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Langevin Equations for Landmark Image Registration with Uncertainty∗

Stephen Marsland† and Tony Shardlow‡

Abstract. Registration of images parameterized by landmarks provides a useful method of describing shape
variations by computing the minimum-energy time-dependent deformation field that flows from one
landmark set to the other. This is sometimes known as the geodesic interpolating spline and can be
solved via a Hamiltonian boundary-value problem to give a diffeomorphic registration between images.
However, small changes in the positions of the landmarks can produce large changes in the resulting
diffeomorphism. We formulate a Langevin equation for looking at small random perturbations of
this registration. The Langevin equation and three computationally convenient approximations are
introduced and used as prior distributions. A Bayesian framework is then used to compute a posterior
distribution for the registration, and also to formulate an average of multiple sets of landmarks.
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1. Introduction. The mathematical description of shape and shape change has become
an area of significant research interest in recent years, not least because of its applications in
computational anatomy, where variations in the appearance of objects in medical images are
described mathematically in the hope that their change can be linked to disease progression.
When two images are topologically equivalent, they can be brought into alignment (registered)
by deforming one of the images without tearing or folding, so that their appearance matches as
closely as possible. This can be formulated mathematically by taking two images I, J : B → R
(for some physical domain B ⊂ Rd) that act as reference and target, respectively. (In
medical imaging, these are typically greyscale images.) Image I is then deformed by some
diffeomorphism Φ : B → B such that I ◦Φ−1 and J are as close as possible according to some
model of similarity. In addition to defining similarity, we must also select the metric on the
diffeomorphism group; the typical setting is to use the right-invariant H1

α metric, which leads
to the so-called EPDiff equation [13]. We can also define a “bending energy” of Φ in analogy
to the thin-plate spline [3, 6]. For a general treatment and an overview of the subject, see the
monograph [30] and references therein.

Similarity can be understood as a norm on the images ‖I ◦ Φ−1 − J‖, in which case
a common choice is the sum-of-squares of pixel values, although there are plenty of other
options (see, e.g., [24]). Alternatively, similarity can be expressed by a set of landmarks that
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identify corresponding points on each image. Our focus is on the second of these two methods.
Specifically, we consider a set of landmarks on the reference and target images, qri and qti for
i = 1, . . . , N , in B and we aim to find Φ such that Φ(qri ) = qti. Obviously, landmarks need to
correspond between the images, and this is a difficulty with landmark-based methods whether
the landmarks are selected manually or automatically (for example, by an algorithm that looks
for points in the images that should be well defined such as points of maximum curvature or
minimum intensity). In either case, it is easy for errors to be made, so that points that should
be in correspondence are not, or where there is some random error in the positioning of the
landmark with respect to the point that it is intended to mark. For humans, marking up points
on objects consistently is particularly difficult, and there is experimental evidence that the lack
of correspondence between pairs of landmarks can substantially affect the diffeomorphisms
that are identified in order to match the images; see, for example, [20]. We provide a solution
to this problem based on a Bayesian formulation of the landmark-matching problem.

In this paper, we parameterize the diffeomorphisms by time-dependent deformation fields
v : [0, 1]× B → Rd and define Φ(Q) = q(1) for Q ∈ B, where q(t) for t ∈ [0, 1] satisfies the
initial-value problem

(1.1)
dq

dt
= v(t, q(t)), q(0) = Q.

The bending energy of Φ is defined as follows via a norm on the deformation field:

(1.2) Energy(Φ) :=
1

2

∥∥v∥∥2
,

∥∥v∥∥ :=

(∫ 1

0

∥∥Lv(t, ·)
∥∥2

L2(B,Rd)
dt

)1/2

,

for a differential operator L (for example, L equals the Laplacian ∆ with clamped-plate
boundary conditions [19]).

The case where landmarks are fully observed is well studied, and the solution is given
by the following boundary-value problem: let G be the Green’s function associated to the
operator L2, and let pi(t), qi(t) satisfy the Hamiltonian boundary-value problem

(1.3)
dpi
dt

= −∇qiH,
dqi
dt

= ∇piH,

subject to qi(0) = qri and qi(1) = qti for the Hamiltonian H := 1
2

∑N
i,j=1 p

T
i pjG(qi, qj). Here

pi are known as generalized momenta. The diffeomorphism Φ is now defined by (1.1) with

(1.4) v(t, q) =

N∑
i=1

pi(t)G(q, qi(t)).

In general, G is defined directly rather than by specifying the Green’s functions of a known
L. In our experiments, we take the Gaussian function G(q1, q2) = exp(−(‖q1 − q2‖/`)2) for a
length scale `. For smooth choices of G such as this, Φ is a continuously differentiable function.
It is invertible by reversing the direction of the flow, and hence Φ : B → B is a diffeomorphism.
See, for example, [23] and, in more general situations, [14, 21].

Our focus in this paper is on treating uncertainty around landmark positions and sensitivity
of the diffeomorphism to noise. To study this problem, we introduce a Bayesian formulation
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and define prior distributions on the set of diffeomorphisms. We then condition the prior on
noisy observations of the landmarks to define a posterior distribution.

The choice of prior distribution is an important consideration, and we make a practical
choice ensuring that diffeomorphisms having less bending energy are preferred. This is the
Gibbs canonical distribution, the benefits of which are that both ends of the path are treated
equally and that it has a time reversal symmetry (i.e., the Gibbs distribution is invariant under
change of variable t 7→ 1− t).

We consider Langevin-type perturbations of (1.3), which have the Gibbs distribution
exp(−βH) (with inverse temperature β > 0) as an invariant measure. The advantage now is
that, with suitable initial data, the solutions of the Langevin equation [pi(t), qi(t)] all follow
the same distribution exp(−βH) for t ∈ [0, 1].

It can be seen that diffeomorphisms with lower bending energy are preferred by considering
the Hamiltonian using (1.4):

H(pi(t), qi(t)) =
1

2

N∑
j=1

pj(t)
Tv(t, qj(t)) =

1

2

N∑
j=1

∫
B
pj(t)

Tδqj(t)(x)v(t,x) dx

(if L2G = δ and L is self adjoint)

=
1

2
〈L2v(t, ·),v(t, ·)〉L2(B,Rd) =

1

2

∥∥Lv(t, ·)
∥∥2

L2(B,Rd)
.

Hence,
∫ 1

0 H(pi(t), qi(t)) dt = Energy(Φ), and we see that diffeomorphisms Φ with less bending
energy are associated to paths [pi(t), qi(t)] that have a larger density under the Gibbs measure
exp(−βH).

1.1. Previous work. We are aware of three papers that have looked at image registration in
the presence of noise. Most similar to ours is [29], where the trajectories qi(t), for t ∈ [0, 1] and
i = 1, . . . , N , are imagined to be noisy observations of some true trajectories Qi(t). Specifically,
they wish to minimize∫ 1

0

∥∥Lv(t, ·)
∥∥2

L2(B,Rd)
dt+ σ

N∑
i=1

∫ 1

0

∥∥qi(t)−Qi(t)
∥∥2
dt

for a parameter σ > 0. The first term corresponds to a bending energy, and the second
penalizes deviations from Qi(t). This leads to a controlled Hamiltonian system,

dpi
dt

= −∇qiH + σ(qi −Qi(t)),
dqi
dt

= ∇piH.

If a white-noise model is assumed for the observation error qi(t)−Qi(t), this gives the SDE

(1.5) dpi = −∇qiH dt+ σ dW i(t),
dqi
dt

= ∇piH.

This system is identical to (2.1), except that no dissipation is included, and therefore it will
not have a Gibbs distribution as invariant measure.
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In [4], registrations where two curves are matched (in two dimensions) are studied. A set
of discrete points is defined on one curve, and noisy observations are made on the second.
Registrations are defined by an initial momentum and, to match curves rather than points,
reparameterizations of the curve are also included. A Gaussian prior distribution is defined on
the joint space of initial momentum and reparameterizations. Observations are made with
independent Gaussian noise. The authors provide a Monte Carlo Markov chain (MCMC)
method for sampling the posterior distribution. Hamiltonian equations are used to define the
diffeomorphism, and no noise is introduced along the trajectories. In the case of landmark
matching, there is no advantage to introducing a prior distribution on the initial momentum,
as the data specifies the initial momentum completely. For noisy landmark matching, the
approach has value, being simpler than the Langevin equations, but the results will depend on
the end on which the prior distribution is specified.

A method to include stochasticity into the large deformation diffeomorphic metric mapping
(LDDMM) framework of image registration (see [30] for details) is presented in [1]. In this
approach, noise is introduced into the time-dependent deformation field from the start point to
the end point, leading to a stochastic version of the Euler–Poincaré (EPDiff) equations. The
authors also introduce an expectation-maximization (EM) algorithm for estimating the noise
parameters based on data. The approach is based on two other papers of relevance, which add
cylindrical noise to the variational principles of systems of evolutionary PDEs. By taking the
system in variational form, this introduces noise perturbations into the advection equation
(which corresponds to (1.4)). To preserve the conservation laws encoded in the PDEs, the
momentum equations are left unchanged. The resulting trajectories in qi(t) have the same
regularity as Brownian motion and satisfy Stratonovich SDEs, which are invariant to the
relabeling Lie group. The approach was originally developed for the Euler equations for an
ideal fluid in [12] and was extended to the EPDiff equations in [15]. While their examples
are for soliton dynamics in one spatial dimension, under particular choices of metric on the
diffeomorphism group, the equations of image deformation are also EPDiff equations; hence
the work in [1].

1.2. Organization. This paper is organized as follows. Our Langevin equations are
described in section 2 and some basic theory established. Unfortunately, these Langevin
equations are hypoelliptic, and the Hamiltonian is not separable, making the equations difficult
to work with numerically. Therefore, in section 3 we introduce three numerically convenient
prior distributions based on the Langevin equation. Section 4 formulates inverse problems
based on the prior distributions. Two are image registrations given noisy observations of
the landmarks; a third asks for the average position of a family of landmark sets. This
section includes numerical experiments demonstrating our method on a variety of simple curve
registrations. Further simulations and examples are given in the supplementary material
(M107928 01.pdf [local/web 3.06MB]).

1.3. Notation. We denote the Euclidean norm on Rd by ‖x‖ =
√
xTx and the d×d identity

matrix by Id. For a subset B of Rd, L2(B,Rd) is the usual Hilbert space of square-integrable
functions from B → Rd with inner product 〈f , g〉L2(B,Rd) =

∫
B f(x)Tg(x) dx. We often work

with position vectors qi ∈ B ⊂ Rd and conjugate momenta pi ∈ Rd for i = 1, . . . , N . We denote
the joint vector [p1, . . . ,pN ] by p ∈ RdN and similarly for q ∈ RdN . The combined vector

http://epubs.siam.org/doi/suppl/10.1137/16M1079282/suppl_file/M107928_01.pdf
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[p, q] is denoted z ∈ R2dN . For a symmetric and positive-definite function G : Rd × Rd → R,
let G(q) denote the N ×N matrix with entries G(qi, qj).

2. Generalized Langevin equations. The classical landmark-matching problem can be
solved as a Hamiltonian boundary-value problem. The dynamics in a Hamiltonian model
have constant energy as measured by H. Instead, we connect the system to a heat bath and
look at constant-temperature dynamics. We consider a heat bath with inverse temperature β.
One method of constant-temperature particle dynamics is the Langevin equation. That is, we
consider the system of stochastic ODEs on R2dN given by

(2.1) dpi =
[
− λ∇piH −∇qiH

]
dt+ σ dW i(t),

dqi
dt

= ∇piH

for a dissipation λ > 0 and diffusion σ > 0. Here W i(t) are i.i.d. (independently and
identically distributed) Rd Brownian motions. For β = 2λ/σ2, a potential V : RdN → R, and
H = 1

2p
Tp + V (q), (2.1) is the classical Langevin equation where the marginal invariant

distribution for p is N(0, β−1IdN ), and hence the average temperature 1
dE
[
pTi pi

]
per degree

of freedom is the constant β−1. Let [pi(t), qi(t)] for t ∈ [0, 1] satisfy (2.1), and define Φ(Q)
as in (1.1) and (1.4). Notice that Φ(qi(0)) = qi(1). In perturbing (2.1) from (1.3), only the
momentum equation is changed, so the equations for q are untouched and consistent with the
definition of v(t, q) and hence Φ.

The solution of (2.1) is related to (1.5) by a Girsanov transformation. Let π and ν be
the distribution on the path space C([0, 1],R2dN ) of (2.1) and (1.5), respectively. Then for
z = [p, q],

dπ(z) =
1

φ(z)
dν(z),

where

log(φ(z)) =
N∑
i=1

[
λ

σ

∫ 1

0
pi(t)

TdW i(t)−
λ2

2σ2

∫ 1

0

∥∥pi(t)∥∥2
dt

]
;

see [10, Lemma 5.2].
To define a distribution on the family of diffeomorphisms, it remains to choose initial data.

If we specify a distribution on [p, q] at t = 0, (2.1) implies a distribution on the paths and
hence on Φ via (1.1) and (1.4). The obvious choice is the Gibbs distribution exp(−βH). If
σ2β = 2λ (the fluctuation–dissipation relation), then the Gibbs distribution is an invariant
measure of (2.1). To see this, note that the generator of (2.1) is

L = ∇pH · ∇q + (−λ∇pH −∇qH) · ∇p +
1

2
σ2∇2

p,

and its adjoint is

L∗ρ = −∇q · ((∇pH)ρ)−∇p · ((−λ∇pH −∇qH)ρ) +
1

2
σ2∇2

pρ.

The Fokker–Planck equation for the pdf ρ(p, q, t) is

∂ρ

∂t
= −∇qρ · ∇pH +

(
λ∇pH · ∇p +∇p · λ∇pH

)
ρ+∇pρ · ∇qH +

1

2
σ2∇2

pρ.
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Put ρ = e−βH to see that

∂ρ

∂t
= (β∇qH) · ∇pH ρ+ (−λ∇pH · β∇pH +∇p · λ∇pH)ρ− β∇pH · ∇qHρ

+
1

2
σ2(−β∇2

pH + β2∇pH · ∇pH)ρ.

Then, ∂ρ/∂t = 0 if σ2β = 2λ, and ρ is an invariant measure. In some cases, it can be shown
additionally that ρ is a probability distribution. When B is bounded (as is usually the case
for images), the phase space is compact in position space, and, if G is a uniformly positive-
definite function, exp(−βH) can be rescaled to be a probability measure. This happens for
the clamped-plate Green’s function [19]. Furthermore, in some cases, the system is ergodic;
precise conditions are given in [28], which studies generalized Langevin equations such as (2.1)
and provides conditions on H to achieve a unique invariant measure.

While invariant measures are appealing, we view the trajectories as convenient parameteri-
zations of the diffeomorphism, and they are not themselves of interest. Furthermore, in some
cases (see section 9.2 of [30]), the domain B is taken to be Rd, and G is translation invariant
(e.g., G(q1, q2) = exp(−(‖q1−q2‖/`)2) for a length scale `), and this means exp(−βH) cannot
be a probability measure on R2dN . It is simpler to ask for a distribution on the diffeomorphism
that is invariant under taking the inverse; that is, Φ and Φ−1 have the same distribution. To
achieve this, [p(t), q(t)] should have the same distribution under the time reversal t 7→ 1− t.
This can be achieved simply by setting initial data at t = 1/2 and flowing forward and backward
using the same dynamics. Precisely, choose an initial probability distribution µ∗ on R2dN .
Given [p(1/2), q(1/2)] ∼ µ∗, compute p(t) and q(t) for t > 1/2 by solving (2.1). For t < 1/2,
solve

(2.2) dpi =
[
λ∇piH −∇qiH

]
dt+ σ dW i(t),

dqi
dt

= ∇piH.

Here the sign of the dissipation is changed as we evolve the system forward by decreasing
t. The distribution of [p(t), q(t)] is unchanged by t 7→ 1 − t, as can be verified using the
Fokker–Planck equation.

One choice for µ∗ comes by choosing distinguished landmark positions q∗i and conditioning
the Gibbs distribution on q∗i . Define the covariance matrix C by C−1 = βG(q∗) ⊗ Id (the
matrix C is positive definite if G is a positive-definite function and the points are distinct;
see subsection 1.3 for a definition of G). With q∗ := [q∗1, . . . , q

∗
N ], we could choose µ∗ =

N(0, C)×δq∗ � exp(−βH(·, q∗))×δq∗ , which is the Gibbs distribution conditioned on positions
q∗. We prefer to allow deviation in the position also, and set µ∗ = N(0, C)×N(q∗, δ2IdN ) for
some variance δ2 > 0. Then µ∗ is the product of Gaussian distributions, where positions are
easily sampled independently from N(q∗i , δ

2Id) and momenta p are sampled from N(0, C). The
matrix C is a dN × dN -covariance matrix. Despite the size, standard techniques such as the
Cholesky or spectral factorization can be used to sample p.

To summarize, we have defined two prior distributions, both based on the generalized
Langevin system (2.2). Ideally, we take the Gibbs distribution for initial data and flow forward
by (2.2) to define a distribution on Φ : B → B. This approach is not always convenient, as the
Gibbs distribution may not be a probability distribution and may also be difficult to sample
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and calculate with. An alternative is to choose a convenient distribution at t = 1/2 and flow
forward by (2.1) and backward by (2.2) to define a distribution on paths and hence on Φ.

2.1. Push-forward example. The generalized Langevin equation defines a distribution
on the family of diffeomorphisms Φ : B → B. We choose landmarks q1, . . . , qN , the inverse
temperature β, the dissipation coefficient λ, and an initial probability distribution µ∗ on R2dN

at some time t∗ ∈ [0, 1]. Then the Langevin equation can be solved to find paths qi(t),pi(t)
for t ∈ [0, 1], and this defines Φ : B → B by (1.1) and (1.4).

To numerically simulate (2.1) with a time step ∆t = 1/N∆t for N∆t ∈ N, consider times
tn = n∆t and the approximations P n ≈ [p1(tn), . . . ,pN (tn)] and Qn ≈ [q1(tn), . . . , qN (tn)]
given by the Euler–Maruyama method,

(2.3)

(
P n+1

Qn+1

)
=

(
P n

Qn

)
+

(
−λ∇pH∆t−∇qH∆t+ σ∆W n

∇pH∆t

)
,

where H on the right-hand side is evaluated at (P n,Qn) and ∆W n are i.i.d. N(0, IdN∆t)
random variables. This method converges in the root-mean-square sense with first order
(subject to smoothness and growth conditions on H) [17].

We give numerical examples of the push-forward map Φ for the Green’s function G(q1, q2) =
exp(−(‖q1 − q2‖/`)2) with ` = 0.5 in two dimensions (d = 2). Consider B = [−1, 1]2 and 20
regularly spaced reference points qri on the unit circle. For the initial distribution, we take
qi(0) = qri and generate reference momenta pi(0) from the conditional Gibbs distribution, so
that p(0) ∼ N(0, C) for C−1 = βG(qr)⊗ I2. Then approximate pi(tn), qi(tn) by (2.3). We can
now apply the explicit Euler method to (1.1) and (1.4) to define a mapping Φ : B → B. It can
be shown [22] that the approximate Φ is also a diffeomorphism when ∆t is sufficiently small.
We show samples of the action of Φ on a rectangular grid in Figure 1 for different values of
the inverse temperature β.

3. Approximation of generalized Langevin equations. Suppose that reference and target
landmarks qri and qti are known exactly. In Bayesian statistics, the prior distribution is
conditioned on the data (landmarks in our case) to define a posterior distribution (on the paths
p(t), q(t) and hence on diffeomorphisms Φ). For the generalized Langevin prior with Gibbs
initial data and exact landmark data, the posterior distribution on [p(t), q(t)] is generated
by taking solutions of (2.1) with initial data q(0) = qr and p(0) ∼ exp(−βH(qr, ·)) and
conditioning on q(1) = qt. This is a type of diffusion bridge, which is important in parameter-
estimation algorithms for SDEs; see [2, 11, 25].

In our case, the SDE gives a hypoelliptic diffusion, and we condition only on the position
variables. The problem is similar to [11], which develops a stochastic PDE for sampling
Langevin diffusion bridges with the separable Hamiltonian H = 1

2p
2 + V (q) for a potential

V . It is not clear how their approach generalizes to the present situation with a nonseparable
H. The method of analysis uses the Girsanov theorem to replace (2.1) by a diffusion bridge
for a linear SDE [5]. The linear SDE has a Gaussian distribution, and standard formulas for
conditioning Gaussian distributions are available. This technique underlies several approaches
to sampling diffusion bridges such as [9, 11]. In the present situation, Girsanov is much less
effective, as the nonlinearities in the position equation due to ∇piH =

∑N
j=1 piG(qi, qj) are

unchanged by Girsanov’s transformation, and it is hard to find a linear SDE to work with.
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β = 10 β = 20

β = 40 β = 80

Figure 1. Push-forward maps Φ applied to a grid on B = [−1, 1]2 and the unit circle (shown in blue) with
G(q1, q2) = exp(−‖q1 − q2‖2/`2) for ` = 0.5, λ = 0.5, and β = 10, 20, 40, 80, based on qri as the marked points
(?) and p(0) ∼ N(0, C) for C−1 = βG(qr)⊗ I2. As the inverse temperature β is increased, the circle is pushed
forward to smoother shapes.

Other approaches to sampling diffusion bridges include [2], which is not developed in the
hypoelliptic case, or the Doob h-transform [25], which is computationally very demanding, as
it involves computing the full pdf of the diffusion. Unfortunately, none of the known methods
for diffusion bridges works with (2.1) to give computationally convenient algorithms.

Without an efficient method for sampling the diffusion bridge, it is hard to formulate
an MCMC method with good acceptance rates. Consequently, the generalized Langevin
prior distribution is difficult to use in Bayesian statistics, and we now turn to simpler prior
distributions, which arise by approximating the Langevin equation. We introduce three priors,
one based on a linearized Langevin equation and two based on the Baker–Campbell–Hausdorff
formula for operator splittings.

All three of these methods are based on a regime of small dissipation λ and large inverse
temperature β. In this case, sample paths of the Langevin equation are close to those of the
Hamiltonian system on the time interval [0, 1]. This is a reasonable assumption in applications,
as we want the time scale 1/λ � 1, so that the landmarks qi(t) at t = 0 and t = 1 are
well coupled, but there is some drift in them. As we saw in Figure 1, small β leads to
large perturbations of the initial shape. Therefore, we assume that σ2 = 2λ/β is small for
computational convenience. In cases where these assumptions are not sufficient, it may be
necessary to consider a higher-order method, but we do not do that here.
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3.1. Linearized Langevin equation. In this section, based on small σ2, we linearize the
Langevin equation about the Hamiltonian solution to define a Gaussian prior distribution.

Let ẑ(t) = [p̂(t), q̂(t)] denote a solution of (1.3). Write the solution z(t) = [p(t), q(t)] of
(2.1) as z(t) = ẑ(t) + δ(t) +R(t), where δ(t) is a first-order correction given by linearizing
(2.1) around ẑ(t). With initial conditions δ(t∗) = z(t∗) − ẑ(t∗), it is defined by the linear
system of SDEs,

(3.1) dδ =

[
−λ
(
∇pH(ẑ(t))

0

)
+B+(t)δ

]
dt+

(
σIdN

0

)
dW (t),

where W (t) is a RdN Brownian motion and

B+(t) =

(
−λ∇ppH −∇qpH −λ∇pqH −∇qqH

∇ppH ∇pqH

)
,

all evaluated at ẑ(t). In the case λ = σ = 0, δ = 0 solves (3.1). With smoothness and growth
conditions on H, it can be shown that the remainder R(t) = O(σ2 + λ2) [8].

To preserve the symmetry of the system, we specify an initial distribution at t∗ = 1/2 and
ask that δ(t∗) ∼ µ∗. For t < 1/2, we use

(3.2) dδ =

[
λ

(
∇pH(p∗(t), q∗(t))

0

)
+B−(t)δ

]
dt+

(
σIdN

0

)
dW (t),

for

B−(t) =

(
λ∇ppH −∇qpH λ∇pqH −∇qqH

∇ppH ∇pqH

)
.

That is, the sign of the dissipation is switched, as we are specifying a final condition for this
system. B− differs by a sign in the conservative terms, as time is reversed.

Equation (3.1) is linear and its solution is a Gaussian process, and exact expressions are
available for the mean and covariance in terms of deterministic integrals [16]. We prefer
to use a time-stepping method to approximate (3.1). We specify the distribution at some
intermediate time and need forward and backward integrators: the Euler–Maruyama method
gives approximations δn ≈ δ(tn) defined by

δn+1 =
(
I +B+

n ∆t
)︸ ︷︷ ︸

=:M+
n

δn +An +

(
σ∆W n

0

)
, use for tn+1 > 1/2,

δn−1 =
(
I +B−n ∆t

)︸ ︷︷ ︸
=:M−n

δn +An +

(
σ∆W n

0

)
, use for tn−1 < 1/2,

where

An = −∆t λ

(
∇pH

0

)
,

B+
n = B(tn), B−n = −B−(tn) =

(
−λ∇ppH +∇qpH −λ∇pqH +∇qqH

−∇ppH −∇pqH

)
.
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For a Gaussian initial distribution µ∗, the resulting distribution on paths and their Euler–
Maruyama approximation are Gaussian. In Appendix A, we give equations for calculating the
mean and covariance of the Euler–Maruyama approximations [δ0, . . . , δN∆t

].
The Gaussian distributions can be sampled to generate paths [p(t), q(t)] ≈ [p̂(t), q̂(t)]+δ(t).

This then defines a map Φ via (1.1) and (1.4). Note, however, that the consistency is broken,
and Φ(qi(0)) may not equal qi(1).

3.2. Operator splitting. Let L denote the generator associated to the generalized Langevin
equation (2.1). Then L = L0 + σ2L1 for

L0 = ∇pH∇q −∇qH∇p, known as the Liouville operator, and

L1 =
1

σ2

(
−λ∇pH∇p +

1

2
σ2∇p · ∇p

)
= −β

2
∇pH∇p +

1

2
∇p · ∇p.

The Fokker–Planck equation is ρt = L∗ρ, where L∗ denotes the adjoint of L, and describes the
evolution of the pdf from a given initial density ρ(0, ·) = ρ0. Using semigroup theory, we write
ρ(t, ·) = eL

∗tρ0. We can approximate eA+B via eAeB +O([A,B]) or via the Strang splitting as

eA+B ≈ eA/2eBeA/2 +O
(
[B, [B,A]] + [A, [A,B]]

)
,

where [·, ·] denotes the operator commutator. This can be applied with A = L∗0 and B = σ2L∗1
to simplify (2.1). In the small-noise limit, σ2L∗1 → 0, but L0 is order one, and the error is O(σ2).
These approximation strategies do preserve the Gibbs invariant measure, as eσ

2L∗1µ = eL0µ = 0
for µ = exp(−βH). They are also much easier to compute with than the full eL

∗
. We look at

two uses of the Strang splitting.
First splitting. Approximate

eL
∗ ≈ eσ2L∗1/2eL

∗
0eσ

2L∗1/2.

The semigroup on the right-hand side maps

[p(0), q(0)] 7−→︸︷︷︸
eσ

2L∗1/2

[p(1/2), q(0)] 7−→︸︷︷︸
eL
∗
0

[p̃(1/2), q(1)] 7−→︸︷︷︸
eσ

2L∗1/2

[p(1), q(1)].

The two steps with eσ
2L∗1/2 are described by the time-half evolution governed by the

Ornstein–Uhlenbeck SDE,

(3.3) dp = −λ∇pH(p, q0) dt+ σ dW (t), p(0) = p0,

for [p0, q0] = [p(0), q(0)] or [p̃(1/2), q(1)]. This only involves a change in momentum.
The middle step with eL

∗
0 is the time-one evolution with the Hamiltonian equations

(1.3). If [p(0), q(0)] ∼ exp(−βH), then so are [p(1/2), q(0)], [p̃(1/2), q(1)], and also
[p(1), q(1)]. The effects of eσ

2L∗0/2 at either end are superfluous, as they change the
momentum only; any conditioning is applied on the position data. In this way, we see fit
to disregard this term and define the prior as the push forward under the Hamiltonian
flow of Gibbs distribution. The density of the prior on paths z(t) = [p(t), q(t)] for
t ∈ [0, 1] is

exp(−βH(z(0)))δz(t)−S(t;0,z(0)),

where S(t; s, z0) is the solution of (1.3) at time t with initial data [p(s), q(s)] = z0.
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Second splitting. Approximate
eL
∗ ≈ eL∗0/2eσ2L∗1eL

∗
0/2.

The semigroup on the right-hand side maps

[p(0), q(0)] 7−→︸︷︷︸
eL
∗
0/2

[p(1/2), q(1/2)] 7−→︸︷︷︸
eσ

2L∗1

[p̃(1/2), q(1/2)] 7−→︸︷︷︸
eL
∗
0/2

[p(1), q(1)].

Again, if [p(0), q(0)] ∼ exp(−βH), then so do each of the following sets of positions
and momenta. It is important to preserve each of the three parts of the approximation,
as the Hamiltonian flow at either end affects all components. The density is

exp(−βH(p(1/2), q(1/2)) υ(1, p̃(1/2)); [p(1/2), q(1/2)]) δz(t)−Z(t),

where υ(t,p; [p0, q0]) is the density at time t of the random variable p(t) defined by
the SDE

(3.4) dp = −λ∇pH(p, q0) dt+ σdW (t), p(0) = p0.

The function Z(t) describes the Hamiltonian flow and is defined by

(3.5) Z(t) =

{
S(t; 1/2, [p̃(1/2), q(1/2)]), t > 1/2,

S(t; 1/2, [p(1/2), q(1/2)]), t < 1/2.

It will be more convenient to have both halves flow forward and write

Z(t) =

{
S(t− 1/2; 0, [p̃(1/2), q(1/2)]), t > 1/2,

RS(1/2− t; 0, R[p(1/2), q(1/2)]), t < 1/2,

where R[p, q] = [−p, q] expresses the time reversal.
The key variables for conditioning are the start and end positions, q(0) and q(1). These
positions are deterministic maps of the time-half data, provided by a time-half push
forward of the deterministic Hamiltonian dynamics. Thus, it is convenient to express
the prior in terms of p(1/2), q(1/2), p̃(1/2) by the density proportional to

exp(−βH(p(1/2), q(1/2)) υ(1/2, p̃(1/2)); [p(1/2), q(1/2)]).

We now show how to simplify υ when β is large and λ is small. In (3.4), ∇pH(p, q) =
(G(q)⊗ Id)p for G(q) defined in subsection 1.3. For a deterministic p0, the solution p(t)
of (3.4) is an Ornstein–Uhlenbeck process, with a Gaussian distribution with mean
µt = (e−λG(q0)t ⊗ Id)p0 and covariance Ct ⊗ Id, for

Ct := σ2 1

2λ
G(q0)−1

(
IN − e−2λ tG(q0)

)
=

1

β
G(q0)−1

(
IN − e−2λ tG(q0)

)
.

By Taylor’s theorem, e−λA = IN − λA+
∫ 1

0 λ
2A2e−λAs(1− s) ds for any N ×N matrix

A. Hence,

Ct = σ2 t IN +
1

β
G(q0)−1

∫ 1

0
4λ2 t2 G(q0)2e−2λ tG(q0)(1− s) ds

= σ2 t IN + 4
1

β
λ tK for K :=

∫ 1

0
λ tG(q0) e−2λ tG(q0)(1− s) ds.
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When G is a positive-definite function, K is uniformly bounded over any q0 ∈ RdN
and t ∈ [0, 1]. Therefore,

(3.6) Ct = σ2 t IN +O
(
λ t/β

)
.

As explained in section 3, we are interested in large β and small λ, and hence we are
justified in approximating Ct ≈ σ2 t IN for t ∈ [0, 1]. Then

eσ
2L∗1tδ(p0,q0) ≈ N((e−λ tG(q0) ⊗ Id)p0, σ

2 t IdN )× δq0
.

For the prior, we are interested in υ(1, p̃(1/2); (p(1/2), q(1/2))) and, by this approxi-
mation,

υ(1, ·; (p(1/2), q(1/2))) ≈ N((e−λG(q(1/2)) ⊗ Id)p(1/2), σ2IdN )× δq(1/2).

Hence, the prior distribution on (p(1/2), q(1/2), p̃(1/2)) has density proportional to
(3.7)

exp
(
−βH(p(1/2), q(1/2))

)
exp

(
− 1

2σ2

∥∥∥p̃(1/2)− (e−λG(q(1/2)) ⊗ Id)p(1/2)
∥∥∥2
)
.

Distributions on the paths [p(t), q(t)] are implied by solving (1.3) with initial data
[p(1/2), q(1/2)] for t > 1/2 and with final data [p̃(1/2), q(1/2)] for t < 1/2.

4. Data and experiments. We now show how to work with the prior distributions using
data. For a prior distribution on the diffeomorphisms Φ, we would like to compute or sample
from the conditional distribution of Φ given that qi(0) = qti + ηti and qi(1) = qri + ηri , where
ηti,η

r
i ∼ N(0, δ2Id) are i.i.d. for some parameter δ > 0. We present three cases as follows:
1. The linearized Langevin prior is Gaussian, and conditioning by observations of the

landmarks with i.i.d. Gaussian errors yields a Gaussian posterior distribution. We
show how to compute the posterior distribution for the Euler–Maruyama discretized
equations.

2. The first splitting prior consists of a Gibbs distribution on the initial data and Hamil-
tonian flow equations. As such, the distribution is specified by the distribution on the
initial landmarks and generalized momenta. We condition this on landmarks also with
i.i.d. Gaussian errors. The posterior is not Gaussian. We show how to compute the
maximum a posteriori (MAP) point and approximate the posterior covariance matrix
by the Laplace method. The MAP point is a set of initial landmark positions and
generalized momenta.

3. The second splitting prior consists of a Gibbs distribution on the midpoint, a second
momentum for each landmark (correlated to the first) at the midpoint, and Hamiltonian
flow equations. This distribution is parameterized by one set of landmarks and two sets
of generalized momenta. We show how to examine the posterior distribution (again
conditioning on Gaussian observations) via the MAP point and Laplace method. We
interpret the MAP point as an average set of landmarks by extending the prior to allow
for multiple sets of landmarks.
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The discussion includes computational examples. The calculations were performed in
Python using the Numpy, Matplotlib, and Scipy libraries, and the code is available for
download [18]. For information about the code and for a set of further examples, see the
supplementary material (M107928 01.pdf [local/web 3.06MB]). In all cases, the landmarks in
each image were centered to have zero mean and then aligned using an orthogonal Procrustes
transformation in order to remove potentially confusing global transformations.

4.1. Noisy landmarks via the linearized Langevin equation. The key step in defining
the linearized Langevin prior is distinguishing paths about which to linearize. We choose
paths [p(t), q(t)] by solving the Hamiltonian boundary-value problem (1.3) based on the
landmark data qti and qri . Then the linearized Langevin prior is a Gaussian distribution on
the paths [p(t), q(t)] generated by (3.1), the linearization of the Langevin equations about
the distinguished paths. We denote the Euler–Maruyama approximation with time step
∆t = 1/N∆t to [p∗, q∗] + δ at tn by [P n,Qn] and the vector [P 0,Q0, . . . ,PN∆t

,QN∆t
] by X.

The mean M1 and covariance C of X can be found using the equations in Appendix A.

Let Q̂
r

= Q0 + ηr and Q̂
t

= QN∆t
+ ηt for ηr,ηt ∼ N(0, δ2IdN ) i.i.d. (the distributions

are independent of each other and also of the Brownian motions). Let Y = [Q̂
r
, Q̂

t
] and

Z = [X,Y ]. Z is then Gaussian with mean [M1,M2] =
[
M1,

[
E[Q0],E

[
QN∆t

]]]
and

covariance[
C11 CT

21

C21 C22

]
, where C11 = C, C22 =

[
Cov(Q0,Q0) + δ2IdN C0N∆t

CT
0N∆t

Cov(QN∆t
,QN∆t

) + δ2IdN

]
,

and C21 =

[
Cov(Q0,Q0) . . . Cov(Q0,QN∆t

)
Cov(QN∆t

,Q0) . . . Cov(QN∆t
,QN∆t

)

]
.

The distribution of X given observations Q̂
t

= qt and Q̂
r

= qr is N(M1|2, C1|2) with

M1|2 = M1 + C12C
−1
22 (y −M2), y = [qr, qt],

C1|2 = C11 − C12C
−1
22 C21.

For the number of landmarks that we consider (less than 100), this is readily computed using
standard linear-algebra routines. The two inverse matrices involved are of size dN × dN . The
full covariance matrix is memory demanding though, as it has size (N∆t+1)2dN×(N∆t+1)2dN .

Figure 2 shows the solution of (1.3) and the associated registration for a set of known
landmarks. We linearize about the solution [p(t), q(t)] to define a linearized Langevin prior,
and Figure 3 shows the standard deviations of the computed posterior distribution at the
landmark positions. Figure 4 shows the standard deviation of the posterior throughout the
image space, in both the original and warped coordinate systems. The difference in standard
deviations shown in Figures 3 and 4 is significant, as one comes from the posterior distribution
matrix at the landmarks and the other from a Monte Carlo estimator of the distribution of
Φ(Q) for Q away from landmark points. In this linearized situation, Φ may not agree with the
linearized Langevin equation. We see this weakness again for large deformations in Figure 5,
where we compare the random diffeomorphisms and the paths qi(t) defined by samples of
the posterior distribution. Though Φ(qri ) and qi(1) agree when the data is regular, for larger

http://epubs.siam.org/doi/suppl/10.1137/16M1079282/suppl_file/M107928_01.pdf
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Figure 2. The blue and black stars mark 20 noisy observations of regularly spaced points on two concentric
circles. Using the Hamiltonian boundary-value problem (1.3), we compute a diffeomorphism and show paths
qi(t). Three intermediate shapes are shown in grey. The yellow lines show the paths taken by the landmarks
through the interpolating shapes.
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Figure 3. A registration between two noisy observations of a circle at different scales (radii of 1 and 2
corresponding to times t = 0, 1, respectively) using the linearized Langevin prior (with λ = 0.1 and β = 25), with
landmarks observed with i.i.d. N(0, δ2Id) errors for δ2 = 0.01. The discs on the left-hand plot and the yellow
shadows on the right-hand plot indicate one standard deviation of the computed posterior covariance matrix.

deformations, there is significant disagreement. This is because Φ is defined by (1.1) and (1.4),
which is no longer identical to the linear equation (3.1) used to define qi(t).

4.2. Noisy landmarks by operator splitting. The first splitting prior demands much less
memory than the linearized Langevin prior, as the randomness concerns only the initial position
and momentum. It also has the advantage of preserving the Gibbs distribution and maintaining
consistency with the definition of Φ. We show how to use this prior in the same scenario as
subsection 4.1. This time we are unable to sample the posterior distribution. Instead, we
formulate a MAP estimator and apply a Laplace approximation to estimate the posterior
covariance.
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Figure 4. The colors show the standard deviation of Φ(Q) at Φ(Q) (left-hand side) and at Q (right-hand
side) for a set of uniformly spaced Q on a rectangular grid, when Φ is defined by the posterior distribution for
the linearized Langevin prior.
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Figure 5. In the right-hand column, blue stars mark Φ(qi(0)) and the yellow stars mark qi(1), where qi(t)
and Φ are given via samples of the linearized Langevin posterior distribution, with paths shown in the left-hand
column. The inner black loop marks qi(0). Due to the linearization, Φ(qi(0)) 6= qi(1), although it is closer on
the top row where the deformation field is much smoother.
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As the observation error is independent of the prior, the posterior density is given by the
pdf of the prior on [p0, q0] times the data likelihood for the observations q0 and Sq(1, 0; [p0, q0])
of qr and qt. The density of the first splitting prior is exp(−βH(p0, q0)). For Gaussian
observations, the data likelihood is proportional to

exp

(
− 1

2δ2

(∥∥qr − q0

∥∥2
+
∥∥qt − Sq(1; 0, [p0, q0])

∥∥2
))

,

where Sq denotes the position components in S (the Hamiltonian flow map). The posterior
density is proportional to

exp(−βH(p0, q0)) exp

(
− 1

2δ2

(∥∥qr − q0

∥∥2
+
∥∥qt − Sq(1; 0, [p0, q0])

∥∥2
))

.

To find the MAP point, we minimize

(4.1) F (p0, q0) := βH(p0, q0) +
1

2δ2

(∥∥qr − q0

∥∥2
+
∥∥qt − Sq(1; 0, [p0, q0])

∥∥2
)
.

This comprises the regularizer that comes from the Gibbs distribution and two landmark-
matching terms, and can also be derived as a Tychonov regularization of the standard landmark
registration problem. There is one parameter β from the Gibbs distribution, and the dissipation
λ is not present. We minimize F to find an approximation to the MAP point, using standard
techniques from unconstrained optimization and finite-difference methods for (1.3).

The Laplace method gives an approximation to the posterior covariance matrix by a
second-order approximation to F at the MAP point z0. Thus, we evaluate the Hessian ∇2F
of F at the MAP point. Second derivatives of F are approximated by using a Gauss–Newton
approximation for the last term, so we use

∇2F ≈ β∇2H +
1

δ2

[(
0 0
0 IdN

)
+ JTJ

]
,

where J is the Jacobian matrix of Sq(1; 0, z0). The Gauss–Newton approximation guarantees
that the second term is positive definite (though the Hessian of H and the overall expression
may not be). To make sure the covariance is a well-defined symmetric positive-definite matrix,
we form a spectral decomposition of ∇2F , throw away any negative eigenvalues, and form the
inverse matrix from the remaining eigenvalues to define a covariance matrix C ≈ ∇2F−1. See
Figure 6 for an example.

4.3. Second splitting prior and landmark-set averages. Averages are an important way
of summarizing a data set. Under our Bayesian formulation, it is relatively simple to define a
consistent average for sets of landmarks defined on multiple images, as we demonstrate in this
section. The approach is similar in spirit to the arithmetic mean, which arises in calculations
of the MAP point for Gaussian samples.

We use the second splitting prior and start with two sets of landmark points qa and qb.
We wish to find a third set of landmark points q∗ that match both sets a, b according to some
measure. We introduce momenta p∗a and p∗b. Classical landmark matching gives a momentum
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Figure 6. Noisy landmark registration (with δ =
√

0.005 ≈ 0.07) using the first splitting prior (with
β = 25). In the left-hand plot, the grey lines mark the original landmark data. The landmarks given by the MAP
registration algorithm are marked in color, with discs indicating the standard deviation on the target landmarks
by the Laplace approximation for the computed posterior covariance. The right-hand plots show the difference
between MAP landmarks and data landmarks.

p∗a that flows q∗ to qa, and similarly for b. This can be done for any q∗. The second splitting
prior expresses our preference for less deformation and coupling of the two momenta, and
makes q∗ well defined.

The second splitting prior gives a distribution on (p1/2, q1/2, p̃1/2) proportional to (3.7).

Substituting β = 2λ/σ2, it is

(4.2) exp
(
−βH(p(1/2), q(1/2))

)
exp

(
− β

4λ

∥∥∥p̃(1/2)− (e−λG(q(1/2)) ⊗ Id)p(1/2)
∥∥∥2
)
.

When coupled with the likelihood function for data qr and qt given by

exp

(
− 1

2δ2

(∥∥qr − Sq(1/2; 0, [−p1/2, q1/2])
∥∥2

+
∥∥qt − Sq(1/2; 0, [p̃1/2, q1/2])

∥∥2
))

,

we can write down the posterior pdf. Then, to find the MAP point, we minimize the objective
function,

F (p1/2, q1/2, p̃1/2) := βH(p1/2, q1/2) +
β

4λ

∥∥∥p̃1/2 − e−λG(q1/2)p1/2

∥∥∥2

+
1

2δ2

(∥∥qr − Sq(1/2; 0, [−p1/2, q1/2])
∥∥2

+
∥∥qt − Sq(1/2; 0, [p̃1/2, q1/2])

∥∥2
)
.

(4.3)

This comprises the regularizer due to the Gibbs distribution, a penalty for changing the
momentum at t = 1/2, and two landmark-matching terms. The minimizer of F gives the MAP
point. We are interested in using q∗ = q1/2 as the average landmark set.

Before discussing numerical experiments, we describe the limiting properties of the MAP
point as λ, β are varied. In the following, we assume that BN is a convex subset of RdN and
that qr, qt ∈ BN .
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Lemma 1. With p1/2 = p̃1/2 = 0, the minimizer of

f(q) :=
∥∥qr − Sq(1/2; 0, [−p1/2, q])

∥∥2
+
∥∥qt − Sq(0; 1/2, [p̃1/2, q])

∥∥2

over q1/2 ∈ BN is q1/2 = (qr + qt)/2. Hence,

min
(p1/2,q1/2,p̃1/2)∈RdN×BN×RdN

F (p1/2, q1/2, p̃1/2) ≤ 1

4δ2

∥∥qr − qt∥∥2
.

Proof. When p = p1/2 = p̃1/2 = 0, H = 0 and Sq(s; t, [p, q]) = q for all s, t. Hence,

f(q) = ‖qr − q‖2 + ‖qt − q‖2, which is minimized by q1/2 = (qr + qt)/2.

Corollary 2. Assume that G(qi) is uniformly bounded over qi ∈ B ⊂ Rd. Then, as λ→ 0,
q1/2 converges to Sq(1/2; 0, [p0, q0]), where [p0, q0] is the MAP point for (4.1).

Proof. As minF is bounded independently of λ, we know that

β

λ

∥∥∥p̃1/2 − e−λG(q1/2)p1/2

∥∥∥2

is bounded as λ→ 0. Hence, p̃1/2 − e−λG(q1/2)p1/2 → 0. When all entries of G are bounded,

e−λG(q1/2) → IN as λ → 0. Therefore, p1/2 − p̃1/2 → 0, and Z(t) as defined in (3.5) is
the solution of the Hamiltonian equation (1.3) on [0, 1] in the limit λ → 0. Let [p0, q0] =
RS(1/2; 0, R[p1/2, q1/2]) for R[p, q] = [−p, q]. Then

minF →minβH(p1/2, q1/2) + 0

+
1

2δ2

[∥∥qr − Sq(1/2; 0, [−p1/2, q1/2])
∥∥2

+
∥∥qt − Sq(1/2; 0, [p1/2, q1/2])

∥∥]
= minβH(p0, q0) +

1

2δ2

[∥∥qr − q0

∥∥2
+
∥∥qt − Sq(1; 0, [p0, q0])

∥∥].
Here we use the fact that H is constant along solutions of (1.3). The last expression is the
same as (4.1), as required.

Corollary 3. If G(q) is uniformly positive definite over q ∈ BN ⊂ RdN , then in the limit
β →∞, q1/2 converges to the arithmetic average (qr + qt)/2.

Proof. Rescale the objective function

1

β
F (p1/2, q1/2, p̃1/2) := H(p1/2, q1/2) +

1

4λ

∥∥∥p̃1/2 − e−λG(q1/2)p1/2

∥∥∥2

+
1

2βδ2

(∥∥qr − Sq(1/2; 0, [−p1/2, q1/2])
∥∥2

+
∥∥qt − Sq(1/2; 0, [p̃1/2, q1/2])

∥∥2
)
.

This converges to zero as β →∞. Hence, H(p1/2, q1/2)→ 0, so that p1/2 → 0 if G is uniformly

positive definite. The second term implies that p̃1/2 → 0. Then minF → 1
2δ2 (‖qr − q1/2‖2 +

‖qt − q1/2‖2). Lemma 1 gives q1/2 as the arithmetic average.
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Figure 7. The left-hand plot shows two sets of landmarks. The right-hand plot shows two versions of the
average landmarks. The black shape is calculated using the second splitting prior (with parameters λ = 0.1,
β = 25) and assuming landmarks are known to N(0, δ2I) errors (δ2 = 0.005, so δ ≈ 0.07). The discs indicate
one standard deviation of the posterior distribution (via the Laplace/Gauss–Newton approximation). The dark
green shape is an arithmetic average.

The reverse limits are degenerate: as λ → ∞, p̃1/2 and p1/2 are not coupled and may
be chosen independently. In particular, the second of the data terms always can be made
zero. The remaining terms are minimized by taking q1/2 = qr and p1/2 = 0. For the limit
as the noise grows and overwhelms the system, β → 0, there is no Hamiltonian or momenta
coupling, and only data terms remain. Then q1/2 can be placed anywhere, as the momenta
can be chosen arbitrarily without cost. This case has a very shallow energy landscape and
q1/2 is not well determined. Both of these are outside the regime used in the derivation of the
approximation (3.6).

When the terms are balanced, the optimization must achieve some accuracy in flowing to
the landmark points, coupling the momenta, and moderation of the energy in H. We see in
Figure 10 examples where the arithmetic average and MAP average are very different.

4.3.1. Computations with two landmark sets. The MAP point can be found using
unconstrained numerical optimization. The objective function is more complicated this time,
due to the matrix exponential e−λG(q1/2) and the required derivative of the matrix exponential
(for gradient-based optimization methods). These functions are available in Python’s SciPy
library, among others. The Laplace method can be applied, again using Gauss–Newton
approximations and removal of negative eigenvalues, to determine an approximation to the
covariance matrix of the posterior distribution.

To define an average of two sets of landmarks qa,b, we choose qr = qa and qt = qb and
find the MAP point (p1/2, q1/2, p̃1/2). The landmarks q∗ = q1/2 are used as the average of qr

and qt. An example of the resulting average is compared to the arithmetic average in Figure 7.

4.3.2. Generalization to multiple landmark sets. We generalize the second splitting prior
to allow for more landmark sets and thereby define an average of multiple landmark sets. Let
q∗ ∈ B ⊂ RdN be the desired average, and let p∗ ∈ RdN be an associated momentum. For
the prior distribution, we assume [p∗, q∗] follow the Gibbs distribution. Let qj ∈ B ⊂ RdN
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for j = 1, . . . , J denote the given data set of landmarks, and associate to each a momentum
pj . We couple each pj to [p∗, q∗] via the time-one evolution of (3.4). With Gaussian errors in
the approximation of the data qj by the time-half evolution of the Hamiltonian system from
[pj , q∗], this leads to the following objective function for the MAP point:

F (p∗, q∗,pj) := βH(p∗, q∗) +
β

4λ

J∑
j=1

∥∥∥pj − e−λG(q∗)p∗
∥∥∥2

+
1

2δ2

J∑
j=1

∥∥qj − Sq(1/2; 0, [pj , q∗])
∥∥2
.

(4.4)

There are J + 1 momenta, and this objective does not reduce to (4.3), which depends on
two momenta for J = 2 landmark sets (see Figure 8). The limit as λ → 0 is different, and
q∗ cannot converge to the midpoint on the paths, as there is no such thing as a single flow
between the landmark points for J > 2. The extra momentum p∗ is introduced as a substitute
and provides a means of coupling the deformation for each landmark set to a single momentum.
In contrast, as we now show, the limiting behavior as β → ∞ resembles the two-landmark
average found by studying (4.3).

Theorem 4. Let [p∗, q∗,pj ] denote the minimizer of (4.4). Suppose that
1. G(qi) is uniformly bounded over qi ∈ B ⊂ Rd and λ→ 0, or
2. G(q) is uniformly positive definite over q ∈ BN ⊂ RdN and β →∞.

In the limit, q∗ converges to the arithmetic average (q1 + · · ·+ qJ)/J .

Proof. The argument for β →∞ is the same as Corollary 3. We concentrate on the case
λ→ 0. By arguing similarly to Corollary 2, minF and (β/λ)‖pj − e−λG(q∗)p∗‖2 are bounded
as λ→ 0. Hence, pj − e−λG(q∗)p∗ → 0, and because entries of G are bounded, we know that
pj − p∗ → 0. We can minimize the two remaining terms separately: βH(p∗, q∗) is minimized
by p∗ = 0 and the data term is minimized when Sq(1/2; 0, [pj , q∗]) equals the arithmetic
average. This is achieved when pj = p∗ = 0 and q∗ is the arithmetic average.

The methodology for this objective is similar to (4.3): the minimum is found by uncon-
strained numerical optimization, and q∗ is used as an average. The Hessian can be evaluated
at the MAP point to define an approximate posterior covariance matrix.

An example of the resulting average for 16 samples is compared to the arithmetic average
in Figure 9. The standard deviation is reduced in comparison to Figure 7, from the range
[0.26, 0.29] down to [0.15, 0.18], which is roughly a factor 1.6 decrease from a factor 8 increase
in the number of samples, and less than expected from the central limit theorem. Figure 10
shows computations of 64 and 256 samples from the same distribution of landmark sets. The
distinction between arithmetic and MAP averages is even stronger. The standard deviations
are moderately reduced, compared to the factor of 2 expected from a factor 4 increase in the
number of samples.

The final example in Figure 11 shows how the MAP average moves closer to the arithmetic
average when the value of β is increased from β = 50 to β = 100, as discussed in Theorem 4.
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Figure 8. For the two sets of landmarks, the plots show averages (black lines) according to (4.3) (left) and
(4.4) (right) with colored discs showing one standard deviation. Both are close to the arithmetic average, shown
in green, with the multiset objective function not as close and having large standard deviations.
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Figure 9. This is similar to Figure 7, except 16 landmark sets are taken, and the MAP average is computed
using the objective function (4.4).
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Figure 10. Here we show two computations for the average of 64 (left) and 256 (right) independent samples,
using the second splitting prior with λ = 0.1 and β = 25 (black line) and the arithmetic average (green line). The
rows are calculations of the same averages for independent samples. The colors indicate one standard deviation
of the computed posterior distribution.

5. Conclusion. This paper introduces a type of Langevin equation for performing image
registration by landmarks in the presence of uncertainty. The Langevin equation is used to
define a prior distribution on the set of diffeomorphisms. It is computationally difficult to
sample the diffusion bridge for the Langevin equation. To allow for computation, we introduced
three approximate prior distributions: the first by linearizing the Langevin equation about the
solution of a Hamiltonian problem, and the second and third by splitting the generator and
using a Baker–Campbell–Hausdorff-type approximation to the solution of the Fokker–Planck
equation. We give computational examples using the MAP point and Laplace method to find
approximate variances for the posterior distribution.

The second splitting prior lends itself to formulating an average of two landmark sets.
We defined the average of two landmark sets via the prior and studied the limits as the
inverse temperature β →∞ (corresponding to the arithmetic average) and dissipation λ→ 0
(corresponding to the midpoint of the registration identified by the MAP point for the first
splitting prior). This was extended to define an average for multiple landmark sets, with
examples provided for both two and multiple landmark sets.
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Figure 11. The plots show the averages (black) provided by the MAP point for λ = 0.1 with β = 50 (left) and
β = 100 (right) in comparison to the arithmetic average (green) for 64 landmark sets. As shown in Theorem 4,
the averages become closer as β is increased.

The work was limited by the current technology for sampling hypoelliptic diffusion bridges,
and it will be interesting to see how this area develops.

Another avenue of future work is incorporating invariants into the prior distribution, such
as conservation of average landmark position. The Langevin equation can be adjusted so that
the dynamics live on a subspace of R2dN where the Gibbs distribution may be a probability
measure and landmark average is invariant. The following variation of (2.1) has invariant
measure exp(−βH) and satisfies d

dt

∑
pi = 0 for isotropic G:

dpi =

[
− λ

∑
j 6=i

w(qij)
2q̂ij q̂ij · ∇piH −∇qiH

]
dt+ σ

∑
j 6=i

w(qij)q̂ijdWij(t),

dqi
dt

= ∇piH.

(5.1)

Here q̂ij is the interparticle unit vector and qij = ‖qi − qj‖. This time, Wij(t) are i.i.d. scalar
Brownian motions for i < j and Wij = Wji. Here w : R→ R+ is a coefficient function, which
could be identically equal to one for simplicity. For given p̄ ∈ Rd, we see that exp(−βH) is
an invariant measure on the subspace of R2dN with 1

N

∑N
i=1 pi = p̄ (the center of mass is

invariant for p̄ = 0). This can be shown to be invariant by using the Fokker–Planck equation
as above, with λ and σ replaced by position-dependent coefficients that still cancel out under
the fluctuation–dissipation relation. See [7, 26, 27].

Appendix A. Linearized equations. We write down equations to compute the mean and
covariance, using backward and forward Euler approximations. Suppose that δn1 ∼ N(0, C1)
for some given C1. We wish to calculate the joint distribution of δn for n = 0, . . . , N∆t. This
is easy to do, as the joint distribution is Gaussian and we derive update rules for the mean
and covariance: from

δn+1 = M+
n δn +An +

(
σ∆W n

0

)
,
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we get an update rule for the mean

µn+1 = E
[
δn+1

]
= M+

n µn +An.

Similarly, when time-stepping backward,

µn−1 = E
[
δn−1

]
= M−n µn +An.

For the covariance update along the diagonal moving forward,

E
[
δn+1δ

T
n+1

]
= E

[(
M+
n δn +An

)(
M+
n δn +An

)T]
+

(
σhIdN 0

0 0

)
= M+

n E
[
δnδ

T
n

]
M+T
n +Anµ

T
n+1 + µn+1A

T
n −AnA

T
n +

(
σhIdN 0

0 0

)
.

Similarly, moving backward,

E
[
δn−1δ

T
n−1

]
= E

[(
M−n δn +An

)(
M−n δn +An

)T]
+

(
σhIdN 0

0 0

)
= M−n E

[
δnδ

T
n

]
M−Tn +Anµ

T
n−1 + µn−1A

T
n −AnA

T
n +

(
σhIdN 0

0 0

)
.

The remaining parts of the matrix E
[
δjδ

T
k

]
can be computed by sideways moves along either

a row or column using the following rules: if k ≥ j, then

E
[
δjδ

T
k+1

]
= E

[
δjδ

T
k

]
M+T
k + µjA

T
k ,

E
[
δk+1δ

T
j

]
= M+

k E
[
δkδ

T
j

]
+Akµ

T
j ,

and if k ≤ j, then

E
[
δjδ

T
k−1

]
= E

[
δjδ

T
k

]
M−Tk + µjA

T
k ,

E
[
δk−1δ

T
j

]
= M−k E

[
δkδ

T
j

]
+Akµ

T
j .

Finally, Cov(δj , δn) = E
[
δjδ

T
n

]
− µjµT

n .
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