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GAUSS-QUADRATURE METHOD FOR ONE-DIMENSIONAL
MEAN-FIELD SDEs∗

PETER KLOEDEN† AND TONY SHARDLOW‡

Abstract. Mean-field SDEs, also known as McKean–Vlasov equations, are stochastic differential
equations where the drift and diffusion depend on the current distribution in addition to the current
position. We describe an efficient numerical method for approximating the distribution at time t of
the solution to the initial-value problem for one-dimensional mean-field SDEs. The idea is to time
march (e.g., using the Euler–Maruyama time-stepping method) an m-point Gauss-quadrature rule.
With suitable regularity conditions, convergence with first order is proved for Euler–Maruyama time
stepping. We also estimate the work needed to achieve a given accuracy in terms of the smoothness of
the underlying problem. Numerical experiments are given, which show the effectiveness of this method
as well as two second-order time-stepping methods. The methods are also effective for ordinary SDEs
in one dimension, as we demonstrate by comparison with the multilevel Monte Carlo method.
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1. Introduction. McKean–Vlasov or mean-field SDEs are a class of stochastic
differential equations where the drift and diffusion depend on the current position along
the path and on the current distribution. They were derived to describe propagation
of chaos in a system of particles that interact only by their empirical mean in the limit
of large number of particles [20]. We study mean-field SDEs in one dimension and
are interested in the following initial-value problem: determine the real-valued process
Xµ(t), t > 0, such that

(1) Xµ(t)−Xµ(0) =
∫ t

0

∫
R
a(Xµ(s), y)Pµs (dy) ds+

∫ t

0

∫
R
b(Xµ(s), y)Pµs (dy) dW (s),

where Pµs denotes the distribution of Xµ(s) and the initial distribution Xµ(0) ∼ µ
for some prescribed probability measure µ. Here, a : R2 → R is the drift, b : R2 → R
is the diffusion, W (t) is a one-dimensional Brownian motion (independent of Xµ(0)),
and we interpret the stochastic integral as an Ito integral. We also write this as

dXµ(t) = Pµt (a(Xµ(t), ·)) dt+ Pµt (b(Xµ(t), ·)) dW (t), Xµ(0) ∼ µ,

where ν(φ) :=
∫

R φ(x) ν(dx) for an integrable function φ : R→ R and a measure ν on R.
Under the following condition, (1) has a unique strong solution with a smooth density
[2, Theorem 2.1]. (Though (1) is well-posed more generally [9, 25, 16], Assumption 1.1
is close to the ones in our error analysis.)
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Assumption 1.1. Suppose that pth moments of the initial distribution µ are finite
for all p ≥ 1 and that the coefficients a and b are smooth with all derivatives uniformly
bounded.

Several numerical methods have been proposed for (1) and their convergence be-
havior analyzed. Early work includes [6, 5], which show convergence of a method based
on Monte Carlo evaluation of the averages and Euler–Maruyama time stepping. The
same method was studied using Malliavin calculus in [2] and more refined convergence
results proved. More recently, [23] has developed the multilevel Monte Carlo method
in cases where the drift and diffusion depend on the distribution via the mean of a
function of Xµ(t). Cubature methods have also been developed in [21].

We are interested in numerical approximation of the distribution of Xµ(tn) by a
probability measure Qn, where tn = n∆t for a time step ∆t > 0. Consider a one-step
numerical method that pushes forward the measure Qn to Qn+1. For an example, let

(2) Ψ(x,∆t, Q) := x+ ∆tQ(a(x, ·)) +
√

∆tQ(b(x, ·)) ξ,

for ξ ∼ N(0, 1) or a random variable with a nearby distribution, such as the two-point
random variable with P(ξ = ±1) = 1/2. For the Euler–Maruyama method, Qn+1 is the
distribution of Xn+1 = Ψ(Xn,∆t, Qn), assuming ξ is independent of Xn and X0 ∼ µ.
In the case that a, b are independent of their second argument,

Xn+1 = Xn + ∆t a(Xn) +
√

∆t b(Xn) ξn,

where ξn are iid copies of ξ, which is the standard Euler–Maruyama method. For
ordinary SDEs, it is well-known that first-order weak convergence results if a, b and
the test function φ : R→ R are sufficiently smooth [17]:

E
[
φ(Xµ(1))

]
− E

[
φ(XN )

]
= Pµ1 (φ)−QN (φ) = O

(
∆t
)
, tN = 1.

This method is of limited practical value for approximating Pµt (φ). The support
of QN is uncountable if Gaussian random variables ξ are used or otherwise countable
but very large in number, and the expectation QN (φ) is usually approximated via a
Monte Carlo method that samples from QN . For the mean-field SDE, this is more
problematic, as all the particles must be tracked at the same time as Qn(a(Xn, ·)) and
Qn(b(Xn, ·)) must be evaluated at each time step.

In this paper, we explore an alternative to Monte Carlo integration and employ
instead Gauss quadrature, which provides accurate quadrature rules that converge
rapidly in the number of quadrature points, under smoothness criterion on the integrand.
The idea then is to replace Qn by an mn-point Gauss quadrature and thereby reduce
the number of points that we follow with the time stepping. That is, we propagate
weights win and quadrature points xin of an mn-point rule Qn, and approximate

Pµ1 (φ) ≈ QN (φ) :=
mN∑
i=1

wiN φ(xiN ), tN = 1.

We derive a choice of mn in section 4 that gives first-order convergence for smooth
problems. The computation of the Gauss-quadrature rules is very efficient using
standard algorithms [12, 10, 4]. This leads to numerical methods for mean-field SDEs
that are very efficient and we find methods that require O

(
|log ε|3/ε

)
work to achieve

accuracy ε for mean-field SDEs with smooth coefficients and initial distributions (see
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Theorem 5.3). This compares favorably with the O(1/ε2) work required for multilevel
Monte Carlo methods, as we see in section 6.1.

Mean-field SDEs arise as reduced-order models for systems of interacting particles.
The drift and diffusion are defined in terms of the distribution of X(t), so that moments
of X(t) can be included in their definition. In other words, the interaction with the
ensemble of particles is approximated by moments and mean-field SDEs, including
one-dimensional mean-field SDEs, are of interest in studying high-dimensional systems.
The techniques in this paper apply to mean-field SDEs in one spatial dimension, as
Gauss quadrature is most natural for integrals over the real line, where algorithms
are readily available to compute the quadrature rule. In principle, the methods and
theory extend to higher dimensions, though it would be difficult to compute a suitable
cubature rule. It would require a cubature rule that can be easily computed and
satisfies Gauss-quadrature–type error estimates (see Theorem 2.2). These are currently
unavailable (see [27] for a recent discussion of Gaussian cubature).

This paper is organized as follows: section 2 reviews key facts about Gauss
quadrature and develops preliminary lemmas. Section 3 describes the method for
Gauss quadrature with Euler–Maruyama time stepping, which we call the GQ1 method.
The error analysis for stochastic ODEs is developed in section 4, where we show how
to choose the number mn of Gauss points. In section 5, we extend the error analysis
to mean-field SDEs and modify the choice of mn for this case. We also discuss a
straightforward generalization of the methodology to the initial-value problem for

Xµ(t)−Xµ(0) =
∫ t

0
A

(∫
R
a(Xµ(s), y)Pµs (dy)

)
ds

+
∫ t

0
B

(∫
R
b(Xµ(s), y)Pµs (dy)

)
dW (s),

(3)

for smooth functions A,B : R → R, which allows a nonlinear dependence on the
time-t distribution. In section 6, we describe two extensions of GQ1: namely, GQ1e,
which uses GQ1 with extrapolation, and GQ2, which use Gauss quadrature with a
second-order time-stepping method. The remainder of the section gives a number
of numerical experiments, including a comparison with the multilevel Monte Carlo
method for ordinary SDEs.

1.1. Notation. For a measure µ on R and an integrable function φ : R → R,
denote µ(φ) :=

∫
R φ(x)µ(dx). Let Ck(Rd) denote the space of k-times continuously

differentiable real-valued functions on Rd and F k,β := {φ ∈ Ck(Rd) : ‖φ‖k,β < ∞},
where ∥∥φ∥∥

k,β
:= max

0≤|α|≤k
sup
x∈Rd

|φ(α)(x)|
1 + |x|β

,

using the multi-index notation. Let CkK(Rd) := {φ ∈ Ck(Rd) : ‖φ(α)‖∞ ≤ K, 0 ≤
|α| ≤ k}, where ‖·‖∞ denotes the supremum norm. Throughout the paper, we use c
as a generic constant that varies from place to place.

2. Gauss quadrature and error estimates. Before describing the algorithm,
we review Gauss quadrature and associated error estimates. Let Pn denote the
polynomials up to degree n.

Definition 2.1 (Gauss quadrature). We say weights wi > 0 and points xi ∈ R
for i = 1, . . . ,m define an m-point Gauss-quadrature rule with respect to a measure µ
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on R if ∫
R
p(x)µ(dx) =

m∑
i=1

wi p(xi) ∀ p ∈ P2m−1.

The m-point Gauss-quadrature rule for a discrete measure

µ =
N∑
i=1

vi δyi ,

with weights vi > 0 and points yi, can be found via the three-term recurrence
relation for the orthogonal polynomials corresponding to the inner product 〈f, g〉µ :=∫

R f(x) g(x)µ(dx). First, form the matrix A with diagonal [1, y1, . . . , yN ] and first
row and column given by [1,

√
v1, . . . ,

√
vN ] (all other entries zero). By applying

orthogonal transformations, reduce A to a symmetric tridiagonal matrix with diagonal
[α0, α1, . . . , αN ] and off-diagonal [β0, β1, . . . , βN ]. The αi and βi define the three-term
recurrence relation. Next, define the Jacobi matrix, which is the symmetric tridiagonal
matrix with diagonal [α0, α1, . . . ] and off-diagonals [

√
β0,
√
β1, . . . ]. To find the m-

point Gauss-quadrature rule, the leading m×m submatrix of the Jacobi matrix should
be chosen. Its eigenvalues determine the quadrature points and the first component
of the normalized eigenvectors determines the weights, as given by the well-known
Golub–Welsch algorithm. See [4, 12, 10].

Thus, to compute the m-point Gauss-quadrature rule for an N -point discrete
measure, we reduce the original matrix (N + 1)× (N + 1) matrix A to tridiagonal form
using a Lanczos procedure and solve a symmetric eigenvalue problem for an m×m
matrix. The complexity is O(N2 +m3), which becomes burdensome when either m
or N is large. It is the rapid convergence properties of Gauss quadrature that enable
us to control the problem size.

Let us describe the errors for Gauss quadrature. For an integrable function
φ : R→ R, denote the approximation error

E(φ) =
∫

R
φ(x)µ(dx)−

m∑
i=1

wi φ(xi).

Theorem 2.2. Let φ ∈ C2m(R). The error for m-point Gauss quadrature is

E(φ) =
φ(2m)(ξ)

(2m)!
〈pm, pm〉µ ∀φ ∈ C2m(R),

for some ξ ∈ R, where 〈pm, pm〉µ =
∫

R pm(x)2 µ(dx), pm(x) = (x − x1) · · · (x − xm),
and xi are the Gauss-quadrature points.

Proof. See [24, Theorem 3.6.24] for the proof.

This theorem shows that Gauss quadrature converges rapidly as the number
of points m → ∞ for smooth integrands φ. We require the following alternative
characterization of the error in terms of a minimax polynomial. A similar result is
available for continuous measures in [3, Theorem 5.4].

Theorem 2.3. Consider a discrete probability measure µ =
∑N
i=1 v

i δyi and ap-
proximation by the m-point Gauss-quadrature rule

∑m
i=1 w

i δxi . The absolute error∣∣E(φ)
∣∣ ≤ min

p∈P2m−1

[
max

i=1,...,N

∣∣p(yi)− φ(yi)
∣∣+ max

i=1,...,m

∣∣p(xi)− φ(xi)
∣∣].
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Proof. Let p ∈ P2m−1. As m-point Gauss quadrature is exact for p ∈ P2m−1,

E(φ) = E(φ− p) =
N∑
i=1

vi (φ− p)(yi)−
m∑
i=1

wi (φ− p)(xi),

so that

∣∣E(φ)
∣∣ ≤ N∑

i=1

vi max
i=1,...,N

∣∣φ(yi)− p(yi)
∣∣+

m∑
i=1

wi max
i=1,...,m

∣∣φ(xi)− p(xi)
∣∣.

Since
∑N
j=1 v

i =
∑m
j=1 w

i = 1, this completes the proof.

For the numerical solution of SDEs, we are interested in the discrete measure gen-
erated by applying Euler–Maruyama with a two-point approximation to the Gaussian
increment, which increases the number of points in the support by a factor of two on
each step. Using the resulting tree structure, the support can be grouped into points
that stem from a smaller set of points. We write down a special error estimate in this
setting.

Corollary 2.4. Let µ be a discrete measure with support {y1, . . . , yNm} and
consider approximation by m-point Gauss quadrature. Suppose that there exists zi

such that
max

j=(i−1)N+1,...,iN

∣∣zi − yj∣∣ ≤ δ for i = 1, . . . ,m.

Then, ∣∣E(φ)
∣∣ ≤ δ (2R)2m−1 1

(2m)!
sup

x∈(−R,R)

∣∣φ(2m)(x)
∣∣ ∀φ ∈ C2m(R),

where R = max{|zi|, |yj | : i = 1, . . . ,m, j = 1, . . . , Nm}.
Proof. Consider interpolation of φ by p ∈ P2m−1 based on the 2m interpolation

points z1, . . . , zm, x1, . . . , xm, where xi denote the Gauss-quadrature points. The error
at yj satisfies

p(yj)− φ(yj) =
[
(yj − z1) · · · (yj − zm) (yj − x1) · · · (yj − xm)

] 1
(2m)!

φ(2m)(ξ),

for some ξ ∈ (−R,R) (by standard error analysis for Lagrange interpolation). In the
product, for each j, one term is bounded by δ. Each |yj − zi| ≤ 2R by definition of R.
Hence,

max
j

∣∣p(yj)− φ(yj)
∣∣ ≤ δ (2R)2m−1 1

(2m)!
sup

x∈(−R,R)

∣∣φ(2m)(x)
∣∣.

The polynomial p is exact at xi and Theorem 2.3 completes the proof.

3. GQ1: Gauss quadrature with Euler–Maruyama. We now explain our
method in detail: initialize Q0 with a discrete approximation,

Q0 =
m0∑
i=1

wi0 δxi
0
,

to the initial distribution µ. In the case that µ = δx or Xµ(0) = x for some known
x ∈ R, take the one-point quadrature rule with x1

0 = x, weight w1
0 = 1, and m0 = 1.
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Suppose that the weights win and points xin of Qn are known at step n. To
determine Qn+1, generate the Euler–Maruyama points Xi±

n+1 defined by

(4) Xi±
n+1 = xin +Qn(a(xin, ·)) ∆t±Qn(b(xin, ·)) ∆t1/2, i = 1, . . . ,mn,

and define the corresponding weights W i±
n+1 = win/2. Together the points Xi±

n+1 and
weights W i±

n+1 define a 2mn-point quadrature rule, which we denote Q±n+1. If left
unchecked, this leads to a 2n-factor increase in the size of the quadrature rule, which
becomes costly.

At each step, we may continue with Qn+1 = Q±n+1 (if the number of points is
acceptable or the final time is reached) or approximate and reduce the number of
points using Gauss quadrature. To approximate, we use the following algorithm.

Algorithm 1
1. Choose a support [−R,R].
2. For |Xn+1| ≥ R, generate two points at ±R with weights

∑
±Xj

n+1≥R
W j
n+1.

3. For |Xn+1| < R, generate the mn+1-point Gauss-quadrature rule for the
measure Q±n+1 restricted to (−R,R) (i.e., for the measure QR(·) = Q±n+1(· ∩
(−R,R))).

4. Combine the points and weights, to define an (mn+1 + 2)-point quadrature
rule Qn+1.

The iteration is repeated until the final time is reached.
Following an error analysis in the next sections, we give formulas for the number of

points mn and support radius R in terms of ∆t and tn. First, we establish conditions
for boundedness of moments for Qn.

Lemma 3.1. Suppose that a, b ∈ C0
K(R2) and that Q0(eαx

2
) <∞ for some α > 0.

Then, for some c, λ > 0 independent of ∆t,

Qn(eλx
2
) ≤ c ∀ tn ≤ 1.

Proof. Consider Ψ defined in (2) where ξ is the two-point random variable given
by P(ξ = ±1) = 1/2. Let Xn+1 = Ψ(X,∆t, Qn) for a fixed value X. Then

X2
n+1 ≤ X2 + 2 ∆tQn(a(X, ·))X + ∆t2Qn(a(X, ·))2 + ∆tQn(b(X, ·))2

+ 2(X + ∆tQn(a(X), ·))Qn(b(X, ·))
√

∆t ξ

≤ X2 + ∆tQn(a(X, ·)) (X2 + 1) + ∆t2Qn(a(X, ·))2 + ∆tQn(b(X, ·))2

+ 2 (X + ∆tQn(a(X, ·)))Qn(b(X, ·))
√

∆t ξ.

Hence, as a, b are bounded by K,

X2
n+1 ≤ X2 (1 + ∆tK) + ∆tK + ∆t2K2 + ∆tK2

+ 2 (X + ∆tQn(a(X, ·)))Qn(b(X, ·))
√

∆t ξ

≤ X2 (1 +K ∆t) + c α∆t+ 2 (X + ∆tQn(a(X, ·)))Qn(b(X, ·))
√

∆t ξ.

Note that (ex + e−x)/2 ≤ ex2
for x ∈ R and

E
[
eαX

2
n+1

]
≤ eα X

2 (1+∆tK)+c α∆t e4α2 (X+∆tQn(a(X,·)))2 ∆tQn(b(X,·))2 .
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Now |(X + ∆tQn(a(X, ·)))2Qn(b(X, ·))2| ≤ 2K2X2 + 2 ∆t2K4. Consequently,

E
[
eαX

2
n+1

]
≤ eαX

2 (1+c∆t+c∆t α)+c α∆t+c∆t3α2
.(5)

Algorithm 1 is used in the iteration, so that the support is reduced and Gauss
quadrature is applied. Note that

Q(eαx
2
) ≤

∫
R
eαx

2
µ(dx), α > 0,

where Q is a Gauss-quadrature rule for µ (by applying Theorem 2.2 and noting that
even derivatives of eαx

2
are nonnegative). Similarly, the support reduction moves

mass inwards and the resulting integral of eαx
2

is reduced. Consequently, if X ∼ Qn
in (5), we have

Qn+1(eαx
2
) ≤ Qn(eα (1+c∆t+c∆t α)x2

) ec α∆t(1+∆t2 α).

We can iterate this to find a bound on Qn(eαx
2
) in terms of Q0(eαx

2
). The value of

α changes at each step of the iteration, and

Qn+1(eα0 x
2
) ≤ Qn(eα1 x

2
) ec α0 ∆t (1+∆t2 α0),

where α1 = α0 (1 + c∆t) + c∆t α2
0.

Let αn+1 = αn (1 + c∆t) + c∆t α2
n. If αn ≤ 1, then αn+1 ≤ αn (1 + 2 c∆t) ≤

α0 (1 + 2 c∆t)n ≤ α0 e
2 c tn . We see that if α0 ≤ e−2 c, then αn ≤ e2 c tnα0 ≤ 1 for

tn ≤ 1. It is now easy to show that

Qn(eα0 x
2
) ≤ Qn−m(eαm x2

) e2 c,

for tn ≤ 1 and any α0 ≤ e−2 c. In particular, Qn(eλx
2
) ≤ Q0(eαx

2
) e2 c for λ ≤

e−2 c min{α, 1}.
We examine the error incurred reducing the support to [−R,R].

Lemma 3.2. Let µ be a probability measure on R and suppose that µ(eλx
2
) < K,

for some λ > 0. For ∆t > 0, define the measure µ∆t by

µ∆t(A) := µ(A ∩ 1(−R,R)) + µ((−∞,−R]) δ−R(A) + µ([R,∞)) δR(A),

for R =
√

(4/λ) |log ∆t| and Borel sets A ⊂ R. There exists c > 0, independent of ∆t,
such that ∣∣µ(φ)− µ∆t(φ)

∣∣ ≤ c∥∥φ∥∥0,β ∆t2 ∀φ ∈ F 0,β .

Proof. It suffices to consider the two measures µ and µ∆t on the tail (−R,R)c, as
they are equal on (−R,R). First, note that∣∣µ(1(−R,R)c φ)

∣∣ ≤ e−λR2/2 µ(Φ), Φ(x) := eλx
2
e−λx

2/2 1(−R,R)c(x)
∣∣φ(x)

∣∣,
where 1S denotes the indicator function on the set S. As φ ∈ F 0,β , |φ(x)| ≤ ‖φ‖0,β (1+

|x|β) and |e−λx2/2 φ(x)| is uniformly bounded by c ‖φ‖0,β for a constant c independent
of R and φ, but dependent on β and λ. Hence,∣∣µ(1(−R,R)c φ)

∣∣ ≤ c∥∥φ∥∥0,β e
−λR2/2 µ(eλx

2
) ≤ c

∥∥φ∥∥0,β e
−λR2/2.

For R =
√

(4/λ) |log ∆t|, we see that e−λR
2/2 ≤ ∆t2. Hence, |µ(1(−R,R)cφ)| is bounded

by c ‖φ‖0,β ∆t2. The same applies to |µ∆t(1(−R,R)cφ)| by a similar argument and the
proof is complete.
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Thus, the support reduction with R =
√

(4/λ) |log ∆t| maintains accuracy if µ(eλx
2
)

is finite and the test function grows polynomially. Next, we estimate the error for the
Gauss quadrature at step n.

Lemma 3.3. Suppose that a, b ∈ C0
K(R2). Let QR(·) = Q±n+1(· ∩ (−R,R)) and let

Q be the mn+1-point Gauss-quadrature rule approximating QR. If mn+1 ≥ mn, for
all φ ∈ C2mn(R),∣∣QR(φ)−Q(φ)

∣∣ ≤ K (2R)2mn−1 ∆t1/2
1

(2mn)!
sup

x∈(−R,R)

∣∣φ(2mn)(x)
∣∣.

Proof. If both Xj±
n+1 belong to (−R,R), let zj = xj +Qn(a(xj , ·)) ∆t. Then

(6)
∣∣Xj±

n+1 − zj
∣∣ ≤ ∣∣Qn(b(xj , ·))

∣∣∆t1/2 ≤ K ∆t1/2

and |zj | ≤ R (every zj lies half way between Xj±
n+1). If only one Xj±

n+1 ∈ (−R,R), let
zj be that point. The measure QR has at most 2mn points and we apply Corollary 2.4
with N = 2 and δ = K ∆t1/2. In general, QR may have less than 2mn points and we
should trivially extend QR to apply Corollary 2.4 (i.e., extend QR to a 2mn+1-point
rule by adding zero-weighted points in (−R,R) consistent with (6)).

Corollary 3.4. Let a, b ∈ C0
K(R). Let Q be the mn+k-point Gauss-quadrature

rule for QR(·) = Q±n+k(· ∩ (−R,R)) (i.e., after not performing Algorithm 1 (k − 1)-
times). Suppose that mn+k ≥ mn. For each k, there exists c > 0 such that, for all
φ ∈ C2mn(R),∣∣QR(φ)−Q(φ)

∣∣ ≤ c (2R)2mn−1∆t1/2
1

(2mn)!
sup

x∈(−R,R)

∣∣φ(2mn)(x)
∣∣.

Proof. This is a simple extension of Lemma 3.3 using Corollary 2.4.

4. Error analysis for ordinary SDEs. The proposed algorithm has much in
common with those introduced by [22]. In that paper, Ito–Taylor methods for a
general class of multidimensional SDEs are developed that use support-reduction
strategies to improve efficiency. They reduce the support of the measure by reducing
its diameter and eliminating points whilst maintaining moment conditions. Along with
a nonuniform time-stepping regime, the authors provide detailed error and complexity
analyses. The present situation is similar and effectively we are transplanting Algorithm
1 for their reduction strategies. Using appropriate Gauss-quadrature error estimates,
much of their analysis applies in the present case.

The estimate in Corollary 3.4 depends on the radius R of the support. We now
choose R =

√
(4/λ) |log ∆t|, for λ given by Lemma 3.1. Fix k (the number of steps

between applying Algorithm 1) and β (to choose test functions φ ∈ F 0,β).

Proposition 4.1. Let R =
√

(4/λ) |log ∆t| in Algorithm 1. Then, for all φ ∈
F 0,β ∩ C2mn(R),

∣∣Q±n+k(φ)−Qn+k(φ)
∣∣ ≤ c∆t1/2

∣∣∣∣16
λ

log ∆t
∣∣∣∣
2mn−1

2 1
(2mn)!

× sup
x∈(−R,R)

∣∣φ(2mn)(x)
∣∣+ c

∥∥φ∥∥0,β ∆t2.

Proof. The error due to the Gauss quadrature on (−R,R) is described by Corol-
lary 3.4. Applying Lemma 3.1 with Lemma 3.2, the error due to the support reduction
is bounded by c ‖φ‖0,β ∆t2. Summing the two gives the desired upper bound.
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Given ∆t > 0 and a k ∈ N, we choose the number of points mn as the smallest
nonnegative integer such that

(7) log Γ(2mn + 1) ≥M1(mn,∆t, n+ k) ∀tn+k < 1,

where Γ(x) denotes the gamma function and
(8)

Mp(m,∆t, n) :=
(
p+

1
2

) ∣∣log ∆t
∣∣+

2m− 1
2

log
∣∣∣∣16
λ

log ∆t
∣∣∣∣+
(
m− 2

) ∣∣log(1− tn)
∣∣.

We now describe how fast mn increases as ∆t decreases. Assuming the Golub–Welsch
algorithm takes O(m3) operations,

∑
nm

3
n gives the amount of work needed to apply

Algorithm 1 at every time step and we describe its growth.

Theorem 4.2. The number of Gauss-quadrature points mn is a nondecreasing
function of n. As the time step decreases, mn is nondecreasing. The number of points
mn for Qn satisfies

mn ≤ 1 + max

{
3
4

∣∣log ∆t
∣∣, e2

2

√
16 |log ∆t|
λ (1− tn)

}
.

In particular,
∑
tn<1m

3
n = O

(
(|log ∆t| /∆t)3/2

)
.

Proof. The function M1 is increasing in n (via tn ∈ (0, 1)) for m ≥ 2. Hence, mn

is nondecreasing in n (mn is discrete and may not change as tn is varied by small
amounts). Also, for fixed tn, M1 is a decreasing function of ∆t, and hence mn is
nondecreasing as ∆t decreases. From (8),

M1(m,∆t, n) ≤ 3
2

∣∣log ∆t
∣∣+m log

16 |log ∆t|
λ (1− tn)

.

Stirling’s formula [1, eq. 6.1.37] tells us that

x! = Γ(x+ 1) =
√

2π xx+1/2 exp
(
−x+

θ

12x

)
, for some θ ∈ (0, 1),

and hence log|(2m)!| = log Γ(2m+ 1) ≥ 1
2 log(4πm) + 2m (log(2m)− 1). Then,

log Γ(2m+ 1) ≥ 2m+ 2m
(
log(2m)− 2

)
= 2m+m log

4m2

e4 .

If m ≥ (3/4)|log ∆t| and m ≥ (e2/2)
√

16 |log ∆t|/(λ (1− tn)), then log Γ(2m+ 1) ≥
M1(m,∆t, n). Hence, as

∑∞
k=1 k

−3/2 is finite,

∑
tn<1

m3
n ≤ c

(
16 |log ∆t|
λ∆t

)3/2

.

We now give the main convergence theorem for ordinary SDEs. In this case, the
coefficients a(x, y) and b(x, y) are independent of the mean-field y. We choose the
single-point initial distribution µ = δx and write X(t) for Xµ(t) and P xt for P δx

t .

Assumption 4.3. Suppose that K ≥ 1 ≥ λ > 0 and assume that x0 ∈ [−K,K]
and a, b ∈ C4

K(R) and b2(x) ≥ λ for all x ∈ R.
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Theorem 4.4. Let Assumption 4.3 hold. Consider the mn-point Gauss-quadrature
rule Qn defined in Algorithm 1 with mn given by (7) and R =

√
(4/λ)|log ∆t|. The

total error satisfies

∣∣P x1 (φ)−QN (φ)
∣∣ ≤ {c ‖φ‖2,β (1 + |x|c) ∆t |log ∆t| ∀φ ∈ F 2,β ,

c ‖φ‖3,β (1 + |x|c) ∆t ∀φ ∈ F 3,β ,

for a constant c independent of K.

Proof. Let gn(x) := P x1−tn(φ) ≡ E[φ(X(1− tn)) |X(0) = x] for x ∈ R. Notice
that gN = φ and g0(x) = P x1 (φ). Let T∆t(φ)(x) = E[φ(Ψ(x,∆t, ·))] for Ψ defined in
(2). The total error

P x1 (φ)−QN (φ) =
N∑
n=1

ETn +
N∑
n=1

EGn ,

where EGn = Q±n (gn)−Qn(gn) (the error due to Algorithm 1) and ETn = Qn−1(gn−1)−
Q±n (gn) = Qn−1(P x∆t(gn))−Qn−1(T∆t(gn)) (the bias error due to Euler–Maruyama
over time step ∆t). We estimate the two sources of error, focusing on the case where
φ ∈ F 2,β .

Local truncation error: Under Assumption 4.3, [22, eq. (35) with γ = 1] shows
that ETn satisfies

∣∣ETn ∣∣ ≤
c
∥∥φ∥∥4,β

(
1 +

∣∣x∣∣c) ∆t2

1− tn
, n = 1, . . . , N − 1,

c ‖φ‖2,β (1 + |x|c) ∆t, n = N.

Algorithm 1 error: We do not apply Algorithm 1 on the final step and so EGN = 0.
For n = 1, . . . , N − 1, Proposition 4.1 gives that

∣∣EGn ∣∣ =
∣∣Q±n (gn)−Qn(gn)

∣∣ ≤ c∥∥g(2mn−k)
n

∥∥
∞

1
(2mn−k)!

∆t1/2
∣∣∣∣16
λ

log ∆t
∣∣∣∣
2mn−k−1

2

+ c
∥∥φ∥∥0,β ∆t2.

In [22, Lemma 8] it is provided that∥∥gn∥∥k,β ≤ ∥∥φ∥∥2,β

1
(1− tn)(k−2)/2 ∀k ≥ 4.

Consequently,

∣∣EGn ∣∣ ≤ c∥∥φ∥∥2,β

1
(1− tn)mn−k−1

1
(2mn−k)!

∆t1/2
∣∣∣∣16
λ

log ∆t
∣∣∣∣
2mn−k−1

2

+ c
∥∥φ∥∥0,β ∆t2.

Notice that

1
(1− tn)mn−k−1

1
(2mn−k)!

∆t1/2
∣∣∣∣16
λ

log ∆t
∣∣∣∣
2mn−k−1

2

≤ 1
(1− tn)

∆t2

if

Γ(2mn−k + 1) ≥ ∆t−3/2
∣∣∣∣16
λ

log ∆t
∣∣∣∣
2mn−k−1

2 1
(1− tn)mn−k−2 .
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This holds as we have chosen mn−k satisfies log Γ(2mn−k + 1) ≥M1(mn−k,∆t, n), for
M1 defined in (8). Then, |EGn | ≤ c (‖φ‖2,β + 1) ∆t2/(1− tn).

Summing all the errors and using
∑N−1
n=1 ∆t/(1 − tn) ≤ log(N) = |log ∆t|, we

complete the proof. For φ ∈ F 3,β , the argument is similar except the (1− tn) factors
do not arise and so the |log ∆t| term does not appear.

5. Error analysis for mean-field SDEs. We now generalize our error analysis
to mean-field SDEs. We wish to show that Qn approximates Pµtn , starting from a good
approximation of the initial distribution, Q0 ≈ µ. To express the closeness of Q0 to µ,
we use the Wasserstein distance. For any probability measures µ, ν on R, define the
Wasserstein distance

Wk,β(µ, ν) := sup
{∣∣µ(φ)− ν(φ)

∣∣ : ∥∥φ∥∥
k,β
≤ 1
}
.

Assumption 5.1. The initial measure Q0 satisfies Q0(eαx
2
) <∞ for some α > 0

independent of ∆t and approximates µ in the sense that W2,β(µ,Q0) ≤ c∆t.

Under this assumption, Lemma 3.1 applies and Qn(eλx
2
), for tn ≤ 1, is uniformly

bounded for some λ > 0. We choose R =
√

(4 /λ) |log ∆t| in Algorithm 1.
We introduce a nonautonomous SDE corresponding to the mean-field SDE with

Pµt (a(X, ·)) and Pµt (b(X, ·)) treated as known functions of (X, t). Let X(t; s, x) for
t ≥ s denote the solution of

(9) dX = ā(X, t) dt+ b̄(X, t) dW (t), X(s; s, x) = x,

for ā(X, t) := Pµt (a(X, ·)) and b̄(X, t) := Pµt (b(X, ·)). Here we fix the initial distribution
as a delta measure at x and keep the same measure Pµt from (1) for the mean
fields. Note that

∫
R E[φ(X(t; 0, x))]µ(dx) = Pµt (φ), so that Pµt (φ) = µ(P0,t(φ)) for

Ps,t(φ)(x) := E[φ(X(t; s, x))]. In this notation, we drop the µ superscript, even though
the nonautonomous SDE depends on µ via the drift and diffusion.

In the following assumption on the drift and diffusion, the mean-field diffusion b̄
is used to set a nondegeneracy condition.

Assumption 5.2. Suppose that a, b ∈ C4
K(R2) and, for some K ≥ 1 ≥ λ > 0, that

b̄2(t, x) ≥ λ for x ∈ R and t ∈ [0, 1].

The main theorem for the numerical approximation of mean-field SDEs by GQ1
is the following. The method of selecting the number of Gauss points mn is modified
to approximate the distribution uniformly on the time interval. In this case, mn ≡ m
should be chosen independent of n. We choose m as the smallest integer greater than
the initial number of points m0 such that log Γ(2m + 1) ≥ M1(m,∆t, n + k) where
M1 is given by

(10) Mmf
p (m,∆t, n) :=

(
p+m− 3

2

) ∣∣log ∆t
∣∣+

2m− 1
2

log
∣∣∣∣16
λ

log ∆t
∣∣∣∣

or

(11) M smooth
p (m,∆t, n) :=

(
p+

1
2

) ∣∣log ∆t
∣∣+

2m− 1
2

log
∣∣∣∣16
λ

log ∆t
∣∣∣∣.

The choice of M1 depends on the regularity of the underlying problem, as described in
Theorem 5.4. The time tn appears on the right-hand side in neither case and m is
independent of n. In the following, the overall work for the time-stepping is dominated
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by
∑
tn≤1m

3
n (the work to compute the Gauss-quadrature rule at each step). The

work to compute the initial measure Q0 is often negligible, for example, if the initial
distribution is Gaussian or in other cases where accurate quadrature rules are easily
computed.

Theorem 5.3. Denote the initial number of points for the rule Q0 by m0. For
(10),

m ≤ max

{
m0, 1 +

e2

2

√
8 |log ∆t|
λ∆t

}
.

If the work to compute Q0 is O(|log ∆t|3/2/∆t5/2) and the initial number of points
m0 = O(|log ∆t|1/2/∆t1/2), then the overall total work is O(|log ∆t|3/2/∆t5/2). For
(11),

m ≤ max

{
m0, 1 +

3
4

∣∣log ∆t
∣∣, 1 +

e2

2

√
8 |log ∆t|

λ

}
.

If the work to compute Q0 is O
(
|log ∆t|3/∆t

)
and the initial number of points m0 =

O(|log ∆t|), then the overall total work is O
(
|log ∆t|3/∆t

)
.

Proof. From (10),

Mmf
1 (m,∆t, n) ≤ m log

16 |log ∆t|
λ∆t

and

log Γ(2m+ 1) ≥ 2m+m log
4m2

e4 .

If m ≥ (e2/2)
√

16 |log ∆t|/(λ∆t), then we have log Γ(2m + 1) ≥ Mmf
1 (m,∆t, n).

Similarly, from (11),

M smooth
1 (m,∆t, n) ≤ 3

2

∣∣log ∆t
∣∣+m log

16 |log ∆t|
λ

.

If m ≥ (3/4)|log ∆t| and m ≥ (e2/2)
√

16 |log ∆t|/λ, then we see log Γ(2m + 1) ≥
M smooth

1 (m,∆t, n). The estimate for the total work follows as
∑N
n=1m

3 = m3/∆t.

In the following, we show upper bounds on the error for smooth and rough
problems, and smooth in this case indicates infinite differentiability, which is much
stronger than in Theorem 4.4. This is because infinite differentiability allows the
reduction of the number of Gauss points m to O

(
|log ∆t|1/2

)
from (|log ∆t|/∆t)1/2.

Theorem 5.4. Let Assumptions 1.1, 5.1, and 5.2 hold and the number of Gauss
points m be given by (10). For some c > 0

max
tN≤1

∣∣PµtN (φ)−QN (φ)
∣∣ ≤ c∥∥φ∥∥2,β ∆t

∣∣log ∆t
∣∣ ∀φ ∈ F 2,β .

If, in addition to Assumption 1.1, we have W∞,β(µ,Q0) ≤ c∆t, and in addition to
Assumption 5.2, we have a, b ∈ C∞K (R2), and the number of Gauss points m is given
by (11), then

(12) max
tN≤1

∣∣PµtN (φ)−QN (φ)
∣∣ ≤ c∥∥φ∥∥∞,β ∆t ∀φ ∈ F∞,β .
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For suitably smooth initial measures µ, the complexity bounds in Theorem 5.3
apply under these hypotheses by choosing Q0 appropriately. For example, in the
nonsmooth case, if µ is the uniform distribution on [a, b], the composite trapezoidal
rule, where quadrature weights and points are available explicitly, requires O

(
1/
√

∆t
)

points to achieve O(∆t) accuracy for twice-differentiable integrands and provides a
suitable Q0. In the smooth case, for example, applying Gauss–Hermite quadrature
to an initial Gaussian measure requires m = O(|log ∆t|) points to achieve O(∆t)
accuracy for smooth integrands (see [13, eq. (8.7.13)] for the relevant error estimate).
An m-point Gauss–Hermite rule can be used for Q0 and computed in O(m) complexity
[26], which means Theorem 5.3 implies O

(
|log ∆t|3/∆t

)
total work for solving the

mean-field SDE to O(∆t) accuracy in the sense of (12).
Before the proof, we develop a sequence of lemmas. First, we show that the

Euler–Maruyama step depends continuously on the initial measure µ in terms of the
Wasserstein distance.

Lemma 5.5. Suppose that a, b ∈ CkK(R2). There exists c > 0 such that, for any
x ∈ R,

(13)
∣∣δ(x)

∣∣ ≤
c∆t ‖g‖3,β (1 + |x|β)Wk,β(µ, ν) ∀g ∈ F 3,β ,

c∆t ‖g‖2,β (1 + |x|β) (Wk,β(µ, ν) + 1) ∀g ∈ F 2,β ,

where δ(x) := E[g(Ψ(x,∆t, µ))]− E[g(Ψ(x,∆t, ν))] and Ψ is defined by (2).

Proof. Let xλ,µ = x+ λµ(a(x, ·)) ∆t+ (λµ(b(x, ·))) ξ
√

∆t and

φ(λ; g) = g
(
xλ,µ

)
− g(xλ,ν).

Then δ = E[φ(1; g)] and φ(0; g) = 0 and

φ′(λ; g) = g′(xλ,µ)
[
µ(a(x, ·)) ∆t+ µ(b(x, ·))

√
∆t ξ

]
− g′(xλ,ν)

[
ν(a(x, ·)) ∆t+ ν(b(x, ·))

√
∆t ξ

]
.

Note that E[φ′(0; g)] = g′(x)(µ− ν)(a(x, ·))∆t as E[ξ] = 0. By Taylor’s theorem,

δ = E
[
φ(0; g) + φ′(0; g) +

∫ 1

0
φ′′(λ; g)λ dλ

]
= g′(x) ∆t (µ− ν)(a(x, ·)) + E

[∫ 1

0
φ′′(λ; g)λ dλ

]
.

Now,∣∣φ′′(λ; g)
∣∣

≤
∣∣g′′(xλ,µ)

∣∣([µ(a(x, ·))∆t+ µ(b(x, ·))
√

∆tξ
]2
−
[
ν(a(x, ·))∆t+ ν(b(x, ·))

√
∆tξ

]2)
+
∣∣g′′(xλ,µ)− g′′(xλ,ν)

∣∣ · ∣∣∣ν(a(x, ·)) ∆t+ ν(b(x, ·))
√

∆t ξ
∣∣∣2.

Hence, as a, b, ξ are all bounded,∣∣δ∣∣ ≤ c (1 +
∣∣x∣∣β)Wk,β(µ, ν)

(∥∥g∥∥0,β ∆t+
∥∥g∥∥2,β ∆t+

∥∥g∥∥3,β ∆t
)
.

This now implies the first equation in (13). The second is similar.
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Lemma 5.6. Let Assumptions 1.1 and 5.2 hold. If a, b ∈ CkK(R2), then ā and b̄
belong to CkK(R2).

Proof. Under Assumption 1.1, Pµt has a smooth density and ā, b̄ inherit their
smoothness from a, b, and the density. The argument is given in more detail in [2, p.
431].

Lemma 5.7. Let Assumptions 1.1 and 5.2 hold and gn,N := Ptn,tNφ. Then, for
nonnegative integers r, k,∥∥gn,N∥∥k,β ≤ c∥∥φ∥∥r,β 1

(tN − tn)(k−min{k,r})/2 ∀φ ∈ F k,β .

Proof. For the autonomous case, see [22, Lemma 8]. In this case, the drift and
diffusion are nonautonomous. The argument generalizes as [8, Chapter 9, Theorem 7]
applies also for time-dependent coefficients with the assumptions given.

The next lemma states a bound on the local truncation error.

Lemma 5.8. Let Assumptions 1.1 and 5.2 hold. There exists c > 0 such that

∣∣Ptn−1,tn(φ)(x)− E
[
Ψ(x,∆t, Pµtn−1

)
]∣∣ ≤

c ‖φ‖4,β (1 + |x|c) ∆t2 ∀φ ∈ F 4,β ,

c ‖φ‖2,β (1 + |x|c) ∆t ∀φ ∈ F 2,β .

Proof. When a, b are independent of the second argument, this is implied by [22,
Lemma 3 with γ = 1]. In our case, the drift is ā(X, t) and diffusion b̄(X, t), which are
smooth functions according to Lemma 5.6 and their lemma is easily extended.

Proof of Theorem 5.4. Define the measure eN = PµtN −QN and consider φ ∈ F 2,β .
Let gn,N := Ptn,tN (φ), so that gn,n = φ. Decompose the error eN (φ) for N ≥ 1 as

(14) eN (φ) =
N∑
n=1

ET1
n + ET2

n + EGn ,

where ET1
n represents the error from the Euler–Maruyama discretization of the nonau-

tonomous system, ET2
n represents the error from the mean-field, and EGn represents

the error from Algorithm 1 applied to gn,N . In detail, let

I := Qn−1 (Ptn−1,tn(Ptn,tN (φ))) =
∫

R
Ptn−1,tN (gn,N )(x)Qn−1(dx),

II :=
∫

R
E
[
gn,N (Ψ(x,∆t, Pµtn−1

))
]
Qn−1(dx),

III := Q±n (Ptn,tN (φ)) =
∫

R
E
[
gn,N (Ψ(x,∆t, Qn−1))

]
Qn−1(dx),

IV := Qn(Ptn,tN (φ)),

where E[·] denotes the expectation over ξ in the definition of Ψ (see (2)). Consider the
telescoping sum

eN (φ) =
N∑
n=1

(
Qn−1(Ptn−1,tN (φ))−Qn(Ptn,tN (φ))

)
.
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We have (14) for ET1
n = I − II, ET2

n = II − III, EGn = III − IV. We estimate the three
sources of error in turn. We focus on the rough case (i.e., φ ∈ F 2,β) and briefly note
the differences with the smooth case.

Local truncation error for nonautonomous SDE: From Lemma 5.8, with n < N ,∣∣I− II
∣∣ =

∣∣Qn−1
(
Ptn−1,tn(gn,N )(x)− E

[
gn,N (Ψ(x,∆t, Pµtn−1

))
])∣∣

≤ c
∥∥gn,N∥∥4,β

[
1 +Qn−1(

∣∣x∣∣c)]∆t2.
By Lemma 3.1, Qn(|x|c) is uniformly bounded and, by Lemma 5.7, ‖gn,N‖4,β is
bounded by c ‖φ‖2,β/(tN − tn). Similarly, for n = N , |I− II| ≤ c‖φ‖2,β(1 +Qn−1(|x|c))
∆t. Hence,

∑N
n=1|I− II| ≤ c ‖φ‖2,β ∆t |log ∆t|. In the smooth case, the estimate is the

same, without the (tN − tn) singularity and hence without the log term.
Mean-field error: From Lemma 5.5,∣∣II− III

∣∣ ≤ ∣∣Qn−1
(
E
[
gn,N (Ψ(x,∆t, Pµtn−1

))
]
− E

[
gn,N (Ψ(x,∆t, Qn−1))

])∣∣
≤ c
(

1 +Qn−1(
∣∣x∣∣β)

)
∆t
∥∥gn,N∥∥3,βW4,β(Pµtn−1

, Qn−1).

By Lemma 3.1, Qn(|x|β) is uniformly bounded and, by Lemma 5.7, ‖gn,N‖3,β is
bounded by c‖φ‖2,β/(tN − tn)1/2 for n = 1, . . . , N − 1. Hence,

∣∣II− III
∣∣ ≤ c∆t

∥∥φ∥∥2,βW2,β(Pµtn−1
, Qn−1)

1
(tN − tn)1/2 .

For n = N ,∣∣II− III
∣∣ ≤ K (1 +QN−1(xβ)

)
∆t
∥∥φ∥∥2,βW2,β(PµtN−1

, QN−1) +
∥∥φ∥∥2,βK ∆t.

In the smooth case, φ ∈ F∞,β and a, b ∈ C∞K (R2), so that ‖gn,N‖3,β is uniformly
bounded and |II− III| ≤ c∆t ‖φ‖∞,βW∞,β(Pµtn−1

, Qn−1).
Algorithm 1 error: We consider the case where Algorithm 1 is applied at every

step n = 1, . . . , N − 1. Then, for each n,

III− IV = Q±n (gn,N )−Qn(gn,N ).

Here Qn is the measure given by approximating Q±n by Algorithm 1 and the associated
error is described by Proposition 4.1. Thus, recalling that R =

√
(4/λ) |log ∆t|,

∣∣III− IV
∣∣ ≤ c (2R)2mn−1 ∆t1/2

1
(2mn)!

∥∥∥g(2mn)
n,N

∥∥∥
∞

+ c
∥∥φ∥∥0,β∆t2.

Applying Lemma 5.7,∣∣III− IV
∣∣ ≤ c (2R)2m−1 ∆t1/2

1
(2m)!

∥∥φ∥∥2,β

1
(tN − tn)m−1 + c

∥∥φ∥∥0,β∆t2

≤ c (2R)2m−1 1
(2m)!

∥∥φ∥∥2,β

1

∆tm−5/2

1
tN − tn

+ c
∥∥φ∥∥0,β∆t2.

This is bounded by c‖φ‖2,β∆t2/(tN − tn) if log Γ(2m+ 1) ≥ Mmf
1 (m,∆t, n+ k) for

Mmf
1 defined by (10).
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In the smooth case, |III− IV| ≤ c∆t2‖φ‖∞,β if log Γ(2m+1) ≥M smooth
1 (m,∆t, n+

k) for M smooth
1 defined by (11). Sum the three upper bounds to show that

eN (φ) ≤ c
∥∥φ∥∥2,β ∆t

∣∣log ∆t
∣∣+ c

∥∥φ∥∥2,β

N−1∑
n=1

∆t
(tN − tn)1/2W2,β(Pµtn−1

, Qn−1)

+ c
∥∥φ∥∥2,β ∆tW2,β(PµtN−1

, QN−1), tN ≤ 1.

Take the supremum over φ ∈ F 2,β ,

W2,β(PµtN , QN )

≤ c∆t
∣∣log ∆t

∣∣+
N−1∑
n=1

∆t
(tN − tn)1/2 W2,β(Pµtn−1

, Qn−1) + c∆tW2,β(PµtN−1
, QN−1).

We assume that W2,β(Pµ0 , Q0) ≤ c∆t in Assumption 5.1. Gronwall’s inequality
completes the proof of the rough case. In the smooth case, similar arguments show
that

W∞,β(PµtN , QN ) ≤ c∆t+
N∑
n=1

∆tW∞,β(Pµtn−1
, Qn−1)

and Gronwall’s inequality again gives the result.

Consider (3), where a nonlinear dependence on the time-t distribution is allowed
via functions A,B : R → R. Our numerical method generalizes by replacing the
definition of Ψ in (2) with

(15) Ψ(x,∆t, Q) := x+ ∆t A(Q(a(x, ·))) +
√

∆tB(Q(b(x, ·))) ξ.

Gauss quadrature can be used in the same way with the same choice of mn and the
same estimates apply as long as A,B have regularity consistent with Lemmas 5.5
and 5.8. This leads to the following convergence and complexity result.

Corollary 5.9. Let Assumptions 1.1, 5.1, and 5.2 hold and A,B ∈ CkK(Rd). Let
the number of Gauss points m be given by (10) and let Pµt be the solution of (3) with
initial distribution µ. Then, for some c > 0,

max
tN≤1

∣∣PµtN (φ)−QN (φ)
∣∣ ≤ c∥∥φ∥∥2,β ∆t

∣∣log ∆t
∣∣ ∀φ ∈ F 2,β .

If Q0 is cheap to compute (see Theorem 5.4) and m0 = O
(
(|log(∆t)|/∆t)1/2

)
, the

total work is O
(
|log ∆t|3/2/∆t5/2

)
. If, in addition to Assumption 1.1, we have

W∞,β(µ,Q0) ≤ c∆t, and in addition to Assumption 5.2, we have a, b ∈ C∞K (R2) and
A,B ∈ C∞K (R), and the number of Gauss points m is given by (11), then

max
tN≤1

∣∣PµtN (φ)−QN (φ)
∣∣ ≤ c∥∥φ∥∥∞,β ∆t ∀φ ∈ F∞,β .

If Q0 is cheap to compute and m0 = O(|log ∆t|), the total work is O
(
|log ∆t|3/∆t

)
.
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6. Numerical experiments. We now present a set of numerical experiments,
exhibiting the behavior of GQ1 as described in section 3. We also try two methods
that converge with second order.

GQ1e. The Richardson or Talay–Tubaro extrapolation involves taking two first-
order approximations P (∆t) and P (∆t/2) of a quantity P , and computing P̂ :=
2P (∆t/2) − P (∆t). If P has a second-order Taylor expansion, P̂ is a second-order
accurate approximation to P . In the case that P is generated by GQ1, this is very
simple to code and implement and is included in the experiments. Thus, we define
GQ1e to be the quadrature rule Q defined by 2Q∆t/2 − Q∆t, where Q∆t is the
result of applying GQ1 with time step ∆t. The method results in a quadrature with
some negative weights, which can lead to nonphysical results when used with highly
oscillatory φ and the method should be used with caution.

GQ2. Suppose that the mean-field SDE has the following structure:

(16) dXµ(t) = a(Xµ(t), Pµt (r)) dt+ b(Xµ(t), Pµt (r)) dW (t)

for given functions a, b : R× Rd → R and r : R→ Rd. Mean-field SDEs of this type,
involving moments of the solution in the coefficient functions or vectors of monomials
r(x) = [x, x2, . . . , xd], were introduced in [16] for example. By working out the second-
order Ito–Taylor expansion, the following generalization, which we name GQ2, of
the Euler–Maruyama-based method GQ1 can be derived: let ∆W = ∆t ξ for ξ given
by three-point distribution with P(ξ = 0) = 2/3 and P

(
ξ = ±

√
3
)

= 1/6 (i.e., the
three-point Gauss–Hermite rule for N(0, 1)). For a given measure Qn, define Qn+1 as
the distribution of Xn+1 given by

Xn+1 = X + a∆t+ b∆W +
1
2
∂1b b (∆W 2 −∆t)

+
1
2

(
∂1a b+∇b · La+

1
2
∂11b b

2
)

∆W ∆t

+
1
2

(
∇a · La+

1
2
∂a11 b

2
)

∆t2

for

La :=
[
a,Qn

(
∂1r a+

1
2
∂11r b

2
)
, . . . , Qn

(
∂dr a+

1
2
∂ddr b

2
)]
,

where X ∼ Qn (independent of ξ) and all functions a, b are evaluated at (X,Qn(r)).
Here, ∂i and ∂ii denotes the first- and second-derivatives with respect to the ith
argument, ∇a denotes the usual gradient in Rd+1, and · the Rd+1 inner product.

Though we do not include it, GQ2 submits to similar techniques of error analysis
to GQ1. We expect second-order convergence in the Wasserstein distance W4,β , so
that test functions require two extra derivatives compared to GQ1. The equation for
the number of Gauss points mn needs to be adjusted by taking p = 2 in (7), (10), or
(11) as appropriate. The total work for a given accuracy ε is given by replacing ∆t
replaced by ε1/2 in Theorems 4.2 and 5.3 (and increasing the regularity by two for all
coefficients). For smooth mean-field equations, the work is O

(
|log ε|3ε−1/2

)
.

We expect second-order convergence for both of these methods and the initial
distribution Q0 should be chosen with W4,β(µ,Q0) ≤ c∆t2.

The code for running these experiments is available for download [11].
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Fig. 1. Geometric Brownian motion: The green line shows GQ1; the blue-dashed line shows
GQ1e; the black-dash-dot line shows GQ2; the red-dotted line shows MLMC. The CPU time for
MLMC is scaled to match GQ1 at the first data point. Errors are computed relative to the exact
value. The yellows lines indicate reference slopes of −2, −1, and −1/2. (See online version for
color.)

6.1. Geometric Brownian motion. We consider the ordinary SDE for geo-
metric Brownian motion given by

dX(t) = αX(t) dt+ σX(t) dW (t), X(0) = x,

for parameters α, σ and initial data x. For α = −1, σ = 0.5, and x = 1, the exact
value E[X(1)] = e−1. We use this as a test case to compare with the multilevel Monte
Carlo (MLMC) method, as in [19, Example 8.49]. The CPU time is compared against
error, averaging over ten runs of MLMC to reduce the variance. The CPU time for
the MLMC MATLAB implementation (provided in [19]) is scaled to match GQ1 at
the first data point. See Figure 1. The errors for the Gauss-quadrature methods
are decaying at a much faster rate as the CPU time is increased. Theoretically, for
a smooth problem like this, the work to achieve accuracy ε for GQ1 behaves like
ε−1|log ε|3, for GQ1e and GQ2 like ε−1/2|log ε|3, and for MLMC like ε−2. This is
observed in the figure. Notice, however, that the linearly growing coefficients do not
satisfy our assumptions.

6.2. Generalized Ornstein–Uhlenbeck process. Consider the following gen-
eralization of the Ornstein–Uhlenbeck SDE to a linear mean-field SDE:

dX(t) =
[
αX(t) + β E

[
X(t)

]]
dt+ σ dW (t), X(0) = x,

for parameters α, β, σ ∈ R and initial data x ∈ R. By using Ito’s formula, its first two
moments can easily be calculated as

(17) E
[
X(t)

]
= x e(α+β) t, E

[
X(t)2] = x2 e2 (α+β) t +

σ2

2α
[
e2α t − 1

]
.

It is used as a test case in [23], with α = −1/2, β = 4/5, σ2 = 1/2, and x = 1. We
use these parameters and the results are shown in Figure 2. First-order convergence
is observed for the first and second moments for GQ1, and second-order convergence
is observed for both GQ1e and GQ2. The work is proportional to ε−1 and ε−1/2,
reflecting the estimates (up to log terms) for smooth problems in Theorem 5.3.
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Fig. 2. Generalized Ornstein–Uhlenbeck SDE: The green line shows GQ1; the blue-dashed line
GQ1e; the black-dash-dot line shows GQ2. The yellow lines show reference slopes of 1 and 2 (top)
and −1/2 and −1 (bottom) . The upper left- (resp., right-) hand plot shows the error in computing
the mean (resp., second moment). The error is computed using reference values provided by (17).
The bottom plots shows the CPU time in seconds. (See online version for color.)

6.3. Polynomial drift. The following mean-field Ito SDE

(18) dX(t) =
[
αX(t) + E

[
X(t)

]
−X(t) E

[
X(t)2]] dt+X(t) dW (t), X(0) = x,

for a parameter α ∈ R, is considered in [7], where the first two moments of X(t) are
shown to satisfy the system of ODEs

dE[X]
dt

= (α+ 1) E
[
X
]
− E

[
X
]
E
[
X2],

dE[X2]
dt

= (2α+ 1) E
[
X2]+ 2

[
E
[
X
]]2 − 2

[
E
[
X2]]2,(19)

with initial conditions E[X] = x and E[X2] = x2. We use this as a test with α = 2 and
x = 1 and results are shown in Figure 3. Again first-order (GQ1) and second-order
(GQ1e and GQ2) convergence is observed for the first and second moments and the
CPU times behave in line with Theorem 5.3.

6.4. Plane rotator. The following is a model for coupled oscillators [18] in the
presence of noise:

(20) dXµ(t) =
[
K

∫
R

sin(y −Xµ(t))Pµt (dy)− sin(Xµ(t))
]
dt+

√
2 kBT dW (t),

for coupling parameter K > 0, temperature kBT , and initial condition Xµ(0) ∼
µ = N(µ0, σ

2
0). In this case, we have a Gaussian initial distribution µ, which can
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Fig. 3. Polynomial drift: As for Figure 2 with the mean-field SDE (18). The error is computed
by using an accurate numerical solution of (19) as a reference value.

be approximated by Gauss–Hermite quadrature. The associated points and weights
can be found tabulated or computed via the three-term recursion for the Hermite
polynomials. In the implementation, we take the latter strategy and start with Q0
equal to the 40-point Gauss–Hermite rule.

The variable Xµ(t) represents an angle. In place of the the diameter reduction
step in Algorithm 1, we shift each point modulo 2π into [0, 2π). Also, we partition
[0, 2π) into ten subintervals and apply Gauss quadrature on subintervals of width
L = π/5. This significantly improves performance in experiments.

Following [23], we choose parameter values for K = 1, kBT = 1/8, and initial
mean µ0 = π/4 and variance σ2

0 = 3π/4. Results are shown in Figure 4, which show
errors for Pµ1 (φ) for the test functions φ(x) = sin2(x) and φ(x) = sin(x). Errors are
computed by taking a reference solution given by GQ2. First-order convergence is
observed for GQ1 and second-order convergence is observed for GQ2. The methods
work rapidly and the finest solution has 434 quadrature points. In Figure 5, we show
the pdf and cdf of the initial and final distributions.

6.5. Viscous Burgers equation. Consider the following mean-field SDE for a
parameter σ > 0:

dXµ(t) =
∫

R

(
1−H(Xµ(t)− y)

)
Pµt (dy) dt+ σ dW (t),

where H is the Heaviside step function with H(x) = 0 for x < 0 and = 1 for x ≥ 0,
and an initial distribution Xµ(0) is prescribed. The drift term here can also be written
as ā(X, t) = P(Xµ(t) < X). Let Xµ(t) have cdf u(t, x); then V (t, x) = 1 − u(t, x)
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Fig. 4. Plane rotator: error against time step and CPU time for computing E[φ(X(1))] for
φ(x) = sin2(x) (left) and = sin(x) (right), via GQ1 (green), QG1e (blue dashed), and GQ2 (black
dash-dot) methods for (20). The yellow lines in the upper plots show slopes of 1 and 2, similar to the
theoretical rate. The error is computed by taking a well-resolved GQ2 calculation for the reference
value. (See online version for color.)
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Fig. 5. Plane rotator: the pdf and cdf for initial distribution N(π/4, 3π/4). The plots show initial
(black) and final (blue) distributions. The pdf is computed by differentiating a spline approximation
to the cdf. (See online version for color.)

satisfies the viscous Burgers equation

∂V

∂t
=

1
2
σ2 ∂

2V

∂x2 − V
∂V

∂x
, x ∈ R.

In general, the solution of the initial-value problem for viscous Burgers equation
can be written as the difference of two cdfs defined by initial-value problems for a
mean-field SDE [6].
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Fig. 6. Burgers equation for 1
2σ

2 = 0.1: Comparison of the exact cdf at t = 1 given by (21)
and the numerical approximation by GQ1e of (22) with for ∆t = 3 × 10−4 and ` = 10−3 (using 74
quadrature points). (See online version for color.)

For Xµ(0) equal to delta measure at zero, the exact cdf is u(0, x) = H(x) and

(21) u(t, x) =
erfc(−x/

√
2σ2 t)

erfc(−x/
√

2σ2 t) + exp((t− 2x)/2σ2)(2− erfc((t− x)/
√

2σ2 t))
,

where erfc denotes the complementary error function [6]. We see in particular the
solution represents a soliton travelling to the right with speed 1/2.

For the GQ methods, this problem presents two challenges. First, the mean-field
term cannot be factored out as in (16) and Pµt (H(· −Xµ(t))) must be evaluated by
quadrature for each particle representing Xµ(t). This increases computation time as
m quadratures are needed at each step, instead of one. The lack of structure also
means GQ2 cannot be used.

Second, the Heaviside function has a jump discontinuity at x = 0 and this lack of
smoothness is evident in experiments. Introduce the regularized function

1−H(x) ≈ 1
2

erfc(x/`), x ∈ R,

for a length scale ` > 0. The equation

(22) dXµ(t) =
∫

R

1
2

erfc
(
Xµ(t)− y

`

)
Pµt (dy) dt+ σ dW (t)

has smooth bounded coefficients and the behavior of the GQ algorithms is shown in
Figure 7. The convergence behavior is broadly in line with the theory for φ(x) = x2,
though GQ1e loses accuracy for small ∆t when ` is reduced to ` = 0.001 from ` = 0.1
and the drift more closely resembles the Heaviside function. GQ1 and GQ1e accurately
compute the first moment, which gives the center of the soliton at x = 1/2, to high
accuracy (the error is 10−12 even for ∆t = 0.05 and ` = 0.001; not shown in the
figures). Figure 6 shows a comparison of the cdf of GQ1e using ` = 0.001 with the
exact cdf for ∆t = 3× 10−4 with 74 quadrature points. The two agree with an L1(R)
error of approximately 10−2.

7. Conclusion. We have derived a time-stepping method based on Gauss quadra-
ture for approximating the probability distribution of the solution of mean-field SDEs
at a fixed time. The work per time step is dominated by the eigenvalue problem for
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Fig. 7. Burgers equation for 1
2σ

2 = 0.1: The error in approximating the second moment of (22)
for ` = 0.1 (left) and ` = 0.001 (right). The green line marks GQ1 and the blue dashed-line marks
GQ1e. (See online version for color.)

determining the Gauss quadrature. The total work required depends on the smoothness
of the underlying problem and in the best case is O

(
ε−1/p |log ε|3

)
operations when

the underlying time-stepping method has pth order accuracy.
Though very effective for one-dimensional mean-field SDEs, their dependence

on Gauss quadrature means the presented methods are difficult to extend to higher
dimensions. The available methods for higher dimensions include [22, 23, 21] and are
not as efficient. One-dimensional mean-field SDEs remain an interesting case due
to their use in understanding high-dimensional interacting particle systems and the
proposed methods are far more efficient than currently available methods.

The drift a and diffusion b in this paper are assumed to be bounded with bounded
derivatives, which is unrealistic for many problems (including those in section 6
with polynomial a and b). Much work is currently being undertaken to extend the
numerical analysis of SDEs to non-Lipschitz problems (for example, [14, 15]). Some of
this will carry over to the Gauss-quadrature methods and mean-field SDEs, though
nice properties such as Lemma 3.1 (boundedness of exponential moments for Euler–
Maruyama) no longer hold in general. Some extensions are presented in [22], who also
consider bounded coefficients but allow more general regularity conditions on the test
functions than presented here. They also provide a nonuniform time-stepping scheme
that allows more efficient approximation of less smooth problems.
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