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Abstrat

Consider the Allen-Cahn equation with small di�usion �

2

perturbed by a spae

time white noise of intensity �. In the limit, �=�

2

! 0, solutions onverge to the

noise free problem in the L

2

norm. Under these onditions, asymptoti results

for the evolution of phase boundaries in the deterministi setting are extended, to

desribe the behaviour of the stohasti Allen-Cahn PDE by a system of stohasti

di�erential equations. Computations are desribed, whih support the asymptoti

derivation.

Key Words dynamis of phase-boundaries, stohasti partial di�erential equations,

Asymptotis.

AMS Subjet Classi�ations 60H15, 74N20, 45M05.

1 Introdution

Consider the Itô stohasti partial di�erential equation

du =

h

�

2

u

xx

+ f(u)

i

dt+ � dW (t);

u

x

=0 at x = 0; 1; u = g at t = 0.

(1.1)

where � � 1, the system is gradient f = �rF (u), and W is a spae{time white noise.

Thus, if e

i

is an orthonormal basis for L

2

(0; 1) and �

i

are IID standard Brownian motions

then

W (t) =

X

e

i

�

i

(t):

A full introdution to spae-time white noise and the theory of stohasti PDEs is given

by [4℄. The potential F will be a double well potential having wells of equal depth and

minima at s

�

. We have in mind partiularly

F (u) =

1

8

(1� u

2

)

2

; f(u) := �rF (u) =

1

2

(u� u

3

); (1.2)

�

Work done at the IMA, University of Minnesota and OCIAM, Oxford University
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Figure 1: Solution of stohasti Allen{Cahn: � = 0:08, � = 0:00: surfae and ontour

plots. Computed �t = 0:005 and �x = 0:008

whih when substituted in (1.1) yields the Allen{Cahn equation and where s

�

= �1.

Figures 1{5 show typial solutions of the Allen{Cahn equation with small noise

and with Neumann onditions. The right hand �gure gives a traking of the interfae

position, de�ned as the ontour u = 0. The solutions were omputed using the bakward

Euler �nite di�erene sheme desribed in [11℄; in the �gures �t denotes time step and

�x denotes the grid spaing of the disretisation. The initial ondition onsists of

three regions, two taking value +1 and the third taking value �1. For the unperturbed

equation � = 0, eventually the two inner interfaes disappear, leaving a single region

where the solution is approximately �1 away from the boundary. With homogeneous

Dirihlet boundary onditions, there would be a boundary layer, where the solutions

hanges rapidly at the boundary, to satisfy the boundary ondition.

There are many results for the equation in ase � = 0. The equation was originally

written down as a model of the evolution of the alignments in rystals [1℄. Chafee-

Infante [3℄ study the equation on a bounded domain as a bifuration problem in the

limit � ! 0. The equation is shown to have only two stable equilibria for � suÆiently

small, orresponding to solutions of only one phase. New equilibria are reated as �! 0,

but all are unstable. The equation exhibits meta stability, meaning that solutions quikly

move to a state where u takes values near the minima of F exept at interfaial layers of

width �. These states are not equilibria, but do persist for exponentially long amounts

of time. The evolution of the meta stable states has been desribed as an ODE in the

positions of the interfae by a number of authors [12, 6, 2℄.

The e�et of perturbations on the Allen-Cahn equation has been studied previously

by Laforgue-O'Malley [8, 7℄ and Reyna-Ward [10, 13℄. These papers disuss small deter-

ministi perturbations of the operator and indiate that metastability is very sensitive to

perturbation. The present work takles stohasti perturbations, but brings out a simi-

lar result, that the exponential drift responsible for the metastability may be dominated

by noise.

To aurately desribe the nature of the ODE approximation to (1.1) with � = 0,
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Figure 2: Solution of stohasti Allen{Cahn: � = 0:08, � = 0:015: surfae and ontour

plots. Computed with �t = 0:005 and �x = 0:008. The ratio �=

p

� = 0:05.
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Figure 3: as in Figure 2, exept a di�erent realisation of the noise.
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Figure 4: Solution of stohasti Allen{Cahn: � = 0:08, � = 0:1: surfae and ontour

plots. Computed �t = 0:005 and �x = 0:008. The ratio �=

p

� = 0:35.
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Figure 5: Solution of stohasti Allen{Cahn: as in Figure 4 but a di�erent realisation.
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introdue U , the solution to the free spae problem

U

xx

+ f(U) = 0; U(�1) = s

�

; U(0) = 0: (1.3)

Let h = (h

1

; : : : ; h

N

) denote the positions of the interfaes. Let �

i

= (�1)

i

�

0

, where

�

0

= �1 indiates whether u(0) � s

�

. Ward [12℄ uses the following approximation to

solutions u of (1.1) when � is small

u

h

= C

0

+

N

X

i=1

n

U

�

�

i

(x� h

i

)

�

�

� C

i

o

; C

i

=

(

s

+

; �

i

= 1;

s

�

; �

i

= �1;

(1.4)

This is not the only way to de�ne an approximation u

h

, see for example [2℄ for a slightly

di�erent approah.

For onveniene, �x h

0

= 0 and h

N+1

= 1 as the positions of the homogeneous

Neumann boundaries. The ODE desribing the evolution of h is

dh

i

dt

=

2�

kU

0

k

2

h

�

i+1

e

��

i+1

(1+Æ

i;N

)�

�1

`

i+1

� �

i

e

��

i

(1+Æ

i;1

)�

�1

`

i

i

; i = 1; : : : ; N (1.5)

where `

i

:= h

i

�h

i�1

denotes the distane between interfaes; Æ

i;j

is the Kroneker delta

funtion; �

i

and �

i

are positive onstants desribed later in terms of F (in ase F given

by (1.2), �

i

= 4, kU

0

k

2

= 2=3, �

i

= 1 ). This equation holds upto the time of ollapse

of an interfae (when h

i+1

�h

i

� �, some i) upto exponentially small terms. This result

has been established rigorously in [2℄.

In this paper, the above results are extended somewhat to inlude the ase where

� > 0. Equation (1.1) is well posed for all time; its existene and uniqueness properties

are desribed in [5℄. The simplest ase is when f is globally Lipshitz from L

2

(0; 1)

to itself, in whih ase a mild solution exists taking values in L

2

(0; 1). In x2, we show

rigorously for Dirihlet boundary onditions that in this ase the basi struture of the

problem is preserved when � � �

1=2

; in partiular, for initial data in L

2

(0; 1) and all

T > 0, there exists K suh that

Eku

�;0

(t)� u

�;�

(t)k

2

� K�

2

=�; 0 � t � T; (1.6)

where u

�;�

is the solution of (1:1) with di�usion oeÆient �

2

and noise intensity �. (The

funtion f(u) = u� u

3

is not Lipshitz as required, but experiments indiate the same

phenomena hold). When � � �

1=2

, the noise dominates the solution, a onsequene of

spae{time white noise having being ill posed in L

2

(0; 1) (viz., EkW (t)k

2

=1).

An SDE is formally derived in x3 to aount for the motion of the interfaes when

� � �

1=2

. The interfae positions h are de�ned as being the minimiser of kV k where

V := u� u

h

over h 2 R

N

with h

i+1

� h

i

� � and N = 1; 2; : : : . The SDE is

dh

i

=

�

kU

0

k

2

1

1�A

i

h

�

i+1

e

��

i+1

(1+Æ

i;N

)�

�1

`

i+1

� �

i

e

��

i

(1+Æ

i;1

)�

�1

`

i

i

dt

+

��

1=2

kU

0

k

d�

i

(t) +O(kV k

2

) dt;

where A

i

:= C�

�1=2

he

i

; V i, for a onstant C and a unit vetor e

i

(to be de�ned later),

and �

i

(�) are IID standard Brownian motions. The equation may beome singular even
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Figure 6: Plot of U (dashed) and U + hV; e

i

ie

i

(solid) when h

i

= 0, A

i

= 1, F (u) =

(1� u

2

)

2

=8, and � = 0:08.

when V is order �

1=2

, as is expressed by the term 1=(1 � A

i

). The term A

i

is large

when V has a onsiderable omponent in U

00

((x�h

i

)=�), whih essentially desribes the

diretion of a branhing interfae as depited in Figure 6. When the equation makes

sense, the term A

i

has a negligible e�et on the dynamis of h as it is multiplied by

exponentially small terms.

The preise relation between the Brownian motions �

i

and the white noise W is

desribed in x3. However, when �

i

and W are onsidered independent, we expet that

the trajetories of the interfaes h given by the stohasti PDE and stohasti ODE

should onverge weakly as V beomes small. By (1.6), for an initial ondition u

0

= u

h

,

EkV k

2

is order �

2

=�. Thus, let

~

h be a solution of

dh

i

=

�

kU

0

k

2

h

�

i+1

e

��

i+1

(1+Æ

i;N

)�

�1

`

i+1

� �

i

e

��

i

(1+Æ

i;1

)�

�1

`

i

i

dt+

��

1=2

kU

0

k

d�

i

(t); (1.7)

for initial ondition h = h

0

(that is, we neglet 1=(1�A

i

) and the error O(kV k

2

) ). Let

h minimise ku� u

h

k where u solves (1.2) with u

0

= u

h

0

. We would like

EG(

~

h(t))�EG(h(t))! 0 as �=�

2

; �! 0 (1.8)

for smooth test funtionals G : R

N

! R where the expetation is taken over all

~

h (resp.,

h) whih have dimension N at time t.

The last setion of this paper, x4, overs numerial experiments that support (1.8).

The experiments ompute the mean and variane of the deviation of the interfae posi-

tion from its initial position for the asymptoti SDE (1.7) and for (1.1) for a single inter-

fae initial ondition. Thus, we take the �rst steps to examine (1.8) for g(x) = (x� h

0

)

and g(x) = (x� x̂)

2

, where x̂ = Eh. The omputations indiate agreement between the

two dynamial systems for �=�

1=2

= 0:1 and 0:035.

2 Finite time limits as � ! 0

The �nite time limits in � and � of the stohasti Allen{Cahn equations (1.1) with

homogeneous Dirihlet boundary onditions are studied. Throughout this setion we

take the nonlinearity f to be globally Lipshitz from L

2

(0; 1) to itself. Denote the

6



solution of the Allen{Cahn equation (1.1) by u

�;�

, and let u

�

:= u

�;0

, the solution to the

noise free problem.

The spae{time white noise W may be onsidered in terms of its Fourier expansion.

If e

i

is a omplete orthonormal system for L

2

(0; 1), and �

i

is a sequene of independent

standard Brownian motions, the proess W (�) may be thought of as

W (t) =

1

X

i=1

e

i

�

i

(t):

It is lear that W (�) does not onverge in L

2

(0; 1). However, stohasti integrals an be

de�ned with respet to an operator that smoothes the proess W (�) [4℄. This is made

expliit by the Itô isometry. The Itô isometry in in�nite dimensions states that, for a

linear operator � mapping H to H,

E







Z

t

0

�(s) dW (s)







2

=

Z

t

0

k�(s)k

2

HS

ds: (2.1)

(k � k

HS

is the Hilbert-Shmidt norm, see [4℄). It will be important to estimate this

quantity when �(s) = e

��

2

A(t�s)

.

Lemma 2.1 For all t > 0, there exists C

t

> 1 suh that

C

�1

t

�

�

Z

t

0

ke

��

2

A(t�s)

k

2

HS

ds �

C

t

�

; 0 < � � 1:

Proof This result is proved for A with homogeneous Dirihlet onditions.

(lower bound) When A is de�ned with Dirihlet onditions, its eigenvalues are k

2

�

2

for k = 1; 2; : : : . Hene, from (2.1),

Z

t

0

ke

��

2

A(t�s)

k

2

HS

ds =

1

X

k=1

1

2�

2

k

2

�

2

(1� e

�2�

2

k

2

t�

2

)

�

1

X

k=b1=�

1

2�

2

k

2

�

2

(1� e

�2t�

2

)

�

1

2�

2

�

2

(1� e

�2t�

2

)

Z

1

b1=�

1

s

2

ds

�

1

2��

2

(1� e

�2t�

2

):

(upper bound) For all t > 0, there exists a onstant K

t

so that

(1 � e

�2�t�

2

) � K

t

�; for 0 � � � 1.

7



Hene,

Z

t

0

ke

��

2

A(t�s)

k

2

HS

ds �

b1=�

X

k=1

1

2�

2

k

2

�

2

(1� e

�2�

2

k

2

t�

2

)

+

1

X

k=1+b1=�

1

2�

2

k

2

�

2

(1� e

�2�

2

k

2

t�

2

)

�

b1=�

X

k=1

K

t

�

2

k

2

2�

2

�

2

k

2

+

1

X

k=b1=�+1

1

2�

2

k

2

�

2

�

K

t

2�

2

�

+

1

2�

2

�

2

1

X

k=1+b1=�

1

k

2

�

K

t

2�

2

�

+

�

2�

2

�

2

;

as required. o

Lemma 2.2 Consider t > 0; for a onstant C



depending on ,

kA

�

(I � e

�At

)k � C



t



; 0 <  � 1;

kA



e

�At

k � C



t

�

;  > 0:

Proof This is a standard result on frational powers of setorial operators [9℄. o

Theorem 2.3 Fix T > 0. There are three limits as �; � ! 0:

(i) In the limit �; � ! 0 with �=�

1=2

! 0,

E sup

0�t�T

ku

�;�

(t)� u

�

(t)k

2

! 0;

(ii) Suppose further that f is globally Lipshitz from H

�r

(0; 1) to H

�r

(0; 1). For eah

r > 1=2, there exists a proess u(�) taking values in H

�r

(0; 1) suh that in the limit

�; � ! 0 with �=�

1=2

! �,

E sup

0�t�T

ku

�;�

(t)� u(t)k

2

H

�r

(0;1)

! 0;

(iii) In the limit �=�

1=2

!1,

E sup

0�t�T

ku

�;�

(t)k

2

!1:

8



Proof (i) Clearly,

u

�;�

(t)� u

�

(t) =

Z

t

0

e

��

2

A(t�s)

h

f(u

�;�

(s))� f(u

�

(s))

i

ds

+ �

Z

t

0

e

��

2

A(t�s)

dW (s):

The stohasti integral may be bounded as follows: by the Itô Isometry (2.1) and for

0 � t � T ,

Ek

Z

t

0

e

��

2

A(t�s)

dW (s)k

2

=

Z

t

0

ke

��

2

A(t�s)

k

2

HS

ds

(by Lemma 2.1)

�

C

T

�

:

Therefore, denoting the Lipshitz onstant of f by K, we have for 0 � t � T ,

�

Eku

�;�

(t)� u

�

(t)k

2

)

1=2

�

Z

t

0

K(Eku

�;�

(s)� u

�

(s)k

2

)

1=2

ds+ C

1=2

T

�

�

1=2

:

By applying Gronwall's lemma, we have proved

�

E sup

0�t�T

ku

�;�

(t)� u

�

(t)k

2

�

1=2

�

�

�

1=2

e

Kt

C

1=2

T

! 0; as �=�

1=2

! 0. (2.2)

(ii) Consider a sequene (�

n

; �

n

) with �

n

! 0 and �

n

=�

1=2

n

! � as n ! 1. For

n;m 2 N, the Variation of Constants formula gives

u

�

n

;�

n

(t)� u

�

m

;�

m

(t) =

Z

t

0

(e

��

2

n

A(t�s)

� e

��

2

m

A(t�s)

)f(u

�

n

;�

n

(s)) ds

+

Z

t

0

e

��

2

m

A(t�s)

h

f(u

�

n

;�

n

(s))� f(u

�

m

;�

m

(s))

i

ds

+ (�

n

� �

m

)

Z

t

0

e

��

2

n

A(t�s)

dW (s)

+ �

m

Z

t

0

(e

��

2

n

A(t�s)

� e

��

2

m

A(t�s)

) dW (s):

Eah term an be bounded in H

�2r

(0; 1) for r � 1=4. Reall that in the Dirihlet ase

that k � k

�r

:= kA

�r

� k is equivalent to the H

�2r

(0; 1) norm. This norm is used here to

gain the neessary inequalities.

Consider the �rst term: By Lemma 2.2 (without loss take �

m

> �

n

),

�

Ek

Z

t

0

(e

��

2

n

A(t�s)

� e

��

2

m

A(t�s)

)f(u

�

n

;�

n

(s)) dsk

2

�r

�

1=2

�

Z

t

0

kA

�r

(I � e

�(�

2

m

��

2

n

)A(t�s)

)k � ke

��

2

n

A(t�s)

k � (Ekf(u

�

n

;�

n

)k

2

)

1=2

ds

9



(by Lemma 2.2)

�C

Z

t

0

(t� s)

r

(�

2

m

� �

2

n

)

r

K(Eku

�

n

;�

n

k

2

)

1=2

ds:

By (2.2), Eku

�

n

;�

n

k

2

may be bounded uniformly in limits �

n

; �

n

! 0 subjet to �

n

=�

1=2

n

being bounded. Hene, there exists a onstant C

1

with

�

Ek

Z

t

0

(e

��

2

n

A(t�s)

� e

��

2

m

A(t�s)

)f(u

�

n

;�

n

(s)) dsk

2

�r

�

1=2

�C

1

(�

2

m

� �

2

n

)

r

Z

t

0

(t� s)

r

ds:

Consider the seond term:

�

Ek

Z

t

0

e

��

2

m

A(t�s)

h

f(u

�

n

;�

n

(s))� f(u

�

m

;�

m

(s))

i

dsk

2

�r

�

1=2

�K

Z

t

0

�

Eku

�

n

;�

n

(s)� u

�

m

;�

m

(s)k

2

�r

�

1=2

ds:

Consider the third term: By the Itô isometry,

Ek

Z

t

0

e

��

2

n

A(t�s)

dW (s)k

2

�r

=

Z

t

0

kA

�r

e

��

2

n

A(t�s)

k

2

HS

ds

=

Z

t

0

1

X

k=1

1

(k

2

�

2

)

2r

e

�2�

2

n

k

2

�

2

(t�s)

ds;

whih is �nite for r > 1=4.

Consider the fourth term: by Lemma 2.2 and the Itô isometry, we have for 0 � t � T ,

Ek

Z

t

0

(e

��

2

n

A(t�s)

� e

��

2

m

A(t�s)

) dW (s)k

2

�r

�

Z

t

0

kA

�r

(I � e

(�

2

n

��

2

m

)A(t�s)

)k

2

ke

��

2

n

A(t�s)

k

2

HS

ds

�kA

�r

(I � e

(�

2

n

��

2

m

)At

)k

2

Z

t

0

ke

��

2

n

A(t�s)

k

2

HS

ds

�C

2

(�

2

n

� �

2

m

)

2r

t

2r

C

T

�

n

�

C

2

C

T

t

2r

�

n

(�

2

n

� �

2

m

)

2r

Thus, taking a limit (�; �) ! 0 with �

2

=� bounded above, there exists a onstant C

2

suh that for 0 � t � T ,

�

Eku

�

n

;�

n

(t)� u

�

m

;�

m

(t)k

2

�r

�

1=2

� C

2

((�

2

n

� �

2

m

)

r

+ (�

n

� �

m

))

+

Z

t

0

K

�

Eku

�

n

;�

n

(s)� u

�

m

;�

m

(s)k

2

�r

�

1=2

ds:

10



Gronwall's inequality now gives, for a onstant C

3

�

E sup

0�t�T

ku

�

n

;�

n

(t)� u

�

m

;�

m

(t)

k

2

�r

�

1=2

� C((e

2

m

� e

2

n

)

r

+ (�

n

� �

m

))e

KT

:

If �

n

; �

n

are Cauhy, the sequenes u

�

n

;�

n

are Cauhy with respet to

�

sup

0�t�T

Ek � k

2

�r

�

1=2

and thus a limiting proess exists. The above formula also gives uniqueness for if

u

�

n

;�

n

! u

1

and u

�

m

;�

m

! u

2

where (�

n

; �

n

) and (�

m

; �

m

) are both Cauhy, then,

by the above,

�

E sup

0�t�T

ku

1

(t)� u

2

(t)k

2

�r

�

1=2

�

�

E sup

0�t�T

ku

�

n

;�

n

(t)� u

�

m

;�

m

(t)k

2

�r

�

1=2

+

�

E sup

0�t�T

ku

�

n

;�

n

(t)� u

1

(t)k

2

�r

�

1=2

+

�

E sup

0�t�T

ku

2

(t)� u

�

m

;�

m

(t)k

2

�r

�

1=2

!0:

(iii) Suppose that Eku

�;�

(t)k

2

< 1 uniformly as �=�

1=2

! 1 for 0 � t � T . For

simpliity take u

0

= 0. Then, argue for a ontradition as follows: from the Variation

of Constants formula and the Itô isometry,

Eku

�;�

(t)k

2

=E

h

k

Z

t

0

e

��

2

A(t�s)

f(u

�;�

(s)) dsk

2

i

+ 2�E

hD

Z

t

0

e

��

2

A(t�s)

f(u

�;�

(s)) ds;

Z

t

0

e

��

2

A(t�s)

dW (s)

Ei

+ �

2

E

h

Z

t

0

ke

��

2

A(t�s)

k

2

HS

ds

i

:

The third term is positive and order �

2

=� by Lemma 2.1; the �rst term is positive;

thus, to gain a ontradition, we show the seond has lower order than �

2

=�: Indeed, for

0 � t � T

�E

hD

Z

t

0

e

��

2

A(t�s)

f(u

�;�

(s)) ds;

Z

t

0

e

��

2

A(t�s)

dW (s)

Ei

��E

h

Z

t

0

e

��

2

A(t�s)

f(u(s))

2

ds

i

1=2

E

h

Z

t

0

ke

�2�

2

A(t�s)

k

2

HS

ds

i

1=2

;

��

C

1=2

T

�

1=2

K sup

0�t�T

�

Eku(t)k

2

�

1=2

;

whih is learly order �=�

1=2

. o
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3 Formal derivation of an SDE

The positions of the interfaes h

i

are well de�ned in the deterministi ase � = 0 as the

ontours of u = (s

+

+ s

�

)=2. In the ase � > 0, the interfae may be wrinkled, making

the ontour ill de�ned. We hoose h by solving the following minimisation problem: let

h minimise

ku� u

h

k (3.1)

over h 2 R

N

with jh

i+1

� h

i

j � � and over N = 1; 2; : : : . In this ase, letting

V := u� u

h

; �

i

:=

�

i

�

U

0

�

�

i

(x� h

i

)

�

�

;

we have by di�erentiating (3.1) with respet to h

i

h�

i

; V i = 0:

We'll need the following asymptoti properties as we go along [12℄:

(i) The solution U of (1.3) satis�es

U(x) = s

+

� a

+

e

��

+

x

; x!1;

U(x) = s

�

+ a

�

e

�

�

x

; x! �1:

where s� are the zeros of f ; �

�

= (�f

0

(s

�

))

1=2

;

log a

�

= log(�s

�

) +

Z

s

�

0

�

s

�

(2F (�))

1=2

+

1

� � s

�

�

d�:

(ii)

kU

0

k

2

�

Z

1

�1

U

0

(x)

2

dx =

Z

s

+

s

�

(2F (x))

1=2

dx:

(iii) For ase f(u) =

1

2

(u � u

3

); these quantities evaluate to s

�

= �1; kU

0

k

2

= 2=3;

a

�

= 2; �

�

= 1.

Assume that h obeys the Itô equation

dh =  (h; t; !) dt+�(h; t; !) d�(t); (3.2)

where � = diag(�

1

; : : : ; �

N

) and  = ( 

1

; : : : ;  

N

)

T

and �(t) is a vetor of N Brownian

motions, to be spei�ed later in terms of W (t).

Apply the Itô formula to u = u

h

+ V using (1.4) and (3.2),

du =�

X

i

�

i

dh

i

�

1

2

X

i

�

ix

�

2

i

dt+ dV

=�

�

X

i

�

i

 

i

+

1

2

�

ix

�

2

i

�

dt+

X

i

�

i

�

i

d�

i

(t) + dV;

12



where �

ix

= (�

i

)

x

. Take the inner produt with �

i

:

h�

i

; dui =

n

�  

i

k�

i

k

2

+

X

i

1

2

h�

ix

; �

i

i

o

dt� k�

i

k�

i

d�

i

(t) +

X

i 6=j

�

j

h�

i

; �

j

i d�

j

(t):

Note that

h�

ix

; �

i

i =

�

�

2

i

�

1

0

:

This quantity is very small and is negleted as the asymptotis of U show that �

i

is

exponentially small away from the layers. Similarly, h�

i

; �

j

i is negligible for i 6= j.

Hene, we'll work with

h�

i

; dui = � 

i

k�

i

k

2

dt� k�

i

k�

i

d�

i

(t) (3.3)

To ompare, multiply (1.1) by �

i

:

h�

i

; dui = h�

i

; �

2

u

xx

+ f(u)i dt+ �h�

i

; dW (t)i: (3.4)

Let

�

i

(t) :=

1

k�

i

k

Z

t

0

h�

i

; dW (s)i:

The �

i

(t) are ontinuous martingales with variane

E�

i

(t)

2

=

1

k�

i

k

2

Z

t

0

kh�

i

; �ik

2

HS

ds =

1

k�

i

k

2

Z

t

0

k�

i

k

2

ds = t:

Therefore �

i

(t) are standard Brownian motions. Moreover, the proesses �

i

(t) are inde-

pendent (upto exponentially small terms), beause

Eh�

i

(t); �

j

(t)i = t

h�

i

; �

j

i

k�

i

k � k�

j

k

:

Thus (3.4) beomes

h�

i

; dui = h�

i

; �

2

u

xx

+ f(u)i dt+ � d�

i

(t): (3.5)

Equate oeÆients in (3.3) and (3.5):

� 

i

k�

i

k

2

=h�

i

; �

2

u

xx

+ f(u)i; (3.6)

��

i

k�

i

k

2

=�k�

i

k: (3.7)

Expand the RHS of (3.6):

h�

i

; �

2

u

xx

+ f(u)i = h�

i

; �

2

u

h

xx

+ f(u

h

)i+ h�

i

; L

h

V i+O(kV k

2

) ; (3.8)

where L

h

u = �

2

u

xx

+ df(u

h

)u. Write the �rst term

h�

i

; �

2

u

h

xx

+ f(u

h

)i =

D

�

i

; �

2

u

h

xx

+

N

X

i=1

f

�

U

�

�

i

(x� h

i

)

�

��E

+

D

�

i

; E

E

;

(3.9)
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where

E := f(u

h

)�

X

i

f(U(�

i

(x� h

i

)=�)):

Beause U solves (1.3), the �rst term is zero and, by the asymptoti analysis in [12℄,

the quantity

h�

i

; Ei � 2�

�

~�

i+1

e

��

i+1

�

�1

`

i+1

� ~�

i

e

��

i

�

�1

`

i

�

; i = 1; : : : ; N (3.10)

where `

i

:= h

i

�h

i�1

(reall h

0

:= 0 and h

N+1

:= 1) and ~�

i

:= (a

i

�

i

)

2

and ~�

1

= ~�

N+1

= 0

and

a

i

=

(

a

+

; if �

i

= 1;

a

�

; if �

i

= �1;

; �

i

=

(

�

�

; if �

i

= 1;

�

+

; if �

i

= �1;

:

Consider the seond term in (3.8): let L(u) = �

2

u

xx

+ f(u) so that

h�

i

; L

h

V i = hL

h

�

i

; V i+B

i

= hL(u

h

)

h

i

; V i+B

i

(3.11)

where B

i

are boundary terms, whih may be negleted for internal layers [12℄. We wish

to ompute L(u

h

)

h

i

. First note that

L(u

h

) =

X

i

h�

i

;L(u

h

)i

�

i

k�

i

k

2

+ lower order terms:

Consequently, from (3.9)

hL(u

h

)

h

i

; V i = h�

i

;L(u

h

)i

h�

ix

; V i

k�

i

k

2

= h�

i

;L(u

h

)iA

i

; (3.12)

where A

i

:= h�

ix

; V i=k�

i

k

2

.

Colleting (3.6), (3.8), and (3.12), we have

� 

i

k�

i

k

2

= h�

i

; Ei + h�

i

; EiA

i

;

and so

 

i

=

1

1�A

i

h�

i

; Ei

k�

i

k

2

+O(kV k

2

) : (3.13)

Finally, from (3.10), (3.13), and (3.7), the SDE is

dh

i

=

1

1�A

i

2

k�

i

k

2

�

~�

i+1

e

��

i+1

�

�1

`

i+1

� ~�

i

e

��

i

�

�1

`

i

�

dt+

�

k�

i

k

d�

i

(t):

The term k�

i

k is independent of i (upto exponentially small terms) and hene we write

k�

i

k = �

�1=2

kU

0

k giving

dh

i

=

1

1�A

i

2�

kU

0

k

2

�

~�

i+1

e

��

i+1

�

�1

`

i+1

� ~�

i

e

��

i

�

�1

`

i

�

dt+

��

1=2

kU

0

k

d�

i

(t):
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Similarly, A

i

may be better written

A

i

=

C

�

1=2

he

i

; V i;

where

C :=

kU

00

k

kU

0

k

2

; e

i

(x) =

�

ix

k�

ix

k

�

U

00

((x� h

i

)=�)

kU

00

((x� h

i

)=�)k

:

In the ase where h

i

is a neighbour of the boundary (i = 1 or i = N), one term

drops out (viz., ~�

1

= 0 or ~�

N+1

= 0) and the boundary terms B

i

in (3.11) should be

evaluated to give the lowest ontribution. [12℄ omputes the ontribution from B

i

and

this ontribution is not e�eted by the stohasti perturbation: let �

i

= (a

i

�

i

)

2

and Æ

i;j

denote the Kroneker delta, then for i = 1; : : : ; N

dh

i

=

1

1�A

i

2�

kU

0

k

2

�

�

i+1

e

��

i+1

(1+Æ

i;N

)�

�1

`

i+1

� �

i

e

��

i

(1+Æ

i;1

)�

�1

`

i

�

dt+

��

1=2

kU

0

k

d�

i

(t):

4 Numerial Experiments

We would like to show that the trajetories of the interfaes desribed by (1.2) and (1.7)

onverges weakly on a �nite time interval in the small �=�

1=2

limit. To this end, onsider

an initial ondition u

0

= u

h

where h = (0:4). We ompute the mean and variane of

the deviation of the interfae position from x = 0:4 for both (1.2) (with initial ondition

u

0

) and (1.7) (with initial ondition h

0

). Clearly, the average at time t is taken over

realisations where the single interfae persists at time t. The diagrams show the mean

and variane on a time interval [0; 200℄ for parameter values (�; �) = (0:08; 0:01) and

(0:08; 0:03). The trajetory of the interfae for the noise free problem (� = 0:08, � = 0)

is shown for referene.
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