growth of a large overhang into a 
avity. Figure 2 used a

large value of the noise parameter �

x

. Again a 
omplex pattern develops. Figure 3 uses the

same parameters as in Figure 1, ex
ept for the introdu
tion of a horizontal drift �

x

6= 0. The

patterns are less 
omplex than in Figures 1-2.

One feature of the �gures is the o

urren
e of instabilities. In Figure 2, an island of

u � �1 appears in the se
ond time frame in the lower left hand 
orner. The island is a result

of instability in the numeri
al solution, rather than the aggregation dynami
s. The island

disappears in the next time frame. The parti
les 
an 
ause the phase to 
ip between u � 1

even away from the interfa
e. This behaviour is not well understood, but is believed to be the

result of numeri
al approximation.

6 Con
lusion

The paper has des
ribed a new model for aggregation, by using a phase �eld equation 
oupled

to a system of SDEs. The model very naturally in
orporates features of arbitrary topol-

ogy and shadowing, as well as in
orporating dynami
s within the aggregate itself. We have

demonstrated that the equations 
an be understood in a rigorous mathemati
al way, whi
h


ontrasts with some of the diÆ
ult equations suggested by other authors. A numeri
al method

is suggested for solving the equations and a number of examples solutions presented. The nu-

meri
al method su�ers from instabilities and is also slow (it takes two days on 1 Ghz Linux

box to generate ea
h of the test 
ases). Further work should develop the linear algebra and

analyse the sour
e of the instability. The numeri
al solutions 
omputed exhibit e�e
ts known

to happen in aggregation pro
esses, su
h as �ngering, but as the system is based on a di�use

interfa
es, the patterns o

ur on a large s
ale. The model will provide further insight when

solutions are 
omputed for smaller � and on longer time s
ales.
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Figure 2: �

x

= 0, �

y

= 200, �

x

= 40 at times t = 0:08465; 0:1693; 0:25395; 0:33860.
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Figure 3: �

x

= 50, �

y

= 200, �

y

= 5 at times t = 0:0547; 0:1094; 0:164; 0:21880.

18


