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1 Introduction

This paper is concerned with the numerical solution of stochastic differential equations (SDEs) by
the Multilevel Monte Carlo (MLMC) method. MLMC [17, 13] is an important variance-reduction
method that has been successfully applied to a wide class of problems in stochastic simulation and
in uncertainty quantification; for example, [15, 10, 12, 4, 14, 28, 18, 3]. The variance reduction in
MLMC is achieved by computing approximations of the solution on different “levels” consisting,
in the SDE case, of numerical integrators with different time-step sizes. These computations are
then combined in an efficient way to define a multilevel estimator for the moments that has a
smaller variance than the standard Monte Carlo estimator and can therefore be computed faster.

Let (Ω,F ,P) denote a probability space and let E and Var denote the expectation and variance
with respect to P. Consider first the initial-value problem

dX = f(X) dt+G(X) dW (t), X(0) = X0, (1)

for f : Rd → Rd and G : Rd → Rd×m and initial data X0 ∈ Rd. Here W (t) is a vector of m
iid standard Brownian motions on (Ω,F ,P). Suppose that there exists a well-defined solution
X(t) when Eq. (1) is interpreted as an Ito integral equation. For simplicity, we only consider
approximating moments of the solution at a prescribed end time as the quantities of interest, but
other, more complicated functionals could also be studied. That is, we are interested in computing
E[φ(X(T ))] for some φ : Rd → R and time T > 0. Consider the approximation by a sequence of
random variablesXn ≈X(tn) for tn = nh with n ∈ N and a time step h. For example,Xn may
result from the Euler–Maruyama method

Xn+1 = Xn + f(Xn)h+G(Xn)
√
h ξn, (2)

with ξn ∼ N(0, I) iid. In this case, Xn is a weak first-order approximation to X(tn) so that, for
any φ : Rd → R in a suitable class of test functions C,

sup
0≤tn≤T

E[φ(X(tn))]− E[φ(Xn)] = O(h).

If f and G are sufficiently smooth, C contains all infinitely differentiable functions whose deriva-
tives are polynomially bounded; for example, [20, Theorem 14.5.1].

In some cases [31, 35], it is possible to find a second SDE, called the modified SDE with solution
Xh(t), such thatXn is a second-order weak approximation toXh(t); that is,

sup
0≤tn≤T

E[φ(Xh(tn))]− E[φ(Xn)] = O(h2). (3)

∗Published as E. Müller, R. Scheichl, and T. Shardlow. Improving MLMC for SDEs with application to the Langevin
equation. In: Proceedings Royal Society A 471.20140679 (2015).
†Department of Mathematical Sciences, University of Bath

1

http://dx.doi.org/10.1098/rspa.2014.0679
http://dx.doi.org/10.1098/rspa.2014.0679


Then, the solution of the modified equation Xh(t) is an order of h closer to the numerical solution
thanX(t). The modified equation takes the form

dXh = f̃(Xh) dt+ G̃(Xh) dW (t), X(0) = X0, (4)

where f̃ = f + hf1 and G̃ = G+ hG1 for some f1 : Rd → Rd and G1 : Rd → Rd×m. This reduces
to Eq. (1) with h = 0, and f1 and G1 describe the correction in the drift and diffusion needed
to achieve Eq. (3). Our results concern SDEs and numerical integrators where the second-order
modified equation is available. Except in special cases (e.g., if G is independent ofX), this does
not include the Euler–Maruyama method [31]. It does include the Milstein method, which has a
second-order modified equation [35]. Using weak-approximation theory and modified equations,
we develop an alternative method of analysis for MLMC in this paper. By doing this, we no longer
depend directly on the strong-approximation properties of the integrator (as in other papers, e.g.
[13]) and this gives greater freedom in the application of MLMC.

We focus on a class of integrators for an important model in molecular dynamics and atmo-
spheric dispersion, the Langevin equation:

dP = −λP dt−∇V (Q) dt+ σ dW (t), dQ = P dt (5)

for parameters λ, σ > 0, a potential V : Rd → R, and a d-dimensional vectorW (t) of iid Brownian
motions. We specify initial conditions (Q(0),P (0)) = (Q0,P 0) ∈ R2d. This system is used
in molecular dynamics to simulate a system of particles in a heat bath and has equilibrium
distribution with pdf Z−1 exp(−H(Q,P )/kBT ), known as the Gibbs canonical distribution, where Z
is a normalisation constant, H(Q,P ) := 1

2P
TP + V (Q), and kBT = σ2/2λ. As usual, kB denotes

the Boltzmann constant and T temperature. The Langevin equation is also used to model the
dispersion of atmospheric pollutants in homogeneous turbulence [30]. In that case, λ is the inverse
velocity autocorrelation time and

√
σ2/2λ is the strength of turbulent velocity fluctuations, and d

is equal to the number of space dimensions. This is much smaller than in molecular dynamics
applications, where d is proportional to the number of particles. With a slight generalisation, it
can also be used to model the dispersion in inhomogeneous turbulence.

Numerical integrators for the Langevin equation are well developed for example in [9, 34, 5].
Recently, there has been a strong push to understand the invariant measure associated to the
integrators [22, 11, 35, 8, 25, 2, 24, 23]. Second-order modified equations are available for the most
important integrators for the Langevin equation. In particular, we study splitting methods based
on exact sampling of an Ornstein–Uhlenbeck process and symplectic integrators (symplectic Euler
and Störmer–Verlet) for the Hamiltonian part. We show how to couple the different levels and
apply MLMC with these methods. We find the use of the exact Ornstein–Uhlenbeck process is
particularly effective when λ is large.

We also combine these new integrators with extrapolation [33]. It is a natural addition to
MLMC methods, already mentioned in the original work [13] and studied in more detail in [27]. It
reduces the bias in the numerical approximation of the solution due to time stepping and relies on
having a sharp estimate for the bias error. If such an estimate is available, it is possible to eliminate
the leading-order error term in the bias error by extrapolating from a sequence of approximations
with differing time-step sizes. These approximations are naturally available in MLMC.

We provide a set of experiments for the Langevin equation with a harmonic and a double-well
potential, comparing integrators based on splitting methods and extrapolation within MLMC. Our
results confirm that the splitting methods are significantly more effective than the Euler–Maruyama
method when combined with MLMC. All methods have the same asymptotic ε-cost; that is, the cost
always grows inverse proportionally to the mean-square error, but the proportionality constant
is reduced by an order of magnitude from the standard Euler–Maruyama method through our
enhancements.

Finally, we show how discrete random variables, as an approximation to the Gaussian in-
crements of a Brownian motion, can be used within MLMC. This would be difficult to analyse
by the standard analysis, since all the approximation results for integrators based on discrete
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random variables are in distribution only (e.g., [20, §14.2]). In general, one must be careful in using
discrete random variables in place of Gaussian ones. The discrete approximations do not share
the property of Gaussian random variables that the sum of two independent increments is itself
an increment from the same distribution and hence the telescoping sum property, which is key
to the standard MLMC idea, no longer holds. However, for a practical range of parameters in
small-noise problems, the extra bias introduced is small and easy to estimate. Accepting this extra
bias can lead to a significant improvement in efficiency, since discrete random variables allow
the exact evaluation of the expected value on the coarsest level. The cost of this direct evaluation
grows exponentially with the number of time steps, but it requires no sampling and, for a small
number of time steps, its cost is significantly smaller than that of a Monte Carlo estimator. To
analyse this method, we prove a new complexity theorem that allows for extra bias between levels
in MLMC.

The paper is organised as follows. §2 reviews MLMC, including the important complexity
theorem. §3 uses modified equations to apply the complexity theorem, depending only on weak
convergence of the integrators. §4 reviews splitting methods for the Langevin equation and
defines a number of integrators where modified equations are available. Numerical experiments
are presented in §5 to demonstrate the effectiveness of this methodology for the Langevin equation
and to give quantitative predictions of the possible gains. A final section considers approximation
of the Gaussian increments by discrete random variables and highlights the potential gains this can
bring. The C++ source code that we developed for the numerical experiments is freely available
for download under the LGPL 3 license.

Author contributions: EM developed the code and TS ran the simulations. The analysis was
developed jointly by the three authors.
Competing interests: We have no competing interests.
Funding statement: The work was supported by NERC Grant NE/K006754/1.
Data accessibility: The datasets and software supporting this article are described in §5.

2 Background on MLMC

When solving an SDE numerically, the total error consists of the bias due to the time-stepping
method and the Monte Carlo sampling error. The sum of these two terms should be reduced
below a given small tolerance ε. A standard Monte Carlo method achieves this by computing
N sample paths, with N−1 = O(ε2), and taking time step h = O(ε1/α), where α is the order
of weak convergence (e.g., α = 1 for the Euler–Maruyama method). Hence, we can achieve
accuracy ε with total cost Cost(MC)(ε) = O(h−1 ×N) = O(ε−(2+1/α)). In contrast, MLMC uses
a series of coarse levels with larger time steps to construct an estimator. If the strong order
of convergence of the employed integrator is one, MLMC reduces the cost of the method to
Cost(MLMC)(ε) = O(N) = O(ε−2), which is the lower limit for a Monte Carlo method.

While MLMC is more efficient than standard Monte Carlo in the limit ε→ 0, the actual value of
the tolerance ε might be relatively large in practical applications. Hence, not only the asymptotic
rate of convergence, but also the cost of the method for a given ε is of interest. The exact value
of the constant C2 in the cost function Cost(MLMC)(ε) = C2ε

−2 + · · · and the size of higher-order
corrections depends on the details of the method, such as the time-stepping scheme and the
coarse-level solver. In particular, a time-stepping scheme that becomes unstable on the coarser
levels can severely limit the performance as only a small number of levels can be used; see [19, 1].

Suppose that we are interested in the expectation of P := φ(X(T )), whereX(T ) is the solution
to Eq. (1) at time T and φ : Rd → R defines the quantity of interest. Assume that the number of time
steps used to discretise the SDE is M = M02L, where M0, L ∈ N. Our strategy is to approximate
Eq. (1) using a numerical integrator with time step h = T/M to define an approximate solution
XM ≈ X(T ). Then, we compute many independent samples of XM to define approximate
samples P(i) of P . The classical Monte Carlo method approximates E[P] by the sample average of
P(i).
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Instead, the MLMC method constructs a sequence of approximations on levels indexed by
` = {L,L− 1, . . . , 0} with M` = M02` time steps of size h` = T/M`. Let P(i)

` denote independent
samples of the approximation to P on level ` and let

P̂` :=
1

N`

N∑̀
i=1

P(i)
` (6)

denote the Monte Carlo estimator on level ` based on N` samples. An estimator for the finest level
where M = ML can be written as the telescoping sum

P̂(MLMC) ≡ Ŷ{N`} :=

L∑
`=0

Ŷ`,N` , (7)

Ŷ0,N0
:= P̂0, Ŷ`,N` :=

1

N`

N∑̀
i=1

Y
(i)
` , Y

(i)
` := P(i)

` − P
(i)
`−1, for ` ≥ 1. (8)

The estimator does not introduce any additional bias, as we recover the numerical discretisation
error on the finest level (where h = hL):

E
[
P̂(MLMC)

]
= E

[
Ŷ{N`}

]
= E

[
P̂L
]

= E
[
P̂(MC)

]
, (9)

where P̂(MC) is the standard Monte Carlo estimator for M = ML time steps. The two key ideas
of the MLMC method are now: (1) The number of time steps M` is smaller on the coarser levels
` < L. Hence, the calculation of a single sample P(i)

` is substantially cheaper. (2) The success of the
method depends on coupling the samples P(i)

` and P(i)
`−1 so that the variance of Y (i)

` = P(i)
` −P

(i)
`−1

is small. By arranging for the variance of Y (i)
` to be small, a smaller number N` of samples suffices

to construct an accurate estimator Ŷ`,N` . This allows the construction of a MLMC estimator with
fixed total variance

∑L
`=0 Var [Ŷ`]/N` and lower computational cost.

This is formalised in the following complexity theorem [13, Theorem 3.1]:

Theorem 2.1 (MLMC complexity). Consider a real-valued random variable P and estimators P̂` cor-
responding to a numerical approximation based on time step h` = T/M` and N` samples. If there exist
independent estimators Ŷ`,N` based on N` Monte Carlo samples, and positive constants α ≥ 1

2 , c1, c2, c3
such that

(i)
∣∣E[P̂` − P]∣∣ ≤ c1hα` ,

(ii) E
[
Ŷ`,N`

]
=

{
E
[
P̂`
]
, ` = 0,

E
[
P̂` − P̂`−1

]
, ` > 0,

,

(iii) Var
[
Ŷ`,N`

]
≤ c2N−1

` h2
` , and

(iv) the computational complexity Cost
(MLMC)
` of computing Ŷ`,N` is bounded by c3N`h−1

` ,

then there exists a positive constant c4 such that for any ε < 1/e, there are values L and N` for which
Ŷ{N`} from Eq. (7) has a mean-square error (MSE) with bound

MSE ≡ E
[(
Ŷ{N`} − E[P]

)2]
< ε2 (10)

and a computational complexity Cost(MLMC) with bound Cost(MLMC) ≤ c4ε−2.
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The theorem can be extended to allow the variance to decay as Var Ŷ` ≤ c2N
−1
` hβ` [13]. For

all cases in this paper, β = 2 and the cost is concentrated on the coarsest level (as we see from
Algorithm 1 line 12 and (iii) above). The asymptotic dependence of the computational complexity
on ε is independent of the weak order of convergence α of the time-stepping method. However,
the constant c4 does depend on the particular time-stepping method.

To obtain the results in this paper, we used Algorithm 1 and our choices for the numbers
of samples N` on each of the levels are defined adaptively via N+

` using the sample variance
following [13]. Given a tolerance εmax > 0, the algorithm gives an MLMC estimator P̂ (MLMC) with
mean-square error ε in the range εmax/2 < ε < εmax as defined in Eq. (10).

Algorithm 1 Multilevel Monte Carlo. Input: εmax, M0, and T . Output: Estimator P̂(MLMC)

1: Choose L,M0 such that, on the finest level with ML = 2LM0 time steps of size hL = T/ML,
the bias εbias is smaller than εmax/

√
2. Define ε ≡

√
2εbias.

2: Choose a minimum number of samples Nmin (say 100 or 1000).
3: Set N−` = 1, N+

` = Nmin, N` = 0 for all levels `.
4: while N` < N+

` for some level ` do
5: for ` = L, . . . , 0 do
6: for i = N−` , . . . , N

+
` do

7: Calculate Y (i)
` by applying the numerical integrator on levels ` and ` − 1 (except for

` = 0) for sample i. The two trajectories should be coupled (see §4.3), but Y (i)
` should

be independent of any other sample (i.e., of Y (i′)
`′ for `′ 6= ` or i′ 6= i).

8: N` 7→ N` + 1.
9: end for

10: Update estimators for the bias and variance:

Ŷ`,N` =
1

N`

N∑̀
i=1

Y
(i)
` , V̂`,N` =

1

N` − 1

 N∑̀
i=1

(
Y

(i)
`

)2

− 1

N`

(
N∑̀
i=1

Y
(i)
`

)2
 .

11: N−` = N+
` + 1.

12: Calculate the optimal N+
` according to formula (12) in [13]:

N+
` =

⌈
2ε−2

√
V̂`,N`h`

(
L∑
j=0

√
V̂j,Nj/hj

)⌉
.

13: end for
14: end while
15: Return estimator P̂(MLMC) = Ŷ{N`} ≡

∑L
`=0 Ŷ`,N`

3 Applying the complexity theorem

Our goal is to apply the complexity theorem to numerical integrators using only weak-approximation
properties of the numerical methods. The complexity theorem makes assumptions on (i) the bias,
(ii) the consistency of the estimators, and (iii) the variance of the corrections. (i) can be understood
from existing weak-convergence analysis. Let C∞ploy(Rd) be the set of infinitely differentiable
functions Rd → R such that all derivatives are polynomially bounded.

Definition 3.1. For a time step h > 0, let Xn be a Rd-valued random variable that approximates the
solution X(t) to Eq. (1) at time t = nh. We say Xn is a weak order-α approximation if, for all
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φ ∈ C∞ploy(Rd) and T > 0, there exists K > 0 such that for h sufficiently small

|E[φ(X(T ))]− E[φ(XM )]| ≤ Khα, Mh = T.

There are many integrators that provide weak order-α approximations for α = 1 or α = 2 (e.g.,
[20] or §4). In the case that P = φ(X(T )), T = Mh`, and P̂` = φ(XM ) for an XM with step h`
that is weak α-order, the bias condition (i) holds. The consistency of the estimators (ii) is an easy
consequence of the linearity of integration and Eq. (8).

Condition (iii) on the variance of corrections normally follows from the mean-square conver-
gence of the integrator [13]. Mean-square convergence measures the approximation of individual
sample paths of the solutionX(t) and hence is a tool for understand the coupling of successive
levels. In this paper, we use an alternative method based on weak-approximation theory and
derive condition (iii) as a consequence of the existence of a second-order modified equation. To do
this, we introduce the following doubled-up system for Z = [X,Y ] ∈ R2d:

dX = f(X) dt+G(X) dW (t), X(0) = X0 ∈ Rd,
dY = f(Y ) dt+G(Y ) dW (t), Y (0) = X0.

(11)

The same initial data is applied and the sameW (t) drives both components and soX(t) = Y (t)
a.s. for t > 0. We now have two copies of X(t) and we approximate each differently. Formally,
we approximateX(t) and Y (t) by different numerical integrators with step h > 0 and denote the
resulting approximation to Z(tn) by Zn = [Xn,Y n] at tn = nh. In MLMC, there is usually one
integrator applied with time steps h for X and h/2 for Y (which is a little awkward for Y n, as
one increment of n corresponds to two steps of the underlying integrator). The joint distribution
ofXn and Y n contains all the required information about the coupling of the approximations of
each component and, as we now show, a weak-convergence analysis of the system gives condition
(ii).

For simplicity, we start by assuming thatZn = [Xn,Y n] is a weak second-order approximation
to Z(t) = [X(t),Y (t)]. Then, we can prove the following.

Theorem 3.1. Fix T > 0 and let P = φ(X(T )) for a φ ∈ C∞ploy(Rd). Suppose that Zn is a weak

second-order approximation to Z(t). Conditions (i)–(iii) of Theorem 2.1 hold with [P(i)
`−1,P

(i)
` ] given by iid

samples of [φ(XM ), φ(Y M )] with h = h` and Mh = T .

Proof. The condition on Zn implies also thatXn and Y n are weak second-order approximations
toX(t). Then, by the above discussion, conditions (i) with α = 2 and (ii) hold.

Let ψ(Z) := φ(X)− φ(Y ). Then ψ2 ∈ C∞ploy(R2d) since φ and hence ψ2 are smooth and their
derivatives are polynomially bounded. As Zn is a weak second-order approximation to Z(t),
E[ψ(ZM )2 − ψ(Z(T ))2] = O(h2). By definition of ψ,

E
[
|φ(XM )− φ(Y M )|2 − |φ(X(T ))− φ(Y (T ))|2

]
= O(h2). (12)

Using the fact thatX(t) = Y (t) a.s., we have E
[
|φ(XM )− φ(Y M )|2

]
= O(h2). Written in terms of

P` and P`−1, this means Var[P` − P`−1] ≤ E
[
(P` − P`−1)

2]
= O(h2). In other words, the variance

of each sample of the coarse–fine correction is order h2. This implies that the sample average Ŷ`,N`
of N` iid samples satisfies condition (iii) of Theorem 2.1.

3.1 Modified equations

The above argument does not apply to weak first-order accurate methods, even though the
complexity theorem only requires α > 1/2. In this case, we use the theory of modified equations
to extend the analysis. A modified equation is a small perturbation of the original SDE that the
numerical method under consideration approximates more accurately. For the theory, we need
a second-order modified equation for the doubled-up system and this contains second-order
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information about the coupling of the fine and coarse levels. In particular, we consider modified
equations for the doubled-up system (11) of the form:

dXh = [f(Xh) + hf1(Xh)] dt+ [G(X) + hG1(Xh)] dW (t), X(0) = X0,

dY h = [f(Y h) + hf2(Y h)] dt+ [G(Y h) + hG2(Y h)] dW (t), Y (0) = X0,
(13)

for f i : Rd → Rd and Gi : Rd → Rd×m for i = 1, 2. (This could be extended to allow f i, Gi to
depend on both Xh and Y h.) When the same integrator is used for each component, but with
time steps h and h/2, it must hold that f2 = f1/2 and G2 = G1/2. We show in Theorem 3.2 that,
subject to regularity conditions on the coefficients, the MLMC complexity theorem applies if a
second-order modified equation exists and therefore MLMC works with O(ε−2) complexity.

The additional difficulty is thatXh 6= Y h and we must estimate the variance of φ(Xh)−φ(Y h).
We use a mean-square analysis and the following lemma, which gives a first-orderL2(Ω,Rd) bound
on Z(t)−Zh(t). The lemma requires a number of regularity assumptions on the coefficients of the
modified equation, which hold, for example, if f ,f i and G,Gi are globally Lipschitz continuous.
Let ‖·‖F denote the Frobenius norm.

Lemma 3.1. For t ∈ [0, T ], let Z(t) satisfy the Ito SDE (11) and Zh(t) = [Xh(t),Y h(t)] satisfy
the modified equation (13). Suppose that (i) f : Rd → Rd and G : Rd → Rd×m are globally Lipschitz
continuous with Lipschitz constant L > 0; and (ii) there exists C1 > 0 such that, for all h > 0 sufficiently
small,

E
[
‖f1(Xh(s))‖2

]
,E
[
‖G1(Xh(s))‖2

F

]
≤ C1,

E
[
‖f2(Y h(s))‖2

]
,E
[
‖G2(Y h(s))‖2

F

]
≤ C1, s ∈ [0, T ].

Then, if ψ : R2d → R is globally Lipschitz continuous, we have, for some constant C2 > 0 independent of
h, E

[
|ψ(Z(t))− ψ(Zh(t))|2

]
≤ C2h

2, for t ∈ [0, T ].

Proof. This is an elementary calculation with the Gronwall inequality and Ito isometry.

We are now able to state and prove the main theorem of this article. In contrast to Theorem 3.1,
φ is assumed to be Lipschitz here.

Theorem 3.2. Fix T > 0. Let φ ∈ C∞ploy(Rd) be globally Lipschitz continuous. Suppose that (i) Xn

and Y n are weak order-α approximations to X(t) for some α > 1/2, (ii) Zn are second-order weak
approximations to Zh(t), and (iii) the assumptions of Lemma 3.1 hold. Then Conditions (i)–(iii) of
Theorem 2.1 hold with [P(i)

`−1,P
(i)
` ] given by iid samples of [φ(XM ), φ(Y M )] with h = h`.

Proof. As before, conditions (i) and (ii) are straightforward. It is the third condition, which
normally follows from a strong-approximation theory, that requires the modified equation. Let
ψ(Z) := φ(X)−φ(Y ) and note that ψ2 ∈ C∞ploy(R2d). AsZn is a second-order weak approximation
to Zh(t), we have E[ψ(ZM )2 − ψ(Zh(T ))2] = O(h2). By definition of ψ,

E
[
|φ(XM )− φ(Y M )|2 − |φ(Xh(T ))− φ(Y h(T ))|2

]
= O(h2). (14)

Using the fact thatX(t) = Y (t) a.s.,

E
[
|φ(Xh(T ))− φ(Y h(T ))|2

]
= E

[
|ψ(Zh(T ))− ψ(Z(T ))|2

]
.

Lemma 3.1 applies and the right-hand side in the last equation is O(h2). Consequently,

E
[
|φ(Xh(T ))− φ(Y h(T ))|2

]
= O(h2). (15)

Together, Eqs. (14) and (15) imply that

E
[
|φ(XM )− φ(Y M )|2

]
= O(h2). (16)

The remainder of the proof is the same as for Theorem 3.1.
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By takingX to be the exact solution (i.e.,Xn = X(tn)) and φ : Rd → R as a projection onto the
ith coordinate, Eq. (16) implies that ‖X(T )− Y M‖L2(Ω,Rd) = O(h) and hence first-order strong
convergence can be proved by this method. This is consistent with the observation that the
Euler–Maruyama method, which is not first-order strongly convergent in general, does not have a
second-order modified equation.

In summary, subject to smoothness conditions, if MLMC is applied with an integrator that has
a second-order modified equation like Eq. (13) then the variance of the coarse–fine correction is
O(h2) and the complexity of MLMC is O(ε−2). Though the rate is fixed, the complexity of MLMC
depends on the specific integrator used through the constant and, as we now show, this leads to
large variations in efficiency.

4 Application to the Langevin equation

Before showing how they can be used for MLMC, we introduce several integrators for the Langevin
equation.

4.1 Splitting methods

Splitting methods are an important class of numerical integrators for differential equations. In the
case of ODEs, they allow the vector field to be broken down into meaningful parts and integrated
separately over a single time step, before combining into an integrator for the full vector field. See
for example [16, 26]. The Langevin equation breaks down into the sum of a Hamiltonian system
and a linear SDE for an Ornstein–Uhlenbeck (OU) process. Then, for a splitting method, we define
symplectic integrators for the Hamiltonian system

dQ

dt
= P ,

dP

dt
= −∇V (Q). (17)

The OU process P (t), which satisfies

dP = −λP dt+ σ dW (t), (18)

can be integrated exactly and we use this fact to define a so-called geometric integrator for Eq. (18).
It is clear that the sum of the right-hand sides of these two systems gives Eq. (5). There are a
number of ways of combining integrators of Eqs. (17) and (18) to define an integrator of the full
system. The simplest, also known as the Lie–Trotter splitting, is to simulate Eqs. (17) and (18)
alternately on time intervals of length h. In general, this technique can only be first-order accurate
in the weak sense. Alternatively, if the underlying integrators are second order, we can define a
second-order splitting method by applying Eq. (18) on a half step, then Eq. (17) for a full step, and
finally apply again Eq. (18) on a half step. This is called the symmetric Strang splitting. See also
[24].

We now define specific integrators for Eqs. (17) and (18). Eq. (17) is a separable Hamiltonian
system, and the symplectic Euler method and Störmer–Verlet methods provide simple, explicit
methods for its numerical solution. The symplectic Euler method is first-order accurate and the
Störmer–Verlet method is second-order accurate.

The solution of Eq. (18) is a multi-dimensional OU process and can be written as

P (t) = e−λtP (0) + σI(0, t), I(t1, t2) :=

∫ t2

t1

e−λ(t2−s) dW (s). (19)

Each component of I is iid with mean zero and variance

Var Ii(t1, t2) =

∫ t2

t1

e−2λ(t2−s) ds =
1− e−2λ (t2−t1)

2λ
, (20)
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so that I(t1, t2) ∼ N(0, α2
t2−t1I) for αt :=

√
(1− e−2λt)/2λ. This suggests taking the following as

the numerical integrator: for a time step h > 0,

P n+1 = e−λhP n + σαhξn (21)

for ξn ∼ N(0, I) iid. If P n = P (tn), then P n+1 has the same distribution as P (tn+1) and this
method is exact in the sense of distributions. Methods of this type, where the variation of constants
formula (19) is used for the discretisation, are often called geometric integrators [7].

The full equations for the first order splitting (symplectic Euler) and second-order splitting
(Störmer–Verlet) are written as follows:

Symplectic Euler/OU For ξn iid with distribution N(0, I),

P ∗n+1 = e−λhP n + σαhξn,

P n+1 = P ∗n+1 − h∇V (Qn),

Qn+1 = Qn + P n+1 h.

(22)

Störmer–Verlet/OU For ξn, ξn+1/2 iid with distribution N(0, I)

P ∗n+1/2 = e−λh/2P n + σαh/2ξn,

P n+1/2 = P ∗n+1/2 − 1
2h∇V (Qn),

Qn+1 = Qn + hP n+1/2,

P ∗n+1 = P n+1/2 − 1
2h∇V (Qn+1),

P n+1 = e−λh/2P ∗n+1 + σαh/2ξn+1/2.

(23)

Subject to regularity conditions on the coefficients, Eq. (22) is first-order and Eq. (23) second-order
accurate in the weak sense by application of the Baker–Campbell–Hausdorff formula.

4.2 Modified equations for the Langevin equation

Consider the Langevin equation (5). Following [31, 35] by using a computer algebra system to
verify consistency of moments to fifth order, it is easy to find modified equations for the numerical
integrators developed in §4.1. For example, for the first-order splitting method with d = 1, the
doubled-up modified equation is as follows: Denote by [Qn, Pn] the numerical approximation
on the coarse level (step h) and [qn, pn] on the fine level (step h/2). The second-order modified
equation is

dQ = [P − 1
2h(V ′(Q) + λP )] dt+ σ 1

2h dW (t),

dP = [−λP − V ′(Q)− 1
2h(λV ′(Q)− PV ′′(Q))] dt+ σ dW (t),

dq = [p− 1
4h(V ′(q) + λp)] dt+ σ 1

4h dW (t),

dp = [−λp− V ′(q)− 1
4h(λV ′(q)− pV ′′(q))] dt+ σ dW (t),

(24)

where W (t) is the same Brownian motion for p and P . We conclude then that this method leads
to O(h2) variances in the coarse–fine correction, if the coefficients are sufficiently well behaved.
Identifying when the coefficients are well behaved is hard. For example, it is sufficient that the
drift and diffusion in both the original and modified equations are globally Lipschitz. These
however are very strong conditions and do not hold for many realistic potentials.

For the second-order splitting method (based on Störmer–Verlet method and exact OU in-
tegration), we can apply Theorem 3.1 to see that the variance of the coarse–fine corrections is
O(h2). The regularity condition is on the original drift and diffusion and holds if ∇V : Rd → Rd is
sufficiently smooth (e.g., infinitely differentiable and Lipschitz).
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4.3 MLMC with splitting methods

LetX = [Q,P ] denote the state-space variable. A key step in MLMC is computing approximations
toX(tn+2) at tn = nh givenX(tn) based on integrators with time steps h and 2h that are coupled
so the difference between the approximations has small variance. For the Euler–Maruyama
method, this is achieved by choosing increments ∆W n,∆W n+1 for the computation with time
step h/2, and choosing the sum ∆W n+∆W n+1 for the corresponding interval of the computation
with time step h.

It is hard to sample I(0, t) in Eq. (21) based on increments of the particular sample path ofW (t)
and, as a method for strong approximation, it is limited. It is easy however to sample I(0, t) as a
Gaussian random variable. We now show how to couple fine–coarse integrators for the MLMC
method, without the direct link to the increment. First, note that

I(0, 2h) =

∫ 2h

0

e−λ(2h−s) dW (s) =

∫ h

0

e−λ(2h−s) dW (s) +

∫ 2h

h

e−λ(2h−s) dW (s)

= rI(0, h) + I(h, 2h), r := e−λh.

By Eq. (20),
I(0, h), I(h, 2h) ∼ N(0, α2

hI) iid.

We can simulate I(0, h) and I(0, 2h), by generating ξi ∼ N(0, I) iid and computing I(0, h) = αhξ1

and I(h, 2h) = αhξ2. As α2
h = (1− r2)/2λ and α2

2h = (1− r4)/2λ, we have α2
h(1 + r2) = α2

2h. Then,

I(0, 2h) = α2h
1√

1 + r2
(rξ1 + ξ2). (25)

Given P n at time tn, we find P n+2 using two time steps of size h by

P n+1 = e−λhP n + σαhξn, P n+2 = e−λhP n+1 + σαhξn+1,

for ξn ∼ N(0, I) iid. This is equivalent to a single time step of size 2h and

P n+2 = e−2λhP n + σα2hξ
∗
n, ξ∗n :=

rξn + ξn+1√
r2 + 1

.

This method is used to generate the increments when using splitting methods within MLMC.

5 Numerical experiments

We developed an object-oriented C++ code to compare the performance of different numerical
methods for two model problems. The modular structure of the templated code makes it easy
to change key components, such as the time-stepping method or random-number distribution,
without negative impacts on the performance. The source code is available under the LGPL 3
license as a git repository on https://bitbucket.org/em459/mlmclangevin1.

Key to the choice of parameters in Algorithm 1 is the balance between bias error and statistical
error. We assume that the bias error has the form in Theorem 2.1(i) for a proportionality constant
c1 and that the finest time step hL = T/(M02L). Then, for a bias error of size ε/

√
2, we require that

c1
(

T
M02L

)α
= ε√

2
. Given c1, α, and T as well as a choice for M0, this can be solved to determine ε

from L or vice versa. The constant c1 can be approximated by assuming that E
[
P̂` − P

]
= c̃1h

α
`

for some c̃1 ∈ R, so that Ŷ`,N` ≈ c̃1h
α
` − c̃1hα`−1 = c̃1(1 − 2α)hα` and calculating c1 = |c̃1| after

computing the left-hand side numerically.
The following integrators are used in the numerical experiments below:

EMG and EMG+ Euler–Maruyama as given by Eq. (2) with M0 = 4 (EMG) and M0 = 8 (EMG+).

1All enquiries about the code should be addressed to e.mueller@bath.ac.uk.
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Figure 1: The position (left) and velocity (right) of a randomly forced harmonic oscillator with
damping for ω0 = 1 = λ = σ. The mean value is shown together with one (dark gray) and two
standard deviations (light gray).

SEG First-order splitting method with symplectic Euler/exact OU and M0 = 4. See Eq. (22).

SVG Second-order splitting method with Störmer–Verlet/exact OU and M0 = 4. See Eq. (23).

Richardson extrapolation is a well-known technique for increasing the accuracy of a numerical
approximation by computing two approximations with different discretisation parameters and
taking a linear combination that eliminates the lowest-order term for the error. Its extension
to SDEs was developed by [33] and is particularly convenient for use with MLMC, as MLMC
computes approximations on several levels and this has already been explored in [13]. Thus, we
take P̂L and P̂L−1 and suppose that, for some constants c̃1 and α′ > α,

E
[
P̂L
]

= E[P] + c̃1h
α
L +O

(
hα
′

L

)
, E

[
P̂L−1

]
= E[P] + c̃1h

α
L−1 +O

(
hα
′

L

)
.

A simple linear combination of the two gives a higher-order approximation to E[P]; in particular,
for SEG, we have α = 1 and α′ = 2 and 2E

[
P̂L
]
− E

[
P̂L−1

]
= E[P] + O(h2

`). An approxima-
tion to the left-hand side is given by P̂(MLMC) + ŶL,NL . For SVG, we have α = 2 and α′ = 4,
and 1

3

(
4E
[
P̂L
]
− E

[
P̂L−1

])
= E[P] +O(h4

`). An approximation to the left-hand side is given by
P̂(MLMC) + 1

3 ŶL,NL . To observe the improved accuracy, the statistical error must also be reduced
to match the bias error. An increase in accuracy from second- to fourth-order accuracy is achieved
because the integrator is symmetric.

In the experiments, we apply extrapolation in the following scenarios:

EMGe and EMGe+ EMG/EMG+ with extrapolation, increasing the weak order of convergence
from one to two.

SEGe SEG with extrapolation, again increasing the weak order of convergence from one to two.

SVGe SVG with extrapolation, increasing the weak order of convergence from two to four. Due
to the fourth-order convergence, it is sufficient to take large time steps, and we choose L = 2
and vary M0 rather than L.

5.1 Langevin equation for the damped harmonic oscillator

We first consider Eq. (5) with d = 1 and

V (Q) =
1

2
ω2

0Q
2. (26)
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Physically, with this potential, Eq. (5) describes a randomly forced harmonic oscillator with
resonance frequency ω0 and damping parameter λ; the strength of the Gaussian forcing is given
by σ. For ω0 = 0 (i.e., in the absence of a potential), the SDE can be interpreted as a model for the
dispersion of an atmospheric pollutant in a one-dimensional turbulent velocity field (see [30]).
In this case, σ2/(2λ) is the turbulent-velocity variance and 1/λ the velocity relaxation-time. In
Figure 1, the marginal distributions for the position and velocity are visualised as a function of t
for the parameters ω0 = 1 = λ = σ and P (0) = Q(0) = −1.

We choose this simple example, for which we know the analytical solution, to verify the
correctness of our code and to quantify numerical errors; exact solutions of the Langevin equation
are also described in [29]. As the system is linear, the joint pdf of Q and P is Gaussian and is
defined by their mean and covariance. DenotingX(t) = (Q(t), P (t))T and the initial solution by
X0 = X(t = 0) = (Q(t = 0), P (t = 0))T, we have

X(t) = exp[−Λt]X0 +

∫ t

0

exp[−Λ(t− s)]Σ dW (s) (27)

with Λ :=

(
0 −1
ω2

0 λ

)
and Σ :=

(
0
σ

)
. X(t) follows a Gaussian distribution with

E[X(t)] = exp[−Λt]X0, CovX(t) :=

∫ t

0

exp[−Λ(t− s)]ΣΣT exp
[
−ΛT(t− s)

]
ds, (28)

which can easily be evaluated using a computer algebra system.

5.1.1 Numerical results

We compute E[φ(X(1))] for φ(Q,P ) = exp(−2(P − 0.5)2)
√

2/π with Parameter set 1: ω0 = 1, λ = 4
and σ = 2; and Parameter set 2: ω0 = 1, λ = 9 and σ = 3. The initial position and velocity were set
to Q(t = 0) = P (t = 0) = −1 in both cases. Errors are computed using the exact value computed
from Eq. (28). The exact values are 0.447904416997582 and 0.418086875513087, respectively. The
CPU time scaled by ε−2 and the error (bias error plus one standard deviation) scaled by ε are
plotted in Figures 2 and 3 against ε. The scaling means we expect both graphs to be flat. We observe
for both parameter sets that the integrators based on the exact OU process are the most efficient
for small ε. Even though SVGe uses a weak fourth-order accurate integrator, the complexity of
MLMC cannot be reduced beyond O(ε−2) and it is the same as for the other integrators. The
improvements come by improving constants, in this case by about a factor 4 in comparison to
EMG. For the second set of parameter values in Figure 3, the relaxation time is shorter and the
noise is larger, and the improvement due to the splitting methods is even more pronounced (factor
10).

In order to take large time-steps, it is necessary to ensure the stability of the integrator. It is
well known from deterministic differential equations that most explicit integrators will have a
stability constraint on the time-step size. This is the same for SDEs and such stability constraints
may severely restrict the number of levels that can be employed in the MLMC method and thus its
efficiency [19, 1]. Exact sampling of the Ornstein–Uhlenbeck process poses no stability constraints,
allowing for smaller values of M0 and thus for larger numbers of levels in MLMC in the case of
splitting methods. For example, in the above simulations, increasing the number of time steps from
M0 = 4 to M0 = 8 in Euler-Maruyama (cf. EMG and EMG+, as well as EMGe and EMGe+) lead to
an improvement in efficiency. The same change has no effect in SEG. However, the symplectic
methods we are using for the Hamiltonian part are explicit and have their own stability constraint
[32], somewhat limiting this benefit of splitting methods.
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Figure 2: For the harmonic oscillator with parameter set 1. The left-hand plot shows the CPU time
for a given value of ε; the time is scaled by ε−2 and this leads to a nearly flat profile in each case.
The right-hand plot shows the bias error plus one standard deviation; the errors are divided by ε
to show both mean and standard deviation are O(ε).
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Figure 3: For the harmonic oscillator with parameter set 2. Compared to Figure 2, the difference
between the splitting methods and Euler–Maruyama is significantly larger.

5.2 Double-well potential

We now change the potential and consider the double-well potential

V (Q) =
ω2

0

8Q2
min

(Q2 −Q2
min)2,

where Qmin and ω0 are parameters. We compute E[φ(X(T ))] for φ(Q,P ) := (Q + Qmin)2 + P 2

(note (Q+Qmin)2 takes distinct values at the bottom of the wells Q = ±Qmin). For the numerical
experiments in Figure 4, we choose parameter values Qmin = ω0 = 1, λ = 2, σ = 4, and take
initial data Q(t = 0) = P (t = 0) = −1. The scaled CPU time and error for T = 1 are plotted
against ε in Figure 4, where errors are computed relative to a numerically computed value given
by 4.52782626985. It is noticeable again that the splitting methods and especially the symplectic
Euler-based methods are most efficient.

In Figure 5, we explore the behaviour of the algorithm as we increase the length of the time
interval T . For the plot, we scale the CPU time by ε−2T ; the computation time scales linearly with
the number of time steps and, by scaling by T , we see how the MLMC algorithm behaves with
increasing T . The errors are computed relative to the numerically computed values 6.11075602345
for T = 2; 7.11570774835 for T = 4; and 7.2125872733 for T = 8. The values for T = 4 and
T = 8 are close, which indicates the system has moved close to the invariant measure by this
time. In each case, SEG is most efficient and we see the measure of CPU time ×ε2/T increase from
about 5× 10−5 for T = 1 to about 10−4 for T = 8. The profiles are also less flat as T is increased,
indicating that the time steps may not be small enough to have entered the asymptotic regime. It
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Figure 4: Numerical results for the double-well potential (plots as above).

10−3 10−2 10−1

10−5

10−4

ε

C
PU

tim
e

×
ε2 /T

10−3 10−2 10−1

10−5

10−4

ε

C
PU

tim
e

×
ε2 /T

EMG
SEG
SVG

10−3 10−2 10−1

10−5

10−4

ε

C
PU

ti
m

e
×

ε2 /T

10−3 10−2 10−1

10−5

10−4

ε

C
PU

ti
m

e
×

ε2 /T

Figure 5: From top-left to bottom-right, plots of CPU time scaled by Tε−2 for T = 1, 2, 4, 8 and the
double-well potential with ω0 = 1, λ = 2, σ = 4.

is natural that the gains become less pronounced, when we come close to the invariant measure
and the coupling between levels has decayed.

6 Further enhancements

Theorems 3.1 and 3.2 provide a route to analysing the MLMC entirely by weak-approximation
properties of the numerical method.From the algorithmic point of view, the order of weak con-
vergence is determined by moment conditions up to a given degree depending on the order of
convergence. There are a number of ways to satisfy these conditions. It is widely known [20] that
the Gaussian random variables can be replaced by discrete random variables without disturbing
the weak order of convergence. The obvious question then is whether we can use discrete random
variables to our advantage also in the context of MLMC.

MLMC depends crucially on the fact that the sum of two independent Gaussian random
variables is also Gaussian. This allows increments to be generated on the fine levels and combined
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to give a random variable with the same distribution on the next coarser level, using Eq. (25).
Discrete variables do not have this property. While Theorem 3.2 implies the coupling condition of
Theorem 2.1(iii), the sum of two three-point random variables is not a three-point random variable
and the telescoping sum breaks down. In general, using discrete random variables with MLMC
introduces extra error due to the telescoping sum no longer being exact. Though [6] provides an
approach that preserves the telescoping sum by using a different discrete random variable on each
level. Here we do not follow this route. Instead, we use the same discrete random variable on each
level, accepting the additional bias error that this introduces, which crucially is of higher order.
To control this additional bias and to ensure the total error is still below our chosen tolerance,
we change the number of levels L and the coarsest mesh size h0. Discrete random variables are
cheaper to generate than Gaussian random variables and the coarsest level can be evaluated
exactly, which we exploit to achieve a significant speed-up in the small noise case.

6.1 Random variables with discrete distribution

The modified equations are unchanged if the Gaussian random variables in the integrator are
replaced by random variables with the same moments to order five (including all cross moments
to order five arising from the doubled-up system). For example, we can replace samples of iid
N(0, 1) random variables by iid samples of the random variable ζ with distribution

P(ζ = 0) =
2

3
, P

(
ζ = ±

√
3
)

=
1

6
; (29)

or

P
(
ζ = ±

√
3 +
√

6

)
= c, P

(
ζ = ±

√
3−
√

6

)
=

1

2
− c, c :=

1

2

(
1− 3 +

√
6

6

)
. (30)

We refer to ζ as the three- and four-point approximations to the Gaussian, respectively. This is a
well-known trick for weak approximation of SDEs, e.g. [20, §14.2]. The approximations have a
number of advantages, as ζ is quicker to sample than a Gaussian and, due to the finite number of
states, averages of functionals of ζ can be computed exactly.

6.2 Exact evaluation of the coarse-level expectation

For all our integrators, the evaluation of the coarse-level estimator P̂0 with time step h0 = T/M0

is the computationally most expensive part of the MLMC algorithm: even though the number
of time steps and hence the number of samples per path is small, a large number of individual
paths needs to be evaluated to reduce the variance of the coarse-level estimator. This cost can
be reduced dramatically if a discrete distribution as discussed in §6.1 is used for the individual
samples ξn. In this case, a significantly cheaper estimator, which does not rely on Monte Carlo
sampling, can be constructed. If the random numbers ξ1, . . . , ξM0

for each path are drawn from
the three-point approximation in Eq. (29), there is only a finite number nξ of possible samples
ξ(i) = {ξ(i)

1 , . . . , ξ
(i)
M0
}, each with associated probability P(ξ(i)) = P(ξ1 = ξ

(i)
1 ) · · ·P(ξM0

= ξ
(i)
M0

).
The expectation value of the quantity of interest can be calculated exactly on the coarsest level as

Ŷ exact
0 = P̂exact

0 =

nξ∑
i=1

P(ξ = ξ(i))P(i)
0 . (31)

For the three-point approximation, for example, we need to choose from the 3d possible values
of ξn in each of the M0 time steps, so nξ = (3d)M0 is the number of different samples of ξ. Since
the estimator contains no sampling error, its variance is zero. In Algorithm 1, we can replace
Ŷ0,N0 7→ Ŷ exact

0 and V̂0,N0 7→ 0 in lines 10 and 12. Effectively, this implies that the sum in line 12
only runs from j = 1 to L and it is not necessary to evaluate N+

0 .
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Naively, the computational complexity of evaluating Eq. (31) is given by the product of the
number of different samples and the number of time steps, nξ ×M0 = M0(3dM0). However, using
a recursive algorithm, the computational complexity can be reduced to the number of nodes
in the product-probability tree, which is only O(nξ) = O(3dM0) Nevertheless, this still grows
exponentially with the number M0 of coarse time steps and so Eq. (31) is only competitive for
small values of M0 and d. However, exact evaluation can reduce the overall cost of the algorithm
dramatically and this is exploited to significant advantage in §6.3.

We now state and prove a modified complexity theorem that allows for additional bias to be
introduced between levels, as well as for a different computational cost on the coarsest level.

Let P̃` be the estimator corresponding to P̂`, but with increments given by Eq. (25). For
Gaussian increments these estimators are the same, but they are different when we use 3-point or
4-point approximations. Recall that the fine, level `, sample in each of the estimators Ŷ`,N` uses
increments sampled directly from the 3-point or 4-point distribution, while the coarse, level `− 1,
sample is computed using two consecutive fine increments and formula Eq. (25).

Theorem 6.1. Let us replace Assumption (ii) of Theorem 2.1 by

(ii)’ E
[
Ŷ0

]
= E

[
P̂`
]

and
∣∣E[P̂` − P̃`]∣∣ ≤ c0hγ` , for some positive constants c0 and γ > α ≥ 1

2 .

We suppose that all the other assumptions of Theorem 2.1 hold, except that Cost
(MLMC)
0 is not necessarily

assumed to be bounded by c3N0h
−1
0 any longer.

Then, there exists a positive constant c5 such that for any ε < 1/e, there are values M0, L and N` for
which Ŷ{N`} from Eq. (7) has a MSE < ε2 and a computational complexity Cost(MLMC) with bound

Cost(MLMC) ≤ Cost
(MLMC)
0 + c5ε

−2+1/γ . (32)

Proof. We only require slight modifications in the proof of [13, Theorem 3.1] to prove this result.
In particular, it is sufficient to choose L =

⌈
log2(

√
3c1T

αε−1)
α

⌉
to bound the bias on the finest level.

The factor
√

3 appears, since we now have three error contributions, the bias on the finest level,
the bias between levels and the sampling error, and since we require each of these contributions to
the MSE to be less than ε2/3. To guarantee that the bias between levels is less than ε2/3, note that
due to assumption (ii)’ we have∣∣∣∣∣

L−1∑
`=0

E
[
P̂` − P̃`

]∣∣∣∣∣ ≤
L−1∑
`=0

∣∣E[P̂` − P̃`]∣∣ ≤ c0hγ0 L−1∑
`=0

2−`γ <

√
2c0√

2− 1
hγ0 ,

and so a sufficient condition is h0 ≤ c6ε1/γ with c6 =
(

1√
3c0

(
1− 1√

2

))1/γ

.

Finally, setting N` =
⌈

3c2h
2
0√

2−1
ε−22−3`/2

⌉
and exploiting standard results about geometric series,

we get
L∑
`=1

Var
[
Ŷ`,N`

]
≤ ε2

3

(√
2− 1

) L∑
`=1

c2h
2
`

c2h2
0

23`/2 ≤ ε2

3

(√
2− 1

) L∑
`=1

2−`/2 ≤ ε2

3
.

The computational cost can then be bounded by

Cost(MLMC) ≤ Cost
(MLMC)
0 + c3

L∑
`=1

N`h
−1
` ≤ Cost

(MLMC)
0 +

3c2c3h0√
2− 1

ε−2
L∑
`=1

2−`/2

which leads to the desired bound with c5 = 3c2c3c6
(√

2− 1
)−2

. (Note that as in [13] this (optimal)
choice of N` is obtained by minimising the cost on levels 1 to L subject to the constraint that the
sum of the variances is less than ε2/3.)
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Figure 6: h-dependency of the additional bias term |E
[
P̂` − P̃`

]
| (see (ii) in Theorem 6.1) for

σ0 = λ = 1, σ = 0.4 computed using the symplectic Euler/exact OU splitting. Results are shown
both for three-point (SE3) and four-point (SE4) random variables.

If we use a q-point approximation and the expected value on the coarsest level is computed
exactly, as described in §6.2, then Cost

(MLMC)
0 = O(qdM0) = O

(
ηε
−1/γ

)
, for some η > 1. Hence,

the total cost grows exponentially with ε, as expected. However, for practically relevant values of
ε, the exponential term may not be dominant and we may get significant computational savings,
as we will see in the next section. Using [21], it can be shown that γ = 2 for the three-point and
γ = 3 for the four-point case, leading to a cost of O(ε−3/2) and O(ε−5/3) for the computation of
the correction terms on levels 1 to L, respectively.

Since the sampling of discrete random variables is significantly cheaper, it may also be of
interest to use standard Monte Carlo on the coarsest level, as in the earlier sections of this paper. If
we slightly increase the constant in the formula for N`, ` = 1, . . . , L, in the proof of Theorem 6.1
and choose N0 = O(ε−2) such that the total variance over all levels is below ε2/3, then the
dominant cost will be Cost

(MLMC)
0 = O(N0h

−1
0 ), and so Cost(MLMC) ≤ c∗5ε

−2−1/γ , which will be
O(ε−5/2) and O(ε−7/3) in the three- and four-point cases, respectively. However, in practice c∗5 is
significantly smaller than the constant c4 in Theorem 2.1, so that for moderate values of ε, the use
of discrete random variables will pay off.

6.3 Numerical experiments with discrete random variables

We carry out numerical experiments as in §5.1 with the damped harmonic oscillator, but change
the parameters slightly to ω0 = λ = 1, σ = 0.4 (i.e., smaller noise). Instead of sampling from
a Gaussian distribution, we use discrete random numbers, which introduce an additional bias
as discussed above. To quantify this bias numerically, we plot the difference

∣∣E[P̂` − P̃`]∣∣ in
Figure 6 for the symplectic Euler/exact OU method both for three-point (SE3) and four point (SE4)
distributions. The figure shows that, as predicted in [21], the additional bias is proportional to h2

for SE3 and to h3 for SE4. We have also studied the dependence on the noise term (not shown
here) and found that, as σ gets smaller, the additional bias is reduced very rapidly (proportional
to σ3 and σ4, respectively).

For the same setup, we measure the computational cost and the total error (consisting of the
statistical error, discretisation error and the additional bias introduced by sampling from discrete
distributions). We calculate the same quantity of interest as in §5.1. Figure 7 shows the results both
for Gaussian random variables (SEG) and for the three- and four-point distributions (SE3 and SE4)
with M0 = 8. For the discrete distributions, the coarse-grid expectation value is calculated exactly.
For the three-point distribution, we also varied the number of time steps on the coarsest level
and use M0 = 4 (SE3-), M0 = 8 (SE3) and M0 = 16 (SE3+). In each case, we only show results
up to the point where the additional bias error becomes too large. For fixed ε, the SE3+ method
is more expensive than SE3 and SE3-, since the cost of the exact coarse-level evaluation grows
exponentially with the number of time steps. On the other hand, using smaller time steps on the
coarsest level allows the use of this method for smaller values ε where the additional bias becomes
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Figure 7: Harmonic oscillator with λ = 1 and σ = 0.4 computed using the symplectic Euler/exact
OU splitting method using three-point (SE3-, SE3, SE3+) and four-point (SE4) random variables.

Harmonic Oscillator (Set 2) Double-well Potential
ε = 2.4× 10−4 ratio ε = 2.44× 10−3 ratio

MC w. EMG 467 sec 13× slower 1710 sec 378× slower
MLMC w. EMG 33.8 sec 1 45.2 sec 1
MLMC w. SEGe 2.15 sec 15× faster 10.5 sec 4.3× faster

Table 1: Comparison of Monte Carlo with Euler–Maruyama, MLMC with Euler–Maruyama and
MLMC with the symplectic Euler/OU integrator and extrapolation (using Gaussian increments).

too large for SE3- and SE3. The additional bias in the SE4 method is so small that the method can
be used up to values as small as ε = 10−5. Comparing the cost of this method to the Gaussian case
shows that using a discrete four-point distribution is more than 50-times faster in this case.

We conclude that, if used with caution, approximating the Gaussian increments in Eq. (2) by
discrete approximations and calculating the coarse-level expectation value exactly can significantly
improve the efficiency of the multilevel method.

7 Conclusion

Table 1 summarises our findings: MLMC gives a significant speed-up over the traditional Monte
Carlo computation of averages and, even though the optimal complexity estimate O(ε−2) for
Monte Carlo-type methods holds for all the integrators under study, there is significant variation
between the integrators. Splitting methods are particularly appropriate for the Langevin equation
and using the exact OU solution yields a more stable integrator than Euler–Maruyama, even
though both integrators are explicit. In the experiments, the difference in computation time
between Euler–Maruyama and the splitting methods is greater when the dissipation λ is higher,
since Euler–Maruyama suffers from a more severe time-step restriction (cf. Figures 2–5).

This paper also introduced an alternative analysis method for MLMC based on modified
equations. It provides a convenient approach to MLMC through weak-approximation theory;
strong-approximation theory is only needed to relate the original and modified equations and not
the numerical methods. This accommodated the use of the splitting method and the exact OU
solution easily.

The weak-approximation analysis motivated the use of discrete random variables, such as
three- and four-point approximations to the Gaussian. In an example with small noise (σ = 0.4
and λ = 1), we saw between one and two orders of magnitude speed-up for a useful range of ε
because we can evaluate the coarse level exactly. This method is easy to implement and it works
well because the dominant cost lies on the coarsest level for these problems. While the speed
improvements are impressive, this method should be used with care as it introduces an extra
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bias error. The extra bias can be estimated as shown in Figure 6. The improvement would be less
dramatic in higher dimensions as the number of samples required would increase dramatically
and it may be impossible to compute the coarse level exactly. As an interesting side result, we
proved a modified complexity theorem that allows for extra bias to be introduced between levels
in MLMC.
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