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Abstract
The solution of the exterior-value problem for the fractional Laplacian can be computed

by a walk-outside-spheres algorithm. This involves sampling α-stable Levy processes
on their exit from maximally inscribed balls and sampling their occupation distribution.
Kyprianou, Osojnik, and Shardlow (2017) developed this algorithm, providing a complexity
analysis and an implementation, for approximating the solution at a single point in the
domain. This paper shows how to efficiently sample the whole field by generating an
approximation in L2(D), for a domain D. The method takes advantage of a hierarchy of
triangular meshes and uses the multilevel Monte Carlo method for Hilbert space-valued
quantities of interest. We derive complexity bounds in terms of the fractional parameter
α and demonstrate that the method gives accurate results for two problems with exact
solutions. Finally, we show how to couple the method with the variable-accuracy Arnoldi
iteration to compute the smallest eigenvalue of the fractional Laplacian. A criteria is
derived for the variable accuracy and a comparison is given with analytical results of
Dyda (2012).
AMS subject classification: 65C05, 34A08, 60J75, 34B09.
Keywords: Fractional Laplacian, Walk on spheres, Levy processes, Arnoldi algorithm,
exterior-value problems, multilevel Monte Carlo, Numerical solution of PDEs, eigenvalue
problems.

1 Introduction
Walk On Spheres is a classical method for solving the Poisson problem

−∆u = f on D, u = g on ∂D

for a domain D ⊂ Rd, boundary data g : ∂D → R and source term f : D → R. In [KOS17],
the algorithm was extended to a Walk Outside Spheres (WOS) algorithm for the following
problem for the fractional Laplacian: find u : D → R such that(

−∆
)α/2

u = f on D, u = g on Dc, (1.1)

for α ∈ (0, 2) and exterior data g : Dc → R. A review of the fractional Laplacian and its
importance in the applied sciences is given by [LPG+18], which includes a description of
WOS and other numerical approaches. The fractional Laplacian in Eq. (1.1) is the generator
of the α-stable Levy process on Rd. This observation leads to the following identity, on which
the WOS algorithm is based:

u(x) = E
[
g(X(τ)) +

Nx−1∑
n=0

rαn

∫
B(0,1)

f(xn + rny)V1(y) dy
]
, x ∈ D. (1.2)
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To define the terms here, consider an α-stable Levy processX(t), t ≥ 0, starting atX(0) = x,
and let τ > 0 be the first-exit time ofX(t) fromD. Define the discrete-time WOS process start-
ing at x0 = x by xn = X(τn), where τ0 = 0 and τn = min{t > τn−1 : X(t) 6∈ B(xn−1, rn)},
where B(xn−1, rn) is the ball of maximum radius rn contained in D and centred at xn−1.
Further, Nx is the exit time for the WOS process xn from D (so τNx = τ and X(τ) = xNx)
and V1 is the expected occupation density of X(t) before exiting a unit ball after starting at
the origin, and given by [BGR61]

V1(y) = 2−α π−d/2 Γ(d/2)
Γ(α/2)2

∥∥y∥∥α−d ∫ ‖y‖−2−1

0
(u+ 1)−d/2uα/2−1 du,

∥∥y∥∥ ≤ 1. (1.3)

[KOS17] provides a complete Monte Carlo algorithm for approximating u(x) for a single
x ∈ D. It works by sampling the WOS process xn and the occupation density V1, and
computing u(x) as a sample average. [KOS17] includes an implementation [OS17] and a
study of the mean number of WOS steps required for the sampling of X(τ). This paper
addresses the problem of calculating the whole field u : D → R as an element of L2(D) and
the leading eigenvalue of the fractional Laplacian. In Section 2, we review the existence
and regularity theory for Eq. (1.1) as well as the Walk Outside Spheres (WOS) algorithm
from [KOS17]. Section 3 develops a more efficient algorithm for computing the solution
u ∈ L2(D) using multilevel Monte Carlo. The key step is the coupling between WOS solves
on nested triangular meshes, which leads to a bound on the complexity of the method.
Numerical experiments show that the method gives accurate results for two problems with
known solutions. In Section 4, we turn to the computation of the smallest eigenvalue of the
fractional Laplacian by using the field solve as part of an Arnoldi iteration. To make the
process more efficient, we show how the accuracy of the field solve should be varied during
the Arnoldi iteration. Computations are given, comparing the method to analytical results
of [Dyd12]. The Julia code used for the computations is available for download1. In Section 5,
we include a comparison of the proposed method to the adaptive finite element method of
[AG17].

2 Review
We will make use of the following bounds on the unique solution to Eq. (1.1). We use Cr(D)
to denote the Banach space of r-times differentiable functions with the supremum norm
on derivatives up to order r ∈ N. For s ∈ (0, 1), Cr+s(D) denotes the Hölder-continuous
subspace of u ∈ Cr(D) with norm ‖u‖Cr + sup|r|=r[Dru]s <∞, for

[u]s := sup
x,y∈D

|u(x)− u(y)|
‖x− y‖s

and Dr is the partial derivative defined by the multi-index r.

Theorem 2.1. For a bounded Lipschitz domain D, suppose that g : Dc → R is continuous
and satisfies ∫

Dc

|g(x)|
1 + ‖x‖α+d dx <∞,

and that f ∈ Cr(D), for some r ∈ N with r > α. Then, there exists a unique continuous
solution to Eq. (1.1). Further, if g is uniformly bounded, ‖u‖Cr+α ≤ C(α,D)(‖g‖∞ + ‖f‖Cr).

Proof. The existence and uniqueness is provided by [KOS17, Theorem 6.1]. This result also
gives that ‖u‖∞ ≤ C (‖f‖∞ + ‖g‖∞) for a constant C independent of u. Now apply [ROS16,
Corollary 3.5] on any ball contained in D to gain the Cr+α regularity.

1https://github.com/tonyshardlow/julia_wos
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2.1 Point WOS

The WOS method for approximating the solution u(x) of Eq. (1.1) at a single x ∈ D is based
on the probabilistic representation (1.2). The WOS process xn can be efficiently sampled as
follows: let Beta(α, β) denote the family of Beta distributions, Sd−1 denote the unit sphere
in Rd, and U(S) denote the uniform distribution on a bounded measurable subset S of Rd.
Choose independent samples βn ∼ Beta(α/2, (2− α)/2) and Θn ∼ U(Sd−1), and define the
iteration

xn+1 = xn + Θn
1√
βn

d(xn), x0 = x, (2.1)

where d(y) denotes the distance from y to the boundary of D. Define the exit time Nx =
min{n ≥ 0: xn 6∈ D}. For independent samples Sk ∼ U([0, 1]) and Φk ∼ U(Sd−1), let

v(x) := g(xNx) +
Nx−1∑
k=0

F (xk;Sk,Φk) (2.2)

where

F (xk;Sk,Φk) := A1 d(xk)α
[(
f(xk + d(xk)S

1/α
k Φk)− f(xk)

)
P
(
βk < 1− S2/α

k

)
+A2 f(xk)

]
for

A1 := 1
α

2−α+1Γ(α/2)−2B((2− α)/2, α/2), A2 :=
∫ 1

0
P
(
βn < 1− z2/α

)
dz.

To understand the relation to Eq. (1.2), note that Θ/
√
β has the same law as the exit

distribution of the α-stable Levy process from a unit ball for β ∼ Beta(α/2, (2− α)/2) and
Θ ∼ U(Sd−1). The expectation of A1 d(xk)α (f(xk + d(xk)S

1/α
k Φk) equals

E
[
rαn

∫ ‖y‖−2−1

0
f(xn + rny)V1(y) dy

]
.

The adjustment in the definition of F is for computational efficiency: we may precompute
A2 (with quadrature methods), so that the term

(
f(xk + d(xk)S

1/α
k Φk)− f(xk)

)
has lower

variance, thereby yielding more easily to Monte Carlo approximation. To approximate u(x),
we generate M iid samples vj(x) of v(x) and evaluate the sample mean 1

M

∑M
j=1 v

j(x). The
method is unbiased so that the sample mean converges to the exact solution u(x) as M →∞
and the error is described via the central-limit theorem. See [KOS17] for further details.

3 WOS field solve
Rather than evaluate u(x) at a single point, we are interested in the whole field u ∈ L2(D).
The basic idea is to generate point estimates for a set of points and use interpolation to define
an approximate u ∈ L2(D). We examine the error when independent samples are used at
each point, and then look at multilevel Monte Carlo as a method for improving efficiency by
coupling point samples.

3.1 WOS field error: independent samples

What errors result when we generate WOS approximations to u(zj) for a set of points
{zj} ⊂ D and use an interpolant to approximate u in L2(D)? We answer this question for
{zj} given by the vertices of a triangular mesh for D for the root-mean-square error (the
L2(Ω, L2(D)) norm).
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We work in two dimensions (d = 2) and consider a shape-regular triangulation T h of a
domain D ⊂ R2 with mesh-width h. That is, D is the union of non-intersecting triangles
τ ∈ T h and the mesh-width h = max hτ for hτ equal to the longest edge length of τ ∈ T h.
Here, the shape-regular condition says there exists C such that Area(τ) ≥ Chdτ for all τ ∈ T h.
Let Ih denote the interpolation operator taking values at the vertices of the triangulation
T h to the piecewise-linear interpolant. Denote the vertices of T h by z1, . . . ,zN . The next
lemma gives a bound on the L2(D) bias error in approximating u by an interpolant with
vertex data given by a random vector a.

Lemma 3.1. Suppose that D is a bounded polygonal domain in R2. Suppose that g : Dc → R
is bounded and that f ∈ Cr(D) for r = 2− α. Let a be an RN -valued random variable such
that E[a] = [u(z1), . . . , u(zN )], where zi are the vertices of a shape-regular triangulation with
mesh-width h. Then, for some constant C(α,D) > 0,∥∥u− E

[
Iha

]∥∥
L2(D) ≤ C(α,D)h2

(∥∥g∥∥∞ +
∥∥f∥∥

Cr

)
.

Proof. As E[a] = [u(z1), . . . , u(zN )] and E[Iha] = IhE[a], the functions u and E[Iha] agree
at the vertices zj . The Bramble–Hilbert lemma (e.g., [BS08, Theorem 4.4.20]) together with
the regularity given by Theorem 2.1 (for r + α = 2 so that u ∈ H2(D)) imply the result.

Denoting sh := Iha, the lemma says that the expectation of the interpolant sh is close
to u in the L2(D) sense, for a fine triangulation (small mesh-width h). We now look at the
sample errors due to the WOS Monte Carlo method. Let ‖·‖ denote the Euclidean distance
and ‖·‖F denote the matrix Frobenius norm.

Lemma 3.2. Let ai equal the sample average of M iid WOS samples of v(zi) (defined in
Eq. (2.2)), and sh := [sh(z1), . . . , sh(zN )] for sh = Iha. Suppose that Var(v(zi)) ≤ C, for a
constant C. Then

E
[ 1
N

∥∥sh − E
[
sh
]∥∥2
]
≤ C 1

M
.

Proof. E
[
‖sh − E[sh]‖2

]
= ‖Cov(a)‖F, where Cov(a) is diagonal with entries Var(v(zi))/M .

As there are N points zi and Var(v(zi)) ≤ C, the result holds.

We combine the two estimates, to give an L2-bound in physical and probability space on
the approximation error.

Theorem 3.3. Suppose that D is a bounded polygonal domain in two dimensions. Suppose
that g : Dc → R is bounded and that∫

Dc

g(x)2

1 + ‖x‖α+d dx <∞,

and that f ∈ Cr(D) for some r > α. There exists C(α,D) > 0 such that∥∥u− sh∥∥L2(Ω,L2(D)) ≤ C(α,D)
[
h2
(∥∥g∥∥∞ +

∥∥f∥∥
Cr

)
+ 1√

M

]
,

where sh is the piecewise-linear interpolant on a shape-regular triangulation T h of D of
averages of M iid WOS samples at the vertices.

Proof. Write u− sh = (E[sh]− sh) + (u− E[sh]). The term (E[sh]− sh) is the deviation of
the interpolant sh from its mean. For linear interpolants,∥∥E[sh]− sh∥∥2

L2(Ω,L2(D)) =
∑
τ∈T h

E
[∥∥E[sh]− sh∥∥2

L2(τ)

]
≤ max

τ∈T h
Area(τ)

∥∥E[sh]− sh∥∥2
.
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The area Area(τ) of each triangle is uniformly bounded by hd, as h is the maximum edge
length of any τ . Further, [KOS17, Corollary 6.5] implies that the variance of v(zi) is bounded
uniformly over zi ∈ D. Hence, for a constant C, Lemma 3.2 implies that

∥∥E[sh]− sh∥∥2
L2(Ω,L2(D)) ≤ C h

d N

M
.

As the number of vertices N ≤ 3 Area(D)/minτ Area(τ) = O
(
1/hd

)
by the shape-regular

condition. Then, for a possibly larger constant C,

E
[∥∥E[sh]− sh∥∥2

L2(D)

]
≤ C 1

M
.

The second term u− E[sh] is described by Lemma 3.1 and∥∥u− E
[
sh
]∥∥
L2(D) ≤ C(α,D)h2

(∥∥g∥∥∞ +
∥∥f∥∥

Cr

)
.

Together the two inequalities give that, for a possibly larger constant C(α,D),

∥∥u− sh∥∥L2(Ω,L2(D)) ≤ C(α,D)
(
h2
(∥∥g∥∥∞ +

∥∥f∥∥
Cr

)
+ 1√

M

)
.

For accuracy ε, the required number of samples grows like 1/ε2. The required mesh-width
h = O(

√
ε) and the number of vertices grows like 1/hd. Hence, the required number of

vertices grows like ε−d/2 and the total work required is O(ε−(2+d/2)). Thus, even for d = 2,
the WOS method with independent samples requires O(ε−3) work.

3.2 Multilevel Monte Carlo

The multilevel Monte Carlo (MLMC) method offers a practical way to reduce computational
effort in Monte Carlo runs. The idea is to introduce nested triangular meshes with vertices
zi` for i = 1, . . . , N` on level `, and define v` ∈ L2(D) based on WOS approximations at
z1
` , . . . ,z

N`
` . Then,

E
[
v`
]

= E
[
v1
]

+
`−1∑
j=1

E
[
vj+1 − vj

]
.

We show how to choose the nested triangular meshes and coupling between samples so that the
vj+1 − vj have small variances, which allows reduced computation time for a given accuracy
level. Giles’ complexity theorem describes the relationship between the work required and
the coupling, number of samples, and errors.

Theorem 3.4 (MLMC complexity theorem). Let u ∈ L2(D) and v` be L2(D)-valued random
variables for ` = `0, `0 + 1, `0 + 2, . . . . For constants ci and a, β, γ, suppose that the following
hold for ` = `0, `0 + 1, . . . .

Consistency condition ‖E[v`]− u‖L2(D) ≤ c1 2−a`.

Coupling condition We have L2(D)-valued random variables vf
`+1 and vc

` (the super-scripts
denote fine and coarse) equal in distribution to v` that are coupled in the sense that

V` := E
[∥∥∥vf

`+1 − vc
` − E

[
vf
`+1 − vc

`

]∥∥∥2

L2(D)

]
≤ c2 2−β`.

The random variables vf
` and vc

` are independent.
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Complexity condition The cost C` of computing one level-` sample (i.e., of v1 or vc
` or

vf
`) is bounded by c3 2γ`.

For tolerance ε, choose the smallest number of levels L such that c1 2−aL ≤ ε/2 and choose
the number of samples on level ` as

M` =
⌈

2ε−2
√
C`/V`

L∑
`=`0

√
V`C`

⌉
, ` = `0, `0 + 1, . . . , L− 1.

For iid samples (vi1, v
f,i
` , v

c,i
` ) of (v1, v

f
`, v

c
`), define the level-L MLMC approximation

vML = 1
M0

M0∑
i=1

vi`0 +
L−1∑
j=`0

1
Mj

Mj∑
i=1

(vf,i
j+1 − v

c,i
j ). (3.1)

Suppose that a > 1/2 and β < γ. We achieve E
[
‖u− vML‖2L2(D)

]
≤ ε2 with O(ε−2−(γ−β)/a)

work.
Proof. It is key for this application of the complexity theorem that the quantities of interest
are Hilbert-space valued, which is described in [Gil15, Section 2.5]. We have stated the result
only for the case a > 1/2 and β < γ, which is most relevant for our application.

3.3 Nested triangulations

We set-up the triangulations for MLMC WOS sampling. Consider a polygonal domain
D ⊂ R2 and a triangulation

{
τk1
}
of D with mesh-width h. Let zj1 for j = 1, . . . , N1 denote

the vertices of the triangles. Define a refinement by dividing each triangle into four equal parts
to define a new triangulation {τk2 } and set of vertices zj2. Continue recursively to define the
vertices zj` at level ` of the shape-regular triangulations

{
τk`
}
with mesh width 21−kh. Denote

the number of vertices on level ` by N`. Let I` : RN` → L2(D) denote the piecewise-linear
interpolation operator, which sends values at vertices zj` to the piecewise-linear interpolant
on the level-` triangulation.

In the following, we will be interested in evaluating the L2(D) norm of piecewise-linear
functions. This can be done exactly by choosing a cubature rule Qτ (φ) ≈

∫
τ φ(x) dx of

degree-of-precision two on the triangle τ , and computing

∥∥φ∥∥
L2(D) =

(∑
k

Qτk
`
(φ2)

)1/2

,

which is exact for piecewise-linear functions on the level-` triangulation. In two dimensions,
a suitable Qτ is defined by

Qτ (φ) = 1
3 Area(τ)

[
φ(m1) + φ(m2) + φ(m3)

]
,

where mi are the midpoints of the edges of τ . This means, in particular, we can write, for a
piecewise-linear function φ at level-`,

∥∥φ∥∥
L2(D) =

∑
k

Area(τk` )
3∑

i,j=1
aijφ(zi)φ(zj)

1/2

, (3.2)

where zi are vertices of τk` and the coefficients aij > 0 (independent of level ` and triangle
τk` ).

To apply Theorem 3.4, we require values for a, β, γ. At each level, the number of points
increases by a factor of 2d (in dimension d) at most and γ = d. From Lemma 3.1, it is clear
that a = 2. In the next two sections, we describe precisely the coupling and give a lower
bound on the value of β, which describes the strength of the coupling.
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3.4 Coupling WOS processes

In preparation for describing the coupling in the MLMC WOS field solver, we study the
behaviour of two WOS processes xn and yn generated by the same random variables. That
is,

xn+1 = xn + d(xn) Θn
1√
βn
, yn+1 = yn + d(yn) Θn

1√
βn
, (3.3)

for independent samples Θn ∼ U(Sd−1) and βn ∼ Beta(α/2, 1−α/2). The first result describes
how the distance rn := ‖xn − yn‖ depends on n and relies on the following assumption.

Assumption 3.5. Suppose, for some λ < 1 and µ > 0, that

E
[(‖x1 − y1‖
‖x0 − y0‖

)µα
1{x1,y1∈D} |x0,y0

]
≤ λ, for all x0,y0 ∈ D,

for x1 = x0 + d(x0) Θ/
√
β and y1 = y0 + d(y0) Θ/

√
β, where β ∼ Beta(α/2, 1− α/2), and

Θ ∼ U(Sd−1).

We verify the assumption holds for a large range of α in Appendix A, by computing the
expectation numerically for B = [0, 1]2; it is seen to hold with µ = 1 for α ≤ 1 and with
µ ≈ 0.5 for α ≤ 1.8.

Lemma 3.6. Consider a domain D in two dimensions. Let xn,yn be coupled WOS processes
(as defined by Eq. (3.3)) and write ‖xn − yn‖ =: rn. If Assumption 3.5 holds for some µ ≤ 1,
there exists C > 0 such that, for n ≥ 1,

E
[
rµαn+1 1{xk,yk∈D : k=1,...,n} |x0,y0

]
≤ C λn rµα0 , x0,y0 ∈ D. (3.4)

Proof. In two dimensions, we may write

(xn+1 − yn+1) = (xn − yn) + d(xn)− d(yn)√
βn

Θ, Θ = r̂n cos θ + r̂⊥n sin θ,

for some θ ∈ (−π, π], where r̂ is the unit vector in the direction xn−yn and r̂⊥ is a unit vector
orthogonal to r̂. Note that d(x) = d(y + (x − y)) ≤ ‖y − z + (x− y)‖ ≤ d(y) + ‖x− y‖,
by choosing z ∈ ∂D such that ‖y − z‖ = d(y). Then, |d(xn)− d(yn)| ≤ rn and

rn+1 ≤ rn
((

1 + β−1/2
n cos θ

)2
+ β−1

n sin2 θ

)1/2
= rn(1 + 2β−1/2

n cos θ + β−1
n )1/2.

The pdf of the beta distribution Beta(α/2, (2− α)/2) is

p(β) = 1
B(α/2, (2− α)/2)) β

α/2−1 (1− β)−α/2

= 1
π

sin(πα/2)βα/2−1 (1− β)−α/2, β ∈ (0, 1).

The term (1 + 2β−1/2
n cos θ + β−1

n )µα/2p(βn) grows like β−µα/2n β
α/2−1
n as βn ↓ 0, and hence

E
[
(1 + 2β−1/2

n cos θ + β−1
n )µα/2

]
=∞ for µ > 1. This explains the restriction to µ ≤ 1.

For µ ≤ 1, let

C := E
[
(1 + 2β−1/2

n cos θ + β−1
n )µα/2 p(βn)

]
<∞.

Consequently,
E
[
rµαn+1 |xn,yn

]
≤ C rµαn 1{xk,yk∈D : k=1,...,n}.
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To estimate the right-hand side in terms of the initial separation r0, we use Assumption 3.5,
which provides a uniform bound on the µα-moment of rn+1/rn given xn+1,yn+1 ∈ D,
uniformly over any choice of xn,yn ∈ D with separation rn. This implies that

E
[
rµαn 1{xk,yk∈D : k=1,...,n}

]
≤ λE

[
rµαn−1 1{xk,yk∈D : k=1,...,n−1}

]
.

Iterating this, we achieve the result.

We make precise the difficulty with the case µ > 1.

Lemma 3.7. Let D be the unit ball in two dimensions. For all µ > 1 and K > 1, there
exists x0,y0 ∈ D such that

E
[
rµα1 1{x1,y1∈D}

]
≥ K rµα0 .

Proof. Again, write

(x1 − y1) = (x0 − y0) + d(x0)− d(y0)√
β0

(
r̂0 cos θ + r̂⊥0 sin θ

)
.

Choose z ∈ ∂D with inward-pointing normal n and let L be the distance from z to the far
boundary in the direction n. Choose δ > 0 and x0,y0 ∈ D with r0 = ‖x0 − y0‖ ≤ δ on
the line through z in direction n, such that d(x0) = δ and d(y0) = d(x0) + r0. By taking
θ0 > 0 small, we can choose an interval (−θ0, θ0) so all directions Θ from x0,y0 that are
angle θ ∈ (−θ0, θ0) from n are at least L/2 from the far boundary (uniformly in δ small). All
jumps from x0,y0 in the direction θ ∈ (−θ0, θ0) of length L/2 or less remain in D. When
d(x0)/

√
β0 ≤ L/2, we have β0 ∈ (2δ/L)2, 1). Then,

E
[
rµα1

]
≥ rµα0

∫ 1

(2δ/L)2

(
1 + 1

β
1/2
0

min
θ∈(−θ0,θ0)

cos θ
)µα

p(β0) dβ0.

The pdf of the beta distribution Beta(α/2, (2− α)/2) is

p(β) = 1
B(α/2, (2− α)/2)) β

α/2−1 (1− β)−α/2 = 1
π

sin(πα/2)βα/2−1 (1− β)−α/2.

Consequently, for µ > 1, ∫ 1

0
β−µα/2p(β) dβ =∞.

Hence, ∫ 1

(2δ/L)2

(
1 + 1

β
1/2
0

min
θ∈(−θ0,θ0)

cos θ
)µα

p(β0) dβ0 →∞ as δ ↓ 0.

Thus, for any K > 1, we can choose δ, r0 (and hence x0,y0) such that E
[
rµα1 1{x1,y1∈D}

]
≥

Krα0 .

Via Chebyshev‘s inequality, Assumption 3.5 implies the following bound on the probability
coupled WOS paths are separated.

Corollary 3.8. Under the assumptions of Lemma 3.6, there exists a constant C > 0 and
λ ∈ (0, 1) such that, for any x0,y0 ∈ D,

P
(
rn > ε; xk,yk ∈ D for k = 1, . . . , n− 1 |x0,y0

)
≤ C rµα0

εµα
λn.

8



Proof. As rn ≤ (1 + 1/
√
β) rn−1, the event that rn > ε given rn−1 is contained in

√
β ≤

1/(ε/rn−1 − 1) ≤ 2(rn−1/ε) for rn−1 < ε/2. The density p(β) of Beta(α/2, 1− α/2) satisfies
p(β) = O(βθ/2−1) as β ↓ 0. Hence, for some C > 0, p(β) ≤ Cβα/2−1 for β < 1/2. Hence, for
larger constant C,

P
(
β ≤ 1

(ε/rn−1 − 1)2 | rn−1

)
≤ P

(
β ≤ 4

r2
n−1
ε2
| rn−1

)
≤ C

rαn−1
εα

, if 2rn−1
ε
≤ 1

2.

This inequality also holds for rn−1 ≥ ε/2 by making sure C ≥ 2α. As µ ≤ 1, to complete the
proof, we apply Lemma 3.6.

We require the following assumption regarding the WOS process near to the boundary of
D, to control how WOS particles accumulate near the boundary. It is shown to hold for a
specific domain in Appendix A by numerically evaluating integrals. For B = [0, 1]2, it is seen
to hold for t ≈ 1 for α ≤ 0.5 and for t ≈ 0.9 for α ≤ 1.8.

Assumption 3.9. Suppose, for some λ, t ∈ (0, 1) and A > 0, that

E
[
Φ(x1) |x0

]
≤ λΦ(x0),

where
Φ(x) := 1{x∈D} max

{
A,

1
d(x)t

}
. (3.5)

The initial set of vertices has the following moment property with respect to Φ(x).

Lemma 3.10. Let zk` for i = 1, . . . , N` be the vertices of the triangulation at level-` defined
in §3.3. For the Φ in Assumption 3.9, there exists C > 0 independent of ` such that

1
N

N∑̀
k=1

Φ(zk` ) < C.

Proof. Let d̄ = sup{‖x− y‖ : x,y ∈ D} denote the diameter of D. The vertices are dis-
tributed uniformly and the proportion of the N` vertices zk` such that d(zk` ) ∈ ((j − 1)ε, jε),
for j = 1, . . . , dd̄/2εe, is less than Cε for a constant C (that depends on the geometry of D;
C = 4/d̄ when D is a ball of diameter d̄). Hence, for t ∈ (0, 1),

1
N`

N∑̀
k=1

1
d(zk` )t

≤
dd̄/2εe∑
j=1

Cε

(jε)t ≤ C
∫ d̄/2

0

1
xt
dx = C

1− t
[
x1−t

]d̄/2
0

= C

1− t

(
d̄

2

)1−t

.

3.5 Main theorem on coupling

The MLMC estimator vML defined in Eq. (3.1) is defined in terms of vc
` , v

f
`, v`0 . Key to the

success of the estimator is the coupling between the fine-level estimator vf
`+1 and coarse-level

estimator vc
` , which must be generated by the same random variables. To write this down

precisely, consider independent random variables βn ∼ Beta(α/2, 1−α/2), Θn,Φn ∼ U(Sd−1),
and Sk ∼ U([0, 1]). If xn is the WOS process starting at x0 = x generated by these inputs,
define

V (x) = g(xNx) +
Nx−1∑
k=0

F (xk), (3.6)

9



using F (xk) = F (xk;Sk,Φk) (see Eq. (2.2)). The field V is not easily evaluated as it requires
a WOS process for every x and we evaluate it only at the vertices of the triangulations. Let
V` be independent copies of V . The fields vf

`+1 and vc
` are defined as linear interpolants using

vertices of the relevant triangulation as initial data. That is,

vf
`+1 := I`+1{V`(zk`+1) : k = 1, . . . , N`+1}, vc

` := I`{V`(zk` ) : k = 1, . . . , N`}.

In this way, vf
`+1 and vc

` are given by the linear interpolant of the same copy of V , based on
vertices of the level ` + 1 or ` triangulation. Note that vf

` and vf
`+1 are independent (and

similarly for the coarse versions).
We now give the main result on coupling between vc

` and vf
`+1.

Theorem 3.11. Suppose that Assumptions 3.5 and 3.9 hold with exponents t, µ < 1.
Suppose that f and g are uniformly µα-Hölder continuous with Hölder constant L. Then,
the coupling condition holds for the MLMC complexity theorem (Theorem 3.4) with β =
min{µα, µαt/(t+ µα)}. In particular, there exists C > 0 such that

E
[∥∥∥vf

`+1 − vc
` − E

[
vf
`+1 − vc

`

]∥∥∥2
]
≤ C

[
Lhµα` + h

µtα/(t+µα)
`

]
. (3.7)

Proof. The constant C in this proof is a generic constant independent of ` and h` and changes
from line to line. Following Eq. (3.2), the key observation is that

E
[∥∥∥vf

`+1 − vc
` − E

[
vf
`+1 − vc

`

]∥∥∥2

L2(D)

]
= E

∑
k

Area(τ `+1
k )

3∑
i,j=1

aij δ(zi) δ(zj)

,
where zi are the vertices of τ `+1

k and δ = vf
`+1 − vc

` − E
[
vf
`+1 − vc

`

]
. As ab ≤ 1

2(a2 + b2), there
exists C > 0 such that

E
[∥∥∥vf

`+1 − vc
` − E

[
vf
`+1 − vc

`

]∥∥∥2

L2(D)

]
≤ C max

k
Area(τ `+1

k )E
[∑

i

δ(zi)2
]

≤ C 1
N `

E
[∑

i

δ(zi)2
]
, (3.8)

where the sum is over all vertices zi of the fine triangulation τ `+1
k . If zi is also a vertex in

the coarse triangulation τ `k, δ(zi) = 0. Otherwise, zi is the midpoint of an edge ya ↔ yb of
the coarse triangulation. Then, vc

`(zi) is defined by linear interpolation and

δ(zi) = vf
`+1(zi)− 1

2
(
vc
`(ya) + vc

`(yb)
)
− E

[
vf
`+1(zi)− 1

2
(
vc
`(ya) + vc

`(yb)
)]
.

As (a+ b)2 ≤ 2a2 + 2b2,

E
[
δ(zi)2

]
≤ E

[
(vf
`+1(zi)− 1

2
(
vc
`(ya) + vc

`(yb)
)
)2
]

≤ 1
2
(
E
[
(vf
`+1(zi)− vf

`+1(ya))2
]

+ E
[
(vf
`+1(zi)− vf

`+1(yb))2
])
. (3.9)

In the last line, we use the fact that vf
`+1 and vc

` agree on the level-` triangulation. Putting
together (3.8) and (3.9), this means we establish the result if we show, for a constant C, that,
for any zk` + r0 ∈ D,

1
N`

N∑̀
k=1

E
[(
vf
`+1(zk` )− vf

`+1(zk` + r0)
)2
]
≤ C

∥∥r0
∥∥β. (3.10)
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We start by estimating the contribution to vf
`+1 from the exterior function g, for paths

starting at x0 and y0 = x0 + r0, first ignoring the contribution from the right-hand-side term
f . At the end of the proof, we briefly discuss what changes need to made to account for a
non-zero f .

Let Nx denote the WOS exit time of a path starting from x ∈ D. Denote coupled WOS
paths by xn and yn with y0 = x0 + r0. Write

E
[(
g(xNx)− g(yNy )

)2] = E

∑
k≥1

(
g(xk)− g(yk)

)21{k=Nx=Ny}


+ E

∑
k≥1

(
g(xNx)− g(yNy

)
)2

1{k=Nx<Ny}

+ E

∑
k≥1

(
g(xNx)− g(yNy

)
)2

1{k=Ny<Nx}

.
For the first term, using the Hölder regularity of g, note that

E

∑
k≥1

(
g(xk)− g(yk)

)21{k=Nx=Ny}

 ≤∑
k≥1

E
[
(g(xk)− g(yk))21{k=Nx=Ny}

]
≤ L(2

∥∥g∥∥∞)2−µα∑
k≥1

E
[
rµαk 1{k=Nx=Ny}

]
.

By Lemma 3.6,
E
[
rµαk 1{k=Nx=Ny}

]
≤ C λk rµα0 .

Consequently,

E
[( ∑

k=Nx=Ny

(
g(xk)− g(yk)

)2)1{Nx=Ny=k}

]
≤ L (2

∥∥g∥∥∞)2−α rµα0
∑
k≥1

λk.

As λ < 1, we find a C > 0 such that

E

∑
k≥1

(
g(xk)− g(yk)

)2 1{k=Nx=Ny}

 ≤ C Lrµα0 .

It remains to consider the case where the paths exit at different times. The second and
third terms are equivalent, and we consider only∑

k≥1
E
[(
g(Nx)− g(Ny)

)21{k=Ny<Nx}
]
≤ 4

∥∥g∥∥2
∞

∑
k≥1

P
(
k = Ny < Nx).

Now,

P
(
k = Ny < Nx) = P

(
d(xk) > ε, k = Ny < Nx)+ P

(
d(xk) ≤ ε, k = Ny < Nx). (3.11)

For the first term, note that P(d(xk) > ε, k = Ny < Nx) ≤ P(rk > ε, k = Ny < Nx), so, by
Corollary 3.8,

P
(
d(xk) > ε, k = Ny < Nx) ≤ C λn rµα0

εµα
.

As λ < 1, ∑
k≥1

P
(
d(xk) > ε, k = Ny < Nx) ≤ C λ

1− λ r
µα
0

1
εµα

.

For the second term in Eq. (3.11), use Assumption 3.9, to see that

E
[
Φ(x1) |x0

]
≤ λΦ(x0), x0 ∈ D.

11



Iterating, we have
E
[
Φ(xn) 1{x1,...,xn∈D} |x0

]
≤ λn Φ(x0). (3.12)

Hence, ∑
n≥1

E
[
Φ(xn)1{x1,...,xn∈D} |x0

]
<

1
1− λ Φ(x0).

Note that Φ(x) ≥ 1/d(x)t if d(x)t ≤ 1/A. Hence P(d(xn) < ε) ≤ C εt E[Φ(xn)] for a constant
C. Hence, ∑

k≥1
P
(
d(xk) ≤ ε, Nx ≥ k

)
≤ C εt Φ(x0).

To match the two probabilities and choose ε in terms of r0, put rµα0 /εµα = εt so that
ε = r

µα/(t+µα)
0 . Thus,∑

k≥1
E
[(
g(Nx)− g(Ny)

)21{Nx>Ny=k}
]
≤ C rµ tα/(t+µα)

0 Φ(x0).

Then, adding the contributions for all terms, we conclude that

E
[(
g(xNx)− g(yNy )

)2] ≤ C(Lrµα0 +
∥∥g∥∥2
∞ r

µ tα/(t+µα)
0 Φ(x0)

)
. (3.13)

By Lemma 3.10, 1
N`

∑N
k=1 Φ(zk` ) is less than a C independent of `. This implies (3.10), as we

can average over initial vertices x0 = zk` for k = 1, . . . , N`. Hence, in the case f = 0,∥∥∥vf
`+1 − vc

` − E
[
vf
`+1 − vc

`

]∥∥∥
L2(D)

≤ C
(
Lrµα0 +

∥∥g∥∥2
∞ r

µtα/(t+µα)
0

)
.

We now discuss extending the argument to f 6= 0. As f is µα-Hölder continuous, from
§2.1, we see that F is µα-Hölder continuous. Now,

I1 := E

∑
k≥0

(F (xk)− F (yk))1{k<min{Nx,Ny}}

2
≤ E

 ∞∑
k=1

1{k=min{Nx,Ny}}

k−1∑
j=0

(F (xj)− F (yj))

2
≤ E

 ∞∑
k=1

1{k=min{Nx,Ny}}

k−1∑
j=0

L (2
∥∥F∥∥∞)2−µα rµα0 λj


≤ L (2

∥∥F∥∥∞)2−µα rµα0
1

1− λ.

Hence, for a constant C,
I1 ≤ C Lrµα0 . (3.14)

Similarly,

E

 ∑
Ny≤k<Nx

F (xk)

2 ≤ C ∥∥F∥∥2
∞ r

tµα/(t+µα)
0 Φ(x0). (3.15)

To put everything together, recall that

v(x) = g(xNx) +
Nx−1∑
k=0

F (xk).

12



x

−1.0 −0.5 0.0 0.5 1.0

y
−1.0
−0.5

0.0
0.5

1.0

×
1
0
−

1

0

2

4

6

x

−1.0 −0.5 0.0 0.5 1.0

y
−1.0
−0.5

0.0
0.5

1.0

×
1
0
−

3

0.0

0.5

1.0

Figure 1: The upper plot shows the solution u(x) defined Example 3.13 for α = 1. The lower
plot shows the absolute errors, for the computation with parameters with ε = 1e− 3, `0 = 5,
L = 7. On the finest level, h = 6.1× 10−5.

Hence,

∣∣∣vf
`+1(x)− vf

`+1(y)
∣∣∣ ≤ ∣∣g(xNx)− g(yNy )

∣∣+ min{Nx,Ny}−1∑
k=0

∣∣F (xk)− F (yk)
∣∣

+
Ny−1∑
k=Nx

∣∣F (yk)
∣∣+ Nx−1∑

k=Ny

∣∣F (xk)
∣∣.

The required bound (3.10) follows from (3.12–3.15).

We now summarise the implications of the MLMC complexity theorem. We have designed
an MLMC algorithm for solving the exterior-value problem for the fractional Laplacian with
the following complexity.

Corollary 3.12. Let the assumptions of Theorem 3.11 hold. Consider vML ∈ L2(D) defined
by Eq. (3.1) as an approximation to the solution of u of Eq. (1.1). By choosing the number of
samples M` and number of levels L as in Theorem 3.4, we achieve ‖vML − u‖L2(Ω,L2(D)) ≤ ε
with O(ε−3+β/2) cost, where β = min{α, tµα/(t+ µα)}.

Proof. This is a consequence of Theorem 3.4 given values for a, β, γ. We have a = 2 from
Lemma 3.1 and γ = 2 (due to the 2d-factor increase in vertices with each level). For the
coupling rate β, we have Theorem 3.11.

This compares favourably to vanilla Monte Carlo, which has complexity ε−3, reducing
the computational cost by a factor εβ/2.

3.6 Numerical experiments

We perform numerical experiments for D = B(0, 1). Define the triangulation
{
τk1
}
of the

square [−1, 1]2 consisting of the four triangles given by drawing diagonals. Let
{
τk`
}
be the

13
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Figure 2: The upper plot shows the solution u(x) of the problem in Example 3.14 for
α = 1. The lower plot shows the absolute errors, for the computation with parameters with
tol = 1e− 2, `0 = 5, and L = 7. On the finest level, h = 6.1× 10−5.

level-` triangulation given by recursively dividing triangles into four (using midpoints of
edges). We apply WOS to the vertices within the unit ball D = B(0, 1) and define vML via
multilevel Monte Carlo (see Eq. (3.1)), using piecewise-linear interpolants of sample averages
to define v` on the triangulation

{
τk`
}
. The parameters for this algorithm are the coursest

level `0, the finest level L, and the tolerance ε. As test cases, we recall two examples on the
unit ball where exact solutions are known (e.g., [Buc15]).

Example 3.13. The problem with constant right-hand side and zero exterior condition on
the unit ball,

(−∆u)α/2u = 1 on D = B(0, 1), u = 0 on Dc,

has exact solution

u(x) = Γ(1− α/2)
2αΓ(1 + α/2)(α/2)B(α/2, 1− α/2)(1−

∥∥x∥∥2)α/2, x ∈ B(0, 1).

The solution gives the mean first-exit time for an α-stable Levy process from B(0, 1). It is
plotted in Figure 1 for α = 1, along with the error from the WOS approximation with `0 = 5,
L = 7, and ε = 1e− 3.

Example 3.14. The problem

(−∆u)α/2u = f on D = B(0, 1), u = 0 on Dc,

for f(x) = (1− (1 + α/2) ‖x‖2), 2α Γ(2 + α/2) Γ(1 + α/2) has exact solution

u(x) = (1−
∥∥x∥∥2)1+α/2. (3.16)

For α = 1, the solution is plotted in Figure 2 along with the error for ε = 10−2, `0 = 5, and
L = 7.
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Figure 3: The solution u(x) from Example 3.15 for α = 1.

The third example has less regular coefficients and there is no explicit exact solution.

Example 3.15. Let
g(x) = sin(

∥∥x∥∥2), f(x) = 2 +
∥∥x∥∥2

.

The numerical solution of Eq. (1.1) for α = 1 with D = B(0, 1) is shown in Figure 3.

Variance decay rates We compute the variance decay rates for the coupling numerically,
and calculate the variance at level ` defined by

V` = E
[∥∥∥vf

`+1 − vc
` − E

[
vf
`+1

]
− E

[
vc
`

]∥∥∥2

L2(D)

]
.

Figure 4 shows the variance V` against the mesh-width h` and indicates decay rates β ≈ 1
for Example 3.13 independent of α, and rates β = [0.25, 0.47, 0.67] for Example 3.14 for
α = [0.5, 1.0, 1.5]. Assuming t = µ = 1, the theoretical rate is β ≈ α/(1 + α), which yields
β ≈ [0.33, 0.5, 0.6]. The rate is a good prediction in Example 3.15. For Example 3.13, the
right-hand side is constant and the exterior condition is zero, which is a much simpler scenario.
Due to the constant right-hand side, zero coupling-error results on the interior and improved
performance can be expected, as found with the variance coupling rates of β ≈ 1.

As a demonstration of the relative efficiency of multilevel Monte Carlo and vanilla Monte
Carlo methods, Figure 5 shows a plot of CPU time against tolerance. Multilevel Monte Carlo
is clearly more efficient.

We can also compare the computed solution to the exact u ∈ L2(D) by computing an
approximate L2(D) norm of the error. Table 1 shows errors for Examples 3.13 and 3.14 for
seven values of α and the computational time for a tolerance 10−2. Good accuracy results,
especially for larger values of α, and all results are computed in less than a minute on a
quad-core 3.2Ghz i5-6500 CPU with 8GB RAM (three cores are used in parallel for the
WOS samples). Small values of α give poorer results. This is to be expected, due the sharp
gradient near the border (see Eq. (3.16)), which is explained by a larger constant C(α,D) in
Theorem 3.3.

4 Leading eigenvalue using the Arnoldi algorithm
The Arnoldi algorithm is a well-known iterative method for computing the leading eigenvalues
of a large sparse matrix, based on projecting the matrix onto a Krylov subspace. See [Arn51,
TB97, CBS03, Saa11]. We show how to use Arnoldi to compute the smallest eigenvalue of
the fractional Laplacian. That is, we seek the smallest λ > 0 such that

(−∆)α/2w = λw on D, w = 0 on Dc
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Figure 5: CPU execution time against tolerance ε for the multilevel Monte Carlo and vanilla
(i.e., `0 = L) Monte Carlo methods, based on Example 3.14. The multilevel parameter `0 = 6
and ε = 2−2L, where L is varied.

Example 3.13
α rel error abs err cpu time

0.1 0.079 0.13 1.9
0.2 0.064 0.10 2.8
0.5 0.034 0.051 3.6
1.0 0.014 0.018 5.9
1.5 0.008 0.0090 17.0
1.8 0.00081 0.0085 36.6
1.9 0.0062 0.0065 60.0

Example 3.14
α rel error abs err cpu time

0.1 0.0093 0.0093 17.9
0.2 0.0057 0.0056 1.60
0.5 0.0057 0.0054 2.54
1.0 0.0058 0.0052 8.73
1.5 0.0090 0.0075 17.79
1.8 0.0084 0.0068 40.47
1.9 0.0085 0.0068 68.37

Table 1: Computed L2(D) relative and absolute errors and CPU execution time in seconds
for a range of α.

16



for some non-trivial function w : Rd → R. The first step is to discretise the fractional
Laplacian and express the problem for a finite-dimensional linear operator. To do this, we
consider a triangular mesh T with vertices z1, . . . ,zN . We consider v ∈ RN corresponding to
values of a function at vertices of the mesh and the solution operator for Eq. (1.1) with g = 0
and f = Ihv, the piecewise-linear interpolant for v on the mesh T . That is, for v ∈ RN , let
u : D → R be the solution to (−∆)α/2u = f on D, where f = Ihv, and u = 0 on Dc. Then,
we denote by A−1 the linear mapping from v ∈ RN to u = [u(z1), . . . , v(zN )] ∈ RN . By
applying the Arnoldi algorithm to A−1, we find the largest eigenvalue of A−1 and hence the
smallest eigenvalue of A, which is the fractional Laplacian approximated on T . We use this
as our approximation to the smallest eigenvalue of the fractional Laplacian.

In practice, evaluating A−1v = u exactly is impossible and we will be using the WOS
algorithm. This means we will be using the Arnoldi algorithm with inexact solves and
exploiting the theory for variable-accuracy Arnoldi algorithms started by [BF00, Sim05]
and developed further in [BMGS06, FS10]. It turns out that the accuracy of the solves can
be reduced as the Arnoldi algorithm proceeds, without loosing accuracy on the computed
eigenvalue. This leads to significant speed ups. We develop the appropriate variable accuracy
criterion for the WOS solve, by establishing a criterion on the variance of the WOS solution
necessary for a certain confidence interval in the computed eigenvalue.

We now describe the algorithm. Throughout, ‖·‖ denotes the Euclidean norm.

Inexact Arnoldi iteration To determine the smallest eigenvalue of the fractional
Laplacian (−∆)α/2 on a domain D, choose a triangulation T of the domain with N vertices
and consider N -vectors of values at the vertices.

Algorithm 4.1. 1. Choose initial unit-vector v1 ∈ RN . Set k = 1.

2. Evaluate A−1vk = u+ fk, where fk is the error resulting from the WOS solve.

3. Gram–Schmidt: for i = 1, . . . , k, let hik := vT
i u and compute ũ := u−

∑k
i=1 hikvi, to

produce ũ ∈ RN orthogonal to the current Krylov space, given by span{v1, . . . ,vk}, and
coefficients hik for i = 1, . . . , k. Let hk+1,k := ‖ũ‖ and add the vector vk+1 := ũ/hk+1,k
to the Krylov space. Let Vk be the matrix with columns v1, . . . ,vk.

4. Compute eigenvectors wj and eigenvalues θj (known as Ritz values) for the leading
k × k submatrix Hk of the upper Hessenberg matrix (hij). The largest eigenpair (w, θ)
defines an approximate eigenvector for A−1 by Vkw and approximate eigenvalue θ−1.

5. Increase k and repeat.

For finite-dimensional problems with exact solves (fk = 0 for all k), the algorithm is
expected to converge as k →∞ to the leading eigenpair of A−1. In our case, the algorithm
introduces errors at several stages: First, we represent the WOS solutions on a triangular
mesh and the WOS algorithm must evaluate the right-hand side function everywhere on the
domain D. We use a piecewise-linear interpolant and this leads to an approximation error.
Additionally, there is a Monte Carlo error on u due to the finite number of samples. We
assume the error due to linear interpolation is negligible compared to Monte Carlo error; as
the size of this error is quadratic in the mesh width h`, this can be achieved by choosing the
triangulation fine enough. For the Monte Carlo error, we develop a theory for the resulting
error in the computed eigenvalue and a practical criteria for the tolerance for the WOS solve.
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4.1 Choosing the WOS tolerance

To analyse the error due to the WOS solve at step k, we write

A−1vk = u+ fk =
k∑
i=1

hikvk + hk+1,kvk+1 + fk,

where fk represents the error due to the kth WOS solve. The right-hand side is given by the
representation of u in the Krylov subspace (using the entries in the Hessenberg matrix Hk).
We determine a criterion for relating the accuracy in the WOS solve (the size of fk) in terms
of the desired eigenvalue accuracy. Stacking the expressions above, we have the well-known
Arnoldi relation

A−1Vm = VmHm + vm+1hm+1e
T
m + Fm,

where em is the mth standard basis vector in RN and Fm is the matrix of column vectors
[f1, . . . ,fm].

In the case of zero error fk = 0 for k = 1, . . . ,m, the size of the eigenvalue residual
rm = A−1Vmw − θ−1Vmw is given by ‖rm‖ = hm+1,m|wTem|, which follows easily from the
Arnoldi relation

A−1Vm = VmHm + vm+1hm+1e
T
m

by taking the inner product with the eigenvector w of Hm. For the case of inexact solves,
the residual itself is not readily available and the quantity ‖rm‖ := hm+1,m|wTem| serves as
a computationally convenient proxy.

For the next theorem, we will need the following non-degeneracy assumption [Sim05,
(3.3)–(3.4)]. The notation σmin(A) refers to the smallest singular value of A.

Assumption 4.2. For k ≤ m, there exists an eigenpair (θ(k−1),w(k−1)) of Hk−1 sufficiently
close to an eigenpair (θ,w) of Hm in the sense that

∥∥rk−1
∥∥ ≤ δ2

m,k−1
1

4‖sm‖
, δm,k := σmin(Hm − θ(k)I),

where sT
m := [(w(k−1))T,0T]Hm − θ(k−1)[(w(k−1))T,0T] ∈ Rm, and∣∣∣θ(k−1) − θj

∣∣∣ > 2‖sm‖ ‖rk−1‖
δm,k−1

, for all eigenvalues θj 6= θ of Hm.

In the following theorem, we develop the accuracy criterion for the WOS solves. We use
the spectral gap δ(k−1) for Hk−1: let Λ(Hk) denote the set of eigenvalues of Hk and

δ(k−1) := min
θ∈Λ(Hk−1)−θ(k−1)

∣∣∣θ(k−1) − θ
∣∣∣, (4.1)

where θ(k−1) is the leading eigenvalue of Hk−1. The quantity depends on the spectrum of
Hk−1, which is easily computable as k is generally small. We also use the σ-algebra Fm
generated by the random variables used in the WOS solves up to step m, so that the residual
rm is Fm-measurable. We will use the conditional expectation E[· | Fk] to average over input
random variables (WOS samples from the field solves) for m > k.

Theorem 4.3. Let (θ,w) be an eigenpair of the mth Hessenberg matrix Hm of an inexact
Arnoldi iteration as described in Algorithm 4.1 such that∥∥rm∥∥ := hm+1,m

∣∣∣eT
mw

∣∣∣ ≤ tol. (4.2)
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Suppose that the eigenvalue θ is simple and the eigenvector is normalised, ‖w‖ = 1. Fix
ε > 0 and suppose that the WOS error vector fk at step k satisfies

(
E
[∥∥fk∥∥2 |Fk−1

])1/2
≤ ε

m
×


δ(k−1)

‖rk−1‖
, if k > 1 and Assumption 4.2 holds,

1, otherwise.

Then, Vmw is an approximate eigenvector of A with eigenvalue θ−1, in the sense that

P
(∥∥A−1Vmw − θ−1Vmw

∥∥ > 2 tol
)
≤ ε2

tol2
E
[ 1
m

∥∥α∥∥2
]
, (4.3)

where α has entries αk satisfying

∣∣αk∣∣ ≤ 2 δ(k−1)

δm,k−1
if Assumption 4.2 holds, αk = 1 otherwise. (4.4)

In particular, there exists an eigenvalue µ of A such that

P
(∣∣µ−1 − θ−1∣∣ > 2 tol

)
≤ ε2

tol2
E
[ 1
m

∥∥α∥∥2
]
.

Proof. For inexact solves, the Arnoldi relationship is

A−1Vm − Fm = VmHm + hm+1,mvm+1e
T
m,

where the columns of Fm are f1, . . . ,fm. If (θ,w) is an eigenpair of Hm, then

A−1Vmw − Fmw = θ Vmw + hm+1,mvm+1(eT
mw).

Hence, the eigenvalue residual∥∥A−1Vmw − θVmw
∥∥ = hm+1,m

∣∣∣eT
mw

∣∣∣+ ∥∥Fmw∥∥. (4.5)

The first residual corresponds to (4.2) and is monitored during the Arnoldi iteration. The
second term, we refer to as the extra residual, is due to the inexact solves and we analyse
that now. Following [Sim05], it can be written as

Fmw =
m∑
k=1

fk(eT
kw) =

m∑
k=1

fk‖rk−1‖
δ(k−1) (eT

kw) δ
(k−1)

‖rk−1‖
,

where δ(k−1) is the spectral gap defined in Eq. (4.1). Write,

Fmw =
m∑
k=1

αk βk−1 fk,

for βk−1 = ‖rk−1‖/δ(k−1) and αk = ‖rk−1‖−1(eT
kw) δ(k−1) if Assumption 4.2 holds, and

βk−1 = αk = 1 otherwise. Here the subscripts for αk and βk indicate that they are Fk-
measurable. The Cauchy–Schwarz inequality provides that

E
[∥∥Fmw∥∥2] ≤ E

[
m∑
k=1

mβ2
k−1

∥∥fk∥∥2
]
E
[

1
m

m∑
k=1

α2
k

]
.
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By Chebyshev’s inequality,

P
(∥∥Fmw∥∥ > tol

)
≤ 1

tol2

∥∥∥∥∥
m∑
k=1

mE
[
β2
k−1

∥∥fk∥∥2]∥∥∥∥∥E
[

1
m

m∑
k=1

α2
k

]
.

If Assumption 4.2 holds, the condition on the WOS error fk implies that

E
[∥∥fk∥∥2 | Fk−1

]
≤ (ε δ(k−1))2

(m ‖rk−1‖)2 = ε2

mβ2
k−1

.

Otherwise, E
[
‖fk‖

2 | Fk−1
]
≤ ε2/m2. Hence,

P
(∥∥Fmw∥∥ > tol

)
≤ ε2

tol2
E
[ 1
m

∥∥α∥∥2
]
.

Using Eq. (4.5), this implies (4.3) under the condition (4.2).
Under Assumption 4.2, [Sim05, Proposition 2.2] implies that∣∣∣eT

kw
∣∣∣ ≤ 2‖rk−1‖

δm,k−1
.

Here, it is important to note that δm,k−1 is not Fk-measurable in general and depends on the
full Arnoldi run. Then, ∣∣αk∣∣ ≤ 2 δ

(k−1)

δm,k−1
,

which is (4.4). The final statement is a consequence of the Bauer–Fike theorem for normal
matrices [GVL13], which says that the error in the eigenvalue is bounded by the eigenvalue
residual.

This theorem suggests a practical way of choosing the WOS tolerance at step k in
dependence on a given eigenvalue-residual tolerance tol, parameter ε, and computed residual
‖rk‖. For B > 1, to achieve

P
(
eigenvalue residual > 2 tol

)
≤ 1
B2 ,

we assume that E
[

1
m‖α‖

2
]
≈ 1, and choose ε = tol/B for B > 1. Then,

P
(
eigenvalue residual > 2 tol

)
≤ ε2

tol2
E
[ 1
m

∥∥α∥∥2
]
≤ 1
B2 .

For the kth WOS solve, from Theorem 4.3, we demand that

(
E
[∥∥fk∥∥2|Fk−1

])1/2
≤ 1
Bm

tol δ
(k−1)

‖rk−1‖
.

This leads to a relaxed accuracy condition for the WOS calculation if the computed eigenvalue
residual ‖rk−1‖ is smaller than the spectral gap δ(k−1). It is simple to implement and requires
computing the spectrum of the k×k Hessenberg matrix Hk at each step (to determine δ(k−1))
and monitoring the variance in the WOS Monte Carlo calculation.
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Dyda eigenvalue Arnoldi error relative
α lower bound upper bound eigenvalue residual seconds to upper bound

0.1 1.04874 1.05096 1.05187 0.0672 885 8× 10−4

0.2 1.10549 1.10993 1.11103 0.0896 933 9× 10−4

0.5 1.3313 1.34374 1.34464 0.8147 838 6× 10−4

1.0 1.96349 2.00612 2.00689 0.095 907 3× 10−4

1.5 3.13569 3.27594 3.27789 0.017 1008 5× 10−4

1.8 4.28394 4.56719 4.57029 0.014 1268 6× 10−4

1.9 4.77496 5.13213 5.13936 0.00075 1711 1× 10−3

Table 2: [Dyd12] provides the lower and upper bounds on the smallest eigenvalue of the
fractional Laplacian on B(0, 1) shown. These are compared to the result of an Arnoldi
computation with five iterations and the variable accuracy methods described.
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Figure 6: Comparison of run times with (solid) and without (dashed) variable accuracy, using
tol = 1e− 2, L = 7, `0 = 5, B = 3. The left-hand plot shows run times in seconds against
α. The right-hand plot show the relative accuracy (relative to the upper bound of Dyda’s
interval).

4.2 Leading eigenvalue on the unit ball

Dyda [Dyd12] provides upper and lower bounds on the leading eigenvalue for the fractional
Laplacian on the unit ball, gained by rigorous analytical methods. We compare this to the
eigenvalues computed by Algorithm 4.1. Table 2 shows the results of a computation with
tol = 0.01, B = 3, and WOS multilevel parameters `0 = 3, and L = 7 with five Arnoldi
iterations. The Arnoldi iteration produces estimates that are very close to Dyda’s upper
bound (the error relative to the upper bound are in the range 3 × 10−4 to 10−3). The
computations take between take fifteen and thirty minutes for a Julia implementation on a
quad-core 3.2Ghz i5-6500 CPU with 8GB RAM (three cores are used in parallel for the WOS
samples). The run times are compared in Figure 6 to the Arnoldi algorithm without variable
accuracy, taking the same tolerance in both runs. The variable accuracy algorithm is twice
as fast, for the same level of accuracy.

5 Conclusion
We have discussed Walk Outside Spheres for simulating the whole field rather than a point
value of the solution u : D → R of Eq. (1.1), extending the algorithm of [KOS17]. By using
the multilevel Monte Carlo algorithm, we improved substantially on a naive method based
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on independent sampling at vertices. The improvement is demonstrated analytically (an
improvement in the complexity for accuracy ε of factor εβ where β ≥ min{α, tµα/(t+ µα)}.
The parameters µ, t lie in the range (0, 1) and are generally unknown; numerical examination
of the relevant assumptions shows that t can be chosen close to one and µ depends on α
(µ may be chosen close to one for small α and must be reduced substantially as α → 2).
The improvement is also demonstrated numerically, by looking at two problems with exact
solutions and a third problem where variance estimates were made. Numerical experiments
show the complexity bounds are pessimistic, even for t = µ = 1. This is because the
assumptions and analysis are based on a pair of coupled WOS processes, while the L2(D)
error depends on an average over a WOS path for each initial vertex.

There are several deterministic approaches to the numerical approximation of the exterior-
value problem for the fractional Laplacian [LPG+18]. We compare our results to the
complexity and error analysis for the adaptive finite-element method (AFEM) of [AG17, ?].
By using a posterioi error estimates and sparse approximations to the dense linear systems
resulting from the global coupling in the fractional Laplacian, it converges in the L2(D)
sense in two dimensions with O(n−1/2−α/4), where n is the number of degrees of freedom.
Due to the use of a clustering technique in assembly of the linear system, the solution can
be computed in O

(
n log4(n)

)
operations. In terms of an L2(D) accuracy of ε, this method

requires O(ε−2+2α/(2+α)−δ) operations on a polygonal domain in two dimensions (for any
δ > 0). In contrast, the WOS field method on a uniform mesh takes O(ε−3+β/2) operations
to achieve a root-mean-square L2(D) accuracy of ε, where β is given in Corollary 3.12.

Though AFEM is one order of magnitude faster, the field WOS method has significant
potential. First, the WOS method is trivial to parallelise and this means the constant
associated to the complexity analysis can be made small, given sufficient parallel resources.
This can be very significant in practical situations. Second, the WOS method developed here
is a classical Monte Carlo method, depending on a sequence of independent samples from
certain probability distributions. The complexity of such methods depends on the 1/

√
M

sampling error from M independent samples, even for multilevel Monte Carlo methods. Very
often, the complexity is substantially improved by employing quasi-Monte Carlo techniques.
In situations where the sample depends on an infinite number of random variables and the
importance of these random variables decays suitably rapidly, the O(1/

√
M) error can be

replaced by O(1/M1−δ), for δ > 0 [HW00, GKN+11]. This sort of analysis has not been
completed for the field WOS method and is beyond the scope of the present paper. It is
worth noting that each L2(D) sample depends on a finite but unbounded number of random
variables (depending on the number of steps for the WOS path to exit the domain), but only
one set of random variables is used for each vertex in the mesh (due to coupling) and the
importance of these random variables decays geometrically (as the exit time is geometrically
distributed [KOS17]). It will be a subject of future research to develop a quasi-Monte Carlo-
based field-WOS method with improved complexity. If the 1/

√
M is replaced by 1/M in

the complexity analysis, the overall complexity improves by a factor ε. There is a potential
also to improve the method by using an adaptive mesh. At this point, the method becomes
competitive with AFEM. If these issues can be overcome, a larger class of particle methods
for solving PDEs can be coupled in the same way to give efficient field solvers.

Finally, we used the WOS algorithm to compute the leading eigenvalue of the fractional
Laplacian. We developed a criterion for accuracy at the kth Arnoldi iteration based on the
spectral gap of the Hessenberg matrix and the residual. The method is shown to give accurate
results by comparing to analytical results of [Dyd12]. This algorithm can be developed further
to get more leading eigenvalues and to incorporate the implicitly restarted Arnoldi method.
Note the shift strategy (i.e., solving for (A− sI)x = b for a shift value s) commonly used in
eigenvalue solvers is not easy to apply with WOS; the implicitly restarted Arnoldi algorithm
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Figure 7: The maximum of maxj=1,...,20 I2(xj0,y
j
0) based on computing the expectation with

106 samples, for µ = 0.5, 0.9, 1.0.

allows shifts to be introduced implicitly and only solves for the fractional Laplacian are
required. Here again variable accuracy strategies are available [FS10] and could be adapted
to the randomly inexact inner solves. This is the subject of future work.

A On Assumptions 3.5 and 3.9
We verify that Assumptions 3.5 and 3.9 are realistic, by computing the relevant quantities
numerically for a square domain. For some t, λ, µ ∈ (0, 1) and A > 0, we wish to establish
that

I1(x0) := E
[Φ(x1)

Φ(x0) 1{x1∈D} |x0

]
≤ λ, Φ(x) := max

{
A,

1
d(x)t

}
and

I2(x0,y0) := E
[(‖x1 − y1‖
‖x0 − y0‖

)µα
1{x1,y1∈D}

]
≤ λ, for all x0,y0 ∈ D.

If we replace A by A/d̄t for the diameter d̄ of D, it is clear both conditions are invariant
to rescaling the domain. Hence, we focus on a box D = [0, 1] × [0, 1]. We compute the
values by a simple Monte Carlo method using x1 = x0 + Θ d(x0)/

√
β, for Θ ∼ U(S1) and

β ∼ Beta(α/2, 1− α/2).
The expression for I2 involves one parameter µ but must be checked for every pair of

x0,y0 ∈ D. We draw twenty xj0,y
j
0 independently from U(D) and evaluate I2(xj0,y

j
0) using

106 samples of x1,y1 and record the maximum value. We show a plot of maxj I2(xj0,y
j
0)

against α for µ = 1, 0.9, 0.5 in Figure 7. The condition I2(x0,y0) ≤ λ < 1 is satisfied with
µ = 1 for α small. For larger values of α, µ must be reduced; for example, for α = 1, µ must
be reduced to µ ≈ 0.5.

The expression for I1 involves two parameters A, t, and we expect the appropriate choice
of t to depend on α and for A→∞ as t→ 1. Again, we evaluate I1(x0) based on 106 samples
and Table 3 shows the result of maxj I1(xj0) for different choice of A and t. By choice of A,
we can always achieve maxj I1(xj0) ≤ λ < 1 for t = 0.9.
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