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ABSTRACT 

Conduction in thin discs can be modelled using the fin equa-

tion, and there are analytical solutions of this equation for a circular 

disc with a constant heat-transfer coefficient. However, convection 

(particularly free convection) in rotating-disc systems is a conju-

gate problem: the heat transfer in the fluid and the solid are coupled, 

and the relative effects of conduction and convection are related to 

the Biot number, 𝐵𝑖, which in turn is related to the Nusselt number. 

In principle, if the radial distribution of the disc temperature is 

known then 𝐵𝑖 can be determined numerically. But the determina-

tion of heat flux from temperature measurements is an example of 

an inverse problem where small uncertainties in the temperatures 

can create large uncertainties in the computed heat flux. In this pa-

per, Bayesian statistics are applied to the inverse solution of the cir-

cular fin equation to produce reliable estimates of Bi for rotating 

discs, and numerical experiments using simulated noisy tempera-

ture measurements are used to demonstrate the effectiveness of the 

Bayesian method. Using published experimental temperature 

measurements, the method is also applied to the conjugate problem 

of buoyancy-induced flow in the cavity between corotating com-

pressor discs. 

NOMENCLATURE 

𝑎  inner radius (m) 

𝐴  cross-sectional-area of fin (m2) 

𝑏  outer radius (m) 
 
 
𝐵𝑖  modified Biot number(= 2ℎ𝑏2/𝑘𝑠𝑡) 

𝐵𝑖0  Bi number at the MAP point 

𝑐, 𝐶1, 𝐶2 constants 

𝐶  Matérn covariance matrix 

𝑑  fixed vector from numerical fin equation 

𝑑ℎ  hydraulic diameter(= 2(𝑎 − 𝑟𝑠)) (m) 

𝐸  coefficient matrix 

𝐹  posterior potential 

𝐺𝑟  Grashof number(= (1 − 𝑎/𝑏)3𝑅𝑒𝜙
2 𝛽Δ𝑇) 

ℎ  heat transfer coefficient (W/m2K) 

𝐼𝑜, 𝐾𝑜 modified Bessel functions of the first and 

second kind, order 0 

𝑗  index for grid points 
𝐽  Jacobian matrix 

𝐽Θ  subset of {2,…N} to show the position of  

the temperature measurements  

𝑘  thermal conductivity of air (W/mK) 

𝑘𝑠  thermal conductivity of disc (W/mK) 

𝐾𝑞  modified Bessel function of the second kind, 

  order 𝑞 

𝑙  spatial length scale, parameter for Matérn 

  covariance 

𝐿  characteristic length (m) 

𝑀  number of temperature measurements  

𝑁  number of grid intervals 

𝑁𝑢  Nusselt number (= ℎ𝑟/𝑘) 

𝑃  probability density function 

𝑞  smoothness level, parameter for Matérn 

  covariance 

𝑟  radius (m) 

𝑟𝑠  radius of the inner shaft (m) 

𝑅𝑜  Rossby number 

𝑅𝑒  Reynolds number 

𝑅𝑒𝑧  axial Reynolds number  

𝑅𝑒𝜙  rotational Reynolds number 

𝑠  axial space between discs in cavity (m) 

𝑆  fin surface area (m2) 

𝑡  thickness of fin or disc (m) 

𝑇  temperature (K) 

𝑇𝑓  temperature of axial throughflow (K) 

𝑇𝑜  temperature of disc (K) 

𝑇𝑟𝑒𝑓  appropriate reference temperature (K) 

𝑉  velocity (m/s) 

𝑊  axial component of throughflowvelocity (m/s) 

𝑥  nondimensional radius (= 𝑟/𝑏) 

𝛽  volume expansion coefficient(= 1/𝑇𝑟𝑒𝑓)(K-1) 

𝛤  gamma function 

𝜇  dynamic viscosity (kg/ms) 

𝜖  standard deviation of the experimental data  

  obtained from the Bayesian method 
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𝜎  standard deviation, parameter for Matérn co-

variance 

𝜃  nondimensional temperature for fin  

  (= (𝑇𝑜 − 𝑇𝑟𝑒𝑓)/(𝑇𝑏 − 𝑇𝑟𝑒𝑓)) 

𝛩  nondimensional temperature for experiments 

  (= (𝑇𝑜 − 𝑇𝑓)/(𝑇𝑏 − 𝑇𝑓)) 

𝒩  normal distribution 

𝜉  random error(~𝒩(0,1)) 

𝜌  density (kg/m3) 

Ω  angular speed of disc (s-1) 

 

Subscripts 

𝑎  value at 𝑟 =  𝑎 

𝑏  value at 𝑟 =  𝑏  
𝑓  value in axial throughflow 
𝑜  value on disc surface 

𝑟𝑒𝑓  appropriate reference value 

𝑧, 𝑟, 𝜙 axial, radial, circumferential direction 

 

1. INTRODUCTION 

Modern high-pressure aeroengine compressors (see Figure 

1) present a particular problem for designers: the higher the pres-

sure ratio, the smaller the blades become, and the size of the 

clearance between the blades and casing has an increasing effect 

on the compressor performance. To calculate these small clear-

ances for transient and steady conditions, it is necessary to deter-

mine the radial growth of the compressor discs. This in turn re-

quires the calculation of the transient temperatures of the  

 
Figure 1 Simplified diagram of high-pressure compres-

sor rotor 

 

discs, which involves the calculation of the values of  h, the heat 

transfer coefficient, for the discs. However, inside the cavity be-

tween the corotating compressor discs, the flow is buoyancy-in-

duced. This is an example of a strongly conjugate problem: the 

flow in the cavity, and therefore h, depends on the temperature 

distribution in the discs, and the disc temperature depends on the 

flow. 

Rotating-disc systems can be used to model, theoretically and 

experimentally, the flow and heat transfer that occurs from turbine 

and compressor discs in gas-turbine engines. The compressor discs 

are usually relatively thin - at least over most of their extent - so 

that the radial temperature differences are much greater than the 

axial differences. This means that, in principle, the one-dimen-

sional (1D) fin equation (see, for example, Incropera and 

DeWitt[1]) could be used to determine the heat flux as a function 

of radius. 

The determination of heat flux from temperature measure-

ments is an example of an inverse problem (see, for example, 

Kaipio and Somersalo[2]). These problems are ill-conditioned, 

and small uncertainties in the temperature measurements create 

large uncertainties in the computed heat flux. In recent years, 

much attention has been focused on inverse problems in heat 

transfer, and it is now widely accepted that models based on 

Bayesian statistics can play an important role in their solution. It 

is the object of this paper to show how these models can be ap-

plied to conjugate problems to determine the heat transfer coef-

ficients on rotating discs in general and on compressor discs in 

particular. 

A brief review of Bayesian methods and of buoyancy-induced 

flow in rotating cavities is given in Section 2, and some analytical 

and numerical direct solutions of the fin equation are presented in 

Section 3. Section 4 describes how the Bayesian method can be ap-

plied to the inverse solution of the fin equation, and Section 5 ap-

plies this method to the computation of Nusselt numbers using sim-

ulated and actual temperature measurements on rotating discs. The 

conclusions are summarised in Section 6, and further details of the 

Bayesian method are given in the appendix. 

2. BRIEF REVIEW OF RELEVANT RESEARCH 

2.1 Bayesian method for inverse problems 

The interested reader is referred to the monograph of Kaipio 

and Somersalo[2], which provides an overview of the application 

of Bayesian statistics to inverse problems in general. For the in-

verse conduction problem, where measured temperatures are used 

to compute heat fluxes, Bayesian statistics treat all quantities as ran-

dom variables, which are modelled in terms of their probability dis-

tributions. The ill-posed nature of the inverse problem is overcome 

by the modelling of the prior distribution (referred to as Bayesian 

prior regularisation) of the unknown heat flux. Statistical inversion 

then determines the probability distribution, referred to as the pos-

terior distribution, of the heat flux after all available information 

has been incorporated in the model. This posterior distribution pro-

vides the heat flux and its confidence intervals. 

Kaipio and Fox[3] and Orlande[4] include comprehensive re-

views of modern solutions, including Bayesian statistics, of inverse 

problems in heat transfer, and Wang and Zabaras[5] describe the 

application of Bayesian models to the inverse conduction problem. 

Of particular relevance here is the paper by Gnanasekaran and 

Balaji[6] who applied the Bayesian method to the inverse problem 
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of natural convection from a vertical fin. They determined the heat 

transfer coefficients as well as the thermal conductivity of the fin 

material, and they suggested that only nine thermocouple measure-

ments are needed to produce estimates with reasonable accuracy. 

As far as we are aware, Bayesian statistics have not been ap-

plied to the inverse problem of heat transfer from rotating discs, and 

details of the models used in this paper are given in Section 4 and 

the appendix. 

 

2.2 Buoyancy-induced flow in rotating cavities 

A comprehensive review of buoyancy-induced flow and heat 

transfer in open and closed rotating cavities is given by Owen and 

Long[7]. The work below relates only to the flow structure for ax-

ial-throughflow case, where the Rossby number, Ro, has a signifi-

cant effect. In addition to the papers referred to below, the books of 

Childs[7], Owen and Rogers[9] and Tritton[10] provide a theoreti-

cal background for a wide range of rotating flows. 

As observed by many research workers [e.g. 11, 12], the axial 

throughflow of air creates a toroidal vortex near the centre of the 

cavity, as illustrated in Figure 2. The radial extent of the vortex in-

creases as the throughflow increases and as the rotational speed de-

creases or, more precisely, as 𝑅𝑜 increases. At the larger values 

of 𝑅𝑜, the tangential component of velocity inside the vortex be-

haves like a free vortex, so that 𝑉𝜙 increases as𝑟 decreases, and – 

depending on the value of 𝑅𝑜 - vortex breakdown of the central jet 

can occur. Radially outward of the toroidal vortex, the fluid tends 

to rotate as a solid body, so that 𝑉𝜙 = 𝑐Ω𝑟; the constant c = 1 for 

isothermal flow, and 𝑐 < 1 when buoyancy-induced flow occurs. 

For isothermal flow, unless the non-axisymmetric vortex 

breakdown occurs, the flow in the cavity is axisymmetric. When 

the temperature of the discs and shroud is higher than that of the 

axial throughflow, buoyancy-induced flow can occur and the flow 

radially outward of the toroidal vortex becomes non-axisymmetric 

[12]. The asymmetry manifests itself as a pair, or multiple pairs, of 

cyclonic and anti-cyclonic vortices, which precess about the axis of 

rotation with an angular velocity less than that of the discs. These 

vortices create the Coriolis forces necessary for radial outflow to 

occur in the rotating core of fluid between the boundary layers (usu-

ally referred to as Ekman layers) on the rotating discs. 

 

 
Figure 2 Simplified diagram of axial throughflow in an 

isothermal rotating cavity 

 

Several research workers have measured the Nusselt numbers 

on the heated shroud or discs of rotating cavities, using fluxmeters 

or thermocouples embedded into the surface of the shroud or discs 

[13-15]. Although Atkins and Kanjirakkad [16] did not determine 

the Nusselt numbers in their experiments, they did measure the ef-

fect of the Rossby, Reynolds and Grashof numbers on the radial 

distribution of disc temperature; these temperature measurements 

are used in Section 5 to determine the Nusselt numbers. Their 

multi-cavity compressor rig is shown in Figure 3, and the flow pa-

rameters used in the experiments are given in Table 1 (see Section 

5.2).  

The shroud (or outer cylindrical surface) could be radiantly 

heated up to around 410K, and the air temperature at inlet to the 

cavity was between 297K and 310K. They defined the axial and 

rotational Reynolds numbers and the Rossby and Grashof numbers 

as 

𝑅𝑒𝑧 = 2
𝜌𝑊𝑑ℎ

𝜇
 (1)  

𝑅𝑒𝜙 =
𝜌Ω𝑏2

𝜇
 (2)  

𝑅𝑜 =
𝑊

Ω𝑎
 

(3)  

and 

𝐺r = (1 −
𝑎

𝑏
)3𝑅𝑒𝜙

2 𝛽Δ𝑇 (4)  

where 
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Δ𝑇 = 𝑇𝑜,𝑏 − 𝑇𝑟𝑒𝑓 (5)  

The authors assumed 𝛽 = 1/𝑇𝑟𝑒𝑓 , where 𝑇𝑟𝑒𝑓 was taken to 

be 𝑇𝑓 , the mean temperature of the axial throughflow measured 

downstream of the cavity. They expressed the disc temperature, To, 

in terms of 𝛩, a normalized temperature defined by 

𝛩 =
𝑇𝑜 − 𝑇𝑓

𝑇𝑜,𝑏 − 𝑇𝑓
 (6)  

where 𝑇𝑜,𝑏is the value of 𝑇𝑜at r = b. They measured the tem-

peratures on both sides of the instrumented disc shown in Figure 3, 

and the flow parameters for their 19 test cases are given in Table 1. 

Apart from the ‘cob’ region, for r/b< 0.44, most of the disc had a 

uniform thickness of 8 mm, and there was only a small temperature 

difference across this thin section. 

Figure 4(which is based on Figure 10b in [16]) shows the ra-

dial variation of 𝛩measured at a Rossby number of𝑅𝑜 ≈ 1.Alt-

hough the shape of the curves depends on the Grashof number, it is 

shown below that it is in fact the Biot number, which itself is a 

strong function of the Grashof number, that determines the shape 

of these curves. 

 
Figure 3 Experimental multi-cavity rig used by Atkins 

and Kanjirakkad [16] (dimensions in mm). 

 

Figure 4 Radial variation of𝚯, from Atkins and Kanjirak-
kad [16] 

 

3. DIRECT SOLUTION OF FIN EQUATION 

For the direct problem, the Biot number is specified and the 

temperature of the fin is calculated. 

 

3.1 Nondimensional version of fin equation 

The fin equation (the derivation of which can be found in most 

text books on heat transfer, such as Incropera and DeWitt [1]) can 

be expressed as 

𝑑

𝑑𝑟
(𝑘𝑠𝐴

𝑑𝑇𝑜

𝑑𝑟
) − ℎ(𝑇𝑜 − 𝑇𝑟𝑒𝑓)

𝑑𝑆

𝑑𝑟
= 0  (7)  

where A and S are the cross-sectional and surface areas respec-

tively. For an annular fin of thickness t and inner and outer radii a 

and b, 

𝐴 = 2𝜋𝑟𝑡 (8)  

𝑆 = 2𝜋(𝑟2 − 𝑎2) (9)  

 (Note: the fin is cooled symmetrically from both sides, and 

Trefis a reference temperature. Also, a is used here as the inner ra-

dius of the fin and not, as shown in Figure 3, the inner radius of the 

cavity.) 

The fin equation can be expressed in nondimensional terms as 

𝑑2𝜃

𝑑𝑥2
+

1

𝑥

𝑑𝜃

𝑑𝑥
− 𝐵𝑖 𝜃 = 0 (10)  

where 𝜃 is a nondimensional temperature, Bi is a modified 

Biot number and x is a radius ratio defined by 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x



 

 

case 2a

case 2b

case 2c

case 2d

case 2e

case 2f

case 2g
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𝜃 =
𝑇𝑜 − 𝑇𝑟𝑒𝑓

𝑇𝑜,𝑏 − 𝑇𝑟𝑒𝑓
 (11)  

𝐵𝑖 = 2
𝑏2

𝑡2

ℎ𝑡

𝑘𝑠
 (12)  

and 

𝑥 =
𝑟

𝑏
 (13)  

 

3.2 Analytical solutions 

Eq. (10) is a modified form of Bessel’s equation. For constant 

Biot numbers, the general solution is 

𝜃 = 𝐶1𝐼0(𝐵𝑖1/2𝑥) + 𝐶2𝐾0(𝐵𝑖1/2𝑥) (14)  

Where 𝐶1 and  𝐶2 are constants and  𝐼0 and 𝐾0 are modified 

Bessel functions of the first and second kind with 0 order. For the 

case where 𝜃 = 𝜃𝑎at 𝑥 = 𝑥𝑎 = 𝑎/𝑏 and 𝜃 = 𝜃𝑏at 𝑥 = 𝑥𝑏 = 1, 

it follows that 

𝐶1 =
𝐾0(𝐵𝑖1/2)𝜃𝑎 − 𝐾0(𝐵𝑖1/2𝑥𝑎)𝜃𝑏

𝐼0(𝐵𝑖1/2𝑥𝑎)𝐾0(𝐵𝑖1/2) − 𝐼0(𝐵𝑖1/2)𝐾0(𝐵𝑖1/2𝑥𝑎)
 (15)  

𝐶2 =
𝐼0(𝐵𝑖1/2𝑥𝑎)𝜃𝑏 − 𝐼0(𝐵𝑖1/2)𝜃𝑎

𝐼0(𝐵𝑖1/2𝑥𝑎)𝐾0(𝐵𝑖1/2) − 𝐼0(𝐵𝑖1/2)𝐾0(𝐵𝑖1/2𝑥𝑎)
 (16)  

 

Figure 5 shows the normalised variation of 𝜃 𝑣. 𝑥 according 

to eq. (14) for a range of Biot numbers with xa= 0.3 for 𝜃𝑎 = 0 and 

𝜃𝑏 = 1. The effect of Bi on the shape of 𝜃 in Figure 5is qualita-

tively similar to the effect of Gr on the shape of 𝛩  in Figure 4, 

although 𝛩 in the latter figure was not normalised. 

 

Figure 5 Effect of 𝑩𝒊 on theoretical variation of 𝜽 𝒗. 𝒙 for 

𝒙𝒂 = 𝟎. 𝟑 

3.3 Numerical solution 

Numerical solutions are necessary if the Biot number is not 

constant. Eq. (10) can be approximated by a second-order finite-

difference equation. Let 𝑥𝑗 for 𝑗 = 1, … , 𝑁 + 1 be a grid of 𝑁 +

1 uniformly spaced grid points between 𝑥𝑎 and 𝑥𝑏 and let Δ𝑥 be 

the constant step length. Then for the jth point on the grid, the tem-

perature 𝜃𝑗 and 𝐵𝑖𝑗 at 𝑥𝑗 satisfy 

𝜃𝑗+1 − 2𝜃𝑗 + 𝜃𝑗−1

Δ𝑥2
+

1

𝑥𝑗

𝜃𝑗+1 − 𝜃𝑗−1

2Δ𝑥
− 𝐵𝑖𝑗𝜃𝑗 = 0, 

(2 ≤ 𝑗 ≤ 𝑁) 

(17)  

The boundary conditions are: 𝜃1 = 𝜃𝑎 at 𝑥 = 𝑥𝑎 and 𝜃𝑏 =
𝜃𝑁+1 = 1 at 𝑥 = 𝑥𝑏 = 1. This equation can be directly solved by 

the tri-diagonal matrix method. The energy balance of the inte-

grated heat fluxes was checked with a relative error less than 2 ×
10−4. With 𝑁 = 100, there was excellent agreement between the 

numerical and analytical solutions for constant 𝐵𝑖. 
 

4. INVERSE SOLUTION OF FIN EQUATION – 
BAYESIAN METHOD 

The temperature data 𝛩 provides information about the Biot 

numbers via the fin equation. The inverse problem of finding the 

field of Biot numbers given experimental data𝛩 is ill posed. The 

problem needs to be regularised by imposing some smoothness 

conditions on the Biot numbers. To do this, we take a Bayesian ap-

proach and give the experimental measurements and the Biot num-

bers a probabilistic interpretation. Then, Bayes theorem provides a 

so-called posterior distribution and we can compute the probability 

distribution for the Biot numbers conditioned on the observation of 

the temperatures. To extract information from this distribution, we 

calculate the MAP (maximum a posteriori) estimator and 95%-con-

fidence intervals using a Gaussian approximation to the posterior 

distribution. We work throughout with a discretised set of values 

for the temperature and Biot numbers. Mathematically, the spatially 

varying field of Biot numbers is a random field and its probability 

distribution lives on a function space. To avoid this technicality, we 

consider only the Biot numbers 𝐵𝑖𝑗 and temperatures 𝜃𝑗 as given 

by the finite-difference eq. (17). 

The reader who is less interested in the theory than in the ap-

plication of the method might wish to proceed to Section 5. 

 

4.1 Likelihood function 

We now introduce the probabilistic model for the data. We 

assume experimental measurements 𝛩𝑗 are given at a subset of 

grids points 𝑥𝑗 indexed by 𝑗 from a subset𝐽Θ of {2,…,N}. We 

further suppose that the observations are noisy and that 𝛩𝑗 =

𝜃𝑗 + 𝜖𝜉𝑗 , where 𝜉𝑗 are independent 𝒩(0,1) random variables 

and 𝜖2 is the variance in the experimental data. Then, we can 

write down the PDF (probability density function) of the obser-

vations 𝛩 given the Biot numbers; this is known as the likeli-

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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hood function. We use the notation 𝑃(𝛩|𝐵𝑖) to denote the con-

ditional PDF of 𝛩 conditioned on the data 𝐵𝑖. That is, if 𝑀 is 

the number of points in 𝐽Θ, then 

𝑃(𝛩|𝐵𝑖) =
1

(2𝜋𝜖2)
𝑀

2

𝑒𝑥𝑝 (
− ∑ (𝛩𝑗 − 𝜃(𝐵𝑖)𝑗)

2
𝑗∈𝐽Θ

2𝜖2
)

=
1

(2𝜋𝜖2)
𝑀

2

𝑒𝑥𝑝 (−
(Θ − 𝜃)𝑇(Θ − 𝜃)

2𝜖2
) 

(18)  

Here, 𝑀 is the number of data points, 𝛩 is an 𝑀-vector con-

taining the observations𝛩𝑗  (𝑗 ∈ 𝐽𝛩), and 𝜃 is a vector of the corre-

sponding 𝜃𝑗(𝑗 ∈ 𝐽Θ)resulting from solving the fin equation with 

the Biot numbers 𝐵𝑖. 
 

4.2 Prior distribution 

The probabilistic interpretation for the Biot numbers is called 

the prior distribution and expresses realistic assumptions on the 

field of Biot numbers, such as its smoothness or typical size or the 

length scale on which it varies. For the prior distribution on 𝐵𝑖, we 

choose the mean-zero multivariate Gaussian distribution with co-

variance matrix taken from the Matérn covariance class. The Ma-

térn class of covariance models is used widely in spatial statistics 

and was introduced by [17,18]. The Matérn class has three param-

eters: 𝑞 gives the smoothness or number of derivatives (we take 

𝑞 = 2 always), 𝜎2 gives the variance at each point, and 𝑙 gives 

the spatial length scale ( for the fin, 𝑙 is taken to be the total length; 

for the fin equation, 𝑙 =  𝑥𝑏 − 𝑥𝑎)[18]. Then the PDF of the prior 

distribution is 

𝑃(𝐵𝑖) =
1

(2𝜋)(𝑁+1)/2|𝐶|1/2
𝑒𝑥𝑝 (−

1

2
𝐵𝑖𝑇𝐶−1𝐵𝑖) (19)  

where |𝐶| denotes the determinant of the matrix 𝐶  and the 

covariance matrix C has (𝑖, 𝑗) entries 

𝐶(𝑥𝑖 , 𝑥𝑗) =
𝜎2

2𝑞−1Γ(𝑞)
(

|𝑥𝑖 − 𝑥𝑗|

𝑙
)

𝑞

𝐾𝑞 (
|𝑥𝑖 − 𝑥𝑗|

𝑙
) (20)  

Here 𝐾𝑞 denotes the modified Bessel function of the second 

kind of order 𝑞 and 𝛤 is the gamma function.  

The results presented below are sensitive to the choice of q and 

l. Increasing l or q causes the Biot field to be much stiffer and to 

have significant variation with a much reduced probability, and it 

is therefore important to select q and l. To explain the choice of q = 

2, consider the stiffness or smoothness of the Biot number field 

modelled like the bending energy in an elastic rod, where second-

order derivatives are used. This makes the smoothness parameter q 

= 2 in the Matern covariance a sensible choice, and it means that 

samples of the Biot-number prior will then have second-order de-

rivatives. (Although it is true that solutions of the fin equation are 

infinitely differentiable, the Matern distribution models the field of 

Biot numbers and not the temperature distribution.) The choice of 

l needs to embody a length scale in the system, and we have chosen 

this to equal the length of the fin. 

4.3 Bayes’ theorem 

If we assume the Biot number 𝐵𝑖 and experimental noise 𝜉𝑗 

are independent, Bayes theorem gives the following expression for 

the PDF of the posterior distribution 

𝑃(𝐵𝑖|𝛩) ∝
1

(2𝜋𝜖2)
𝑀

2

𝑒𝑥𝑝 (−
(Θ − 𝜃(𝐵𝑖))𝑇(Θ − 𝜃(𝐵𝑖))

2𝜖2
) 

    ×
1

(2𝜋)(𝑁+1) 2⁄ |𝐶|1/2
𝑒𝑥𝑝 (−

1

2
𝐵𝑖𝑇𝐶−1𝐵𝑖) 

(21)  

where ∝ indicates that we have omitted the constant of pro-

portionality. This PDF can be minimised by the choice of 𝐵𝑖to find 

the maximum a posteriori (MAP) estimator of the Biot numbers. It 

is convenient to work with the log of the PDF and determine the 

MAP estimator by minimising of the so-called posterior potential, 

F, which is given by 

𝐹(𝐵𝑖|𝛩) = (𝑀)𝑙𝑛𝜖 +
(𝛩 − 𝜃(𝐵𝑖))𝑇(𝛩 − 𝜃(𝐵𝑖))

2𝜖2

+
1

2
𝐵𝑖𝑇𝐶−1𝐵𝑖 

(22)  

The first term depends on data variance only; the second is the 

data-fitting term; and the third is a smoothing term for the Biot 

numbers. The last two terms are similar to ones arising from the 

Tikhonov regularization [2,19]. Further details on the Bayes theo-

rem and the derivation of this formula can be found, for example, 

in [2]. 

The MAP estimator is computed by numerical optimisation of 

the posterior potential 𝐹(𝐵𝑖|𝛩) over the choice of 𝐵𝑖, and𝜖is ad-

justed to minimise 𝐹.Also, we refine the prior function by reduc-

ing𝜎 from a starting value of 1000 until its value is twice the max-

imum Biot number. (This choice of 𝜎 is a compromise between 

minimising the data variance and reducing the oscillations in Bi.)As 

shown in Section 5.1, this iterative ad hoc method gives good re-

sults for simulated experimental measurements. 

To indicate the variability around the MAP estimator, we look 

for confidence intervals. Rather than do a costly sampling calcula-

tion (e.g. Markov chain Monte Carlo sampling methods [20]), we 

approximate the posterior distribution by a Gaussian distribution 

using Laplace's method. Essentially, this means we expand the pos-

terior potential 𝐹(𝐵𝑖|Θ) about the MAP estimator and keep only 

the second-order term. This defines a Gaussian distribution, and 

confidence intervals are then easily found for the Gaussian approx-

imation. Details of this calculation are given in the appendix. We 

plot 95%-confidence intervals with the MAP estimator in all exper-

iments discussed below. 
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5. APPLICATION OF BAYSIAN METHOD TO RO-
TATING DISCS 

5.1 Application using simulated temperature meas-
urements 

Alexiou et al. [21], Miché [22] and Günther et al.[23,24] com-

puted the Nusselt numbers on the discs by solving the inverse con-

duction problem using curve-fits of the experimental temperature 

measurements on the discs. We now compare this approach, which 

creates large and unrealistic oscillations in the computed distribu-

tion of the Biot number, to the Bayesian method. The examples be-

low use simulated experimental measurements of the disc temper-

ature and a known radial distribution of the Biot number. The dis-

tributions of Bi are chosen to be similar to the ones typically found 

on compressor discs. 

First, the true temperature distribution is generated by eq. (17) 

with 𝐵𝑖 = 100𝑥5and  𝑁 = 100 and with the boundary condi-

tions𝑥𝑎 = 0.3, 𝜃𝑎 = 𝜃1 = 0.2 and 𝑥𝑏 = 1, 𝜃𝑏 = 𝜃𝑁+1 = 1. 

Next,19(that is, M =19) of the 99 internal data points are se-

lected, and noisy data are generated by adding independent nor-

mally-distributed random variables with mean zero and standard 

deviation equal to 5 × 10−3. The simulated data are shown in Fig-

ure 6a. 

Finally, the Bayesian method is applied to the simulated ex-

perimental data. The MAP estimator is computed, and 𝜖is ad-

justed to minimise the posterior potential, as described in Section 

4.3. The parameters for the Matérn covariance used here were 

𝜎 = 183, 𝑙 = 0.7 and 𝑞 = 2, and the optimum value of 𝜖 was 

found to be 4.1 × 10−3.This value of 𝜖 is similar to, though a 

little smaller than, the original standard deviation of 5 x 10-3. (It 

is shown in Section 5.2 that the optimum value of 𝜖 for the ex-

perimental data was less than the suggested uncertainty in the 

measured temperatures.) 

Figure 6b shows the 𝐵𝑖 resultsobtained from the inverse so-

lution of eq. (17), and Figure 6a shows the temperature distribu-

tions obtained from the direct solution of eq. (17) using these com-

puted values of 𝐵𝑖. Although all the methods give a good approxi-

mation to the temperature distribution, only the Bayesian method 

provides a good estimate of the true Biot numbers. A big advantage 

of the Bayesian method is that, as shown in the appendix, the con-

fidence intervals can be computed, and it can be seen from Figure 

6b that true solution is always within the 95% confidence intervals. 

(As the uncertainty about the first and second derivatives of 𝛩 is 

greatest at the end points, 𝑥 = 𝑥𝑎 and 𝑥 = 1, the uncertainty in 

𝐵𝑖 is greatest at these points.)  

Figure 7 shows similar results for the case where  𝐵𝑖 =
 100𝑥2 . Having demonstrated the effectiveness of the Bayesian 

method using simulated experimental data, we now apply the 

method to actual experimental data. 

 

 

 
               (a) Temperature distribution                                            (b) Bi distribution 

Figure 6 Comparison between Bayesian method and curve-fitting methods for 𝑩𝒊 =  𝟏𝟎𝟎𝒙𝟓 
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                 (a) Temperature distribution                                            (b) Bi distribution 

Figure 7 Comparison between Bayesian method and curve-fitting methods for 𝑩𝒊 =  𝟏𝟎𝟎𝒙𝟐 

 

 

5.2 Application using temperature measurements
 of Atkins and Kanjirakkad [16]. 

The experimental temperature measurements used here were 

obtained by scanning the figures in the paper of Atkins and Kan-

jirakkad. 

For the compressor disc shown in Figure 3,the outer radius was 

b = 220 mm, and for x>0.44 the disc had a uniform thickness of t 

= 8 mm. As the axial temperature differences were small, it was 

assumed that this outer part of the disc (often referred to as the dia-

phragm or the web) can be treated as a circular fin. The similarity 

between the temperature distributions in Figures 4 and 5 gives fur-

ther support to this assumption. 

It should be noted that Bi determined from the fin equation is, 

in effect, an average value for the two surfaces of the disc. In prac-

tice, the different flows in the upstream and downstream cavities 

could create different values of Bi for the two surfaces. This differ-

ence is expected to be greater at the larger values of the Rossby 

number and the smaller values of x, where the effect of the toroidal 

vortex is likely to be significant. (In future experiments, if one of 

the disc surfaces were insulated then this would avoid the average-

Biot number problem.) 

The average temperatures at𝑥 = 𝑥𝑎 = 0.44  and 𝑥 = 𝑥𝑏 =
1were taken as the boundary conditions of the fin equation, eq. 

(17), and the 22 temperature measurements (𝑀 = 22) between 

these limits were used to determine 𝛩 for the Bayesian method. As 

the measurement points are not uniformly distributed, N is taken to 

be 300 to achieve more accurate values for𝑥𝑗 , 𝑗 ∈ 𝐽𝛩.  

By applying the fin equation and the Bayesian method, the 

Biot numbers and their confidence intervals were determined in a 

similar way to that described in Section 5.1 for the simulated ex-

periments. Although the suggested uncertainty in the temperature 

measurements of Atkins and Kanjirakkad was ±0.5C (which – ac-

cording to the definition of Θ – implies that the uncertainty of Θ 

was 0.01~0.05), this measure of uncertainty gave poor results. (We 

suspect this is because the Biot field is smooth and the data is given 

multiple spatial locations, which provides information and reduces 

the uncertainty at a given spatial location. In any case, our method 

provides a reduced value of ε to use in the likelihood function. If 

the value of ε were larger, the resulting posterior distribution would 

be much less focused around the MAP estimator and would not 

provide practical results. It can be seen from Table 1 that the opti-

mum values of 𝜖 obtained from the Bayesian method are much 

smaller than the suggested uncertainty of Θ.) 

For rotating discs, the Nusselt number is usually defined as 

𝑁𝑢 =
ℎ𝑟

𝑘
 (23a) 

It follows from the definition of Bi that 

𝑁𝑢 =
1

2

𝑡

𝑏

𝑘𝑠

𝑘
𝑥𝐵𝑖 (23b) 

The reference temperature, 𝑇𝑟𝑒𝑓, used in the definition ofℎfor 

the Biot numbers was taken to be 𝑇𝑓, the temperature of the axial 

throughflow. For convenience, 𝑘𝑠 and 𝑘 were assumed to be con-

stant, and the thermal conductivity of the titanium disc and the air 

were taken to be 7.0 Wm-1K-1 and 0.027 Wm-1K-1 respectively. It 

follows that 𝑁𝑢 = 4.71𝑥𝐵𝑖. 
All 19 test cases were analysed, and details of the flow param-

eters are given in Table 1, in which the tests are arranged in ascend-

ing order of Gr. As in Section 5.1, the computed values of 𝐵𝑖 ob-

tained from the inverse solution of eq (17) were used to compute 

𝛩 from the direct solution, and Table 1 shows the values of 𝜖 ob-

tained in the Bayesian method. (In effect, 𝜖 is similar to the stand-

ard deviation between the computed and measured values of 𝛩.) 

The table also shows the values of 𝑁𝑢𝑏 , the computed Nusselt 

number on the disc at 𝑟 = 𝑏. Figures 8 to 11, grouped in terms of 

the approximate Rossby numbers, show the radial distributions of 

𝛩 and 𝑁𝑢. 

Figure 8 shows the results for the six tests at 𝑅𝑜 ≈ 5. For tests 

1a and 1b, the Nusselt numbers increase virtually linearly with 𝑥. 
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This is consistent with laminar flow over a free disc (see, for exam-

ple, Owen and Rogers [25]). At these relatively low Grashof and 

rotational Reynolds numbers (𝐺𝑟 < 3 × 108  and 𝑅𝑒𝜙 <  7.8 ×

104), it is probable that the effects of buoyancy are very small, and 

consequently laminar forced-convection dominates for the rotating 

discs in the cavity. For tests 1c to 1f, the Nusselt numbers for the 

outer part of the disc (𝑥 > 0.7) increase sharply as the Grashof 

number increases, and the data in Table 1suggest that buoyancy-

induced flow starts to dominate in the outer part of the cavity (𝑥 >
0.7) when 𝐺𝑟 > 8.5 × 108. In all six tests (and indeed in all the 

other tests), the computed distributions of temperature are in very 

good agreement with the measurements. 

Figure 9 shows the results for 𝑅𝑜 ≈ 1. All seven tests, where 

𝐺𝑟 > 6 × 109, show evidence of buoyancy-induced flow, and the 

Nusselt numbers for the outer part of the disc increase monoton-

ically as 𝐺𝑟 increases. All distributions of 𝐵𝑖 converge to a low 

value for x < 0.6, which suggests that the effects of buoyancy are 

weak in this region. Similar effects can be seen for the two cases 

for 𝑅𝑜 ≈ 0.6 in Figure 10. 

Figure 11, for 𝑅𝑜 ≈ 0.3 , shows an apparent anomaly. For 

three of the four tests, the Nusselt numbers increase as the Grashof 

number increases, but test 4c bucks the trend. This anomaly is be-

lieved to be caused by compressibility effects: at high rotational 

speeds, the temperature of the core increases – and the heat transfer 

consequently decreases - with radius. For two tests at the same 

value of 𝐺𝑟 but at different values of 𝑅𝑒𝜙, the test at the higher 

value of 𝑅𝑒𝜙 would therefore be expected to produce lower val-

ues of the Nusselt numbers. 

Inspection of Table 1 shows that, apart from the anomaly re-

ferred to above, for each Rossby number the Nusselt numbers in-

crease as the Grashof number increases. However, at a fixed value 

of the Grashof number, there is a tendency for the Nusselt numbers 

to decrease as the Rossby number decreases. At small values of Ro 

(that is, at large values of 𝑅𝑒𝜙), the decrease in Nusselt number 

can be attributed to compressibility effects. For large values of 

Ro, where compressibility effects are relatively small, the decrease 

of Nuf with decreasing Ro is attributed to the size of the toroidal 

vortex, which decreases as Ro decreases. As the size of the vortex 

decreases, the amount of fluid entrained by it decreases, and the 

temperature of the core would be expected to increase. Conse-

quently, this would decrease the heat transfer from the discs to the 

core as Ro decreases. More experimental or computational evi-

dence is needed to test this conjecture. 

 

 
(a)Temperature distributions 

(symbols denote measurements; curves show computations) 

 

(b) Nusselt number distributions 

(curves show computations; shading shows 95% confidence 

intervals) 
Figure 8 Distributions of temperature and Nusselt numbers for Ro ≈ 5 
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(a)Temperature distributions 

(symbols denote measurements; curves show computations) 

 

(b) Nusselt number distributions 

(curves show computations; shading shows 95% confidence 

intervals) 
Figure 9  Distributions of temperature and Nusselt numbers for Ro ≈ 1 

 
(a)Temperature distributions 

(symbols denote measurements; curves show computations) 

 

(b) Nusselt number distributions 

(curves show computations; shading shows 95% confidence 

intervals) 
Figure 10  Distributions of temperature and Nusselt numbers for Ro ≈ 0.6 

(a)Temperature distributions 

(symbols denote measurements; curves show computations) 

 

(b) Nusselt number distributions 

(curves show computations; shading shows 95% confidence 

intervals) 
Figure 11  Distributions of temperature and Nusselt numbers for Ro ≈ 0.3 
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 Ro ≈ 5 Ro ≈ 1 Ro ≈ 0.6 Ro ≈ 0.3 

Case No 1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 2f 2g 3a 3b 4a 4b 4c 4d 

Ro 4.7 4.7 4.9 4.9 4.5 4.5 0.8 0.8 0.9 0.9 1.0 1.0 1.0 0.6 0.6 0.3 0.3 0.3 0.3 

Gr/1011 0.0017 0.003 0.0085 0.015 0.062 0.14 0.065 0.1 0.44 0.84 1.7 2.5 3.9 5.7 9.1 0.4 1.0 3.7 7.8 

βΔT 0.08 0.17 0.05 0.11 0.09 0.24 0.09 0.16 0.11 0.23 0.13 0.19 0.32 0.15 0.32 0.06 0.16 0.12 0.29 

Reϕ/106 0.078 0.077 0.19 0.19 0.46 0.45 0.46 0.45 1.13 1.1 2.1 2.1 2.1 3.5 3.1 1.4 1.4 3.1 3.0 

Rez/105 0.19 0.19 0.5 0.5 1.1 1.1 0.19 0.18 0.51 0.5 1.1 1.1 1.1 1.1 1.1 0.2 0.2 0.48 0.48 

𝜖 × 103 5.2 5.0 4.8 4.4 5.3 5.1 3.9 4.0 5.2 5.8 5.8 6.7 8.1 5.9 8.0 4.5 4.7 4.8 6.6 

𝑁𝑢𝑏 32.9 38.3 59.3 78.8 141 165 90.0 100 185 233 255 325 408 260 434 97 187 153 318 

Table 1 Flow parameters and values of𝝐 and 𝑵𝒖𝒃 for experiments of Atkins and Kanjirakkad [16] 

 

6. CONCLUSIONS 

A nondimensional form of the fin equation for circular discs 

has been used to model the heat transfer from air-cooled rotating 

discs, and Bayesian statistics have been used to determine the 

Biot numbers, Bi, from the inverse solution of the fin equation. 

The paper describes how the Bayesian method can be used to 

determine the values of Bi and their 95% confidence intervals. 

The power of the Bayesian method was demonstrated using 

simulated temperature measurements. First the direct solution of 

the fin equation was obtained numerically, for the case of a 

known radial distribution of Bi, and noise was added to the com-

puted disc temperatures to simulate experimental measurements. 

Next, the Biot numbers were computed, using the ‘experimental 

temperatures’ as the boundary conditions for the inverse solution 

of the fin equation. The Bayesian method produced a smooth dis-

tribution of Bi, and the computed 95% confidence interval cap-

tured the true distribution. By contrast, conventional curve-fit-

ting methods - using polynomials to approximate the experi-

mental temperatures - resulted in large oscillations and inaccu-

rate results. 

The Bayesian method was then used to compute the Nusselt 

numbers, and their confidence intervals, for a compressor disc 

using published disc-temperature measurements as the boundary 

conditions for the fin equation. The 19 published test cases cov-

ered a wide range of Rossby, rotational Reynolds and Grashof 

numbers.  

For 𝑅𝑜 ≈ 5, 𝐺𝑟 < 3 × 108  and 𝑅𝑒𝜙 < 8 × 104 , where 

buoyancy effects are expected to be small, the computed values 

of 𝑁𝑢  increased linearly with radius, in a manner consistent 

with laminar flow over a free disc. For most of the smaller values 

of 𝑅𝑜and larger values of 𝐺𝑟, where buoyancy effects are ex-

pected to be dominant, 𝑁𝑢  increased as 𝐺𝑟 increased. How-

ever, in a few cases at large values of 𝑅𝑒𝜙, where compressibil-

ity effects are expected to be significant, two tests at the same 

value of 𝐺𝑟, but at different values of 𝑅𝑒𝜙, could create differ-

ent values of 𝑁𝑢: the test at the higher value of 𝑅𝑒𝜙 would – 

as expected - produce the lower value of 𝑁𝑢. Some anomalous 

behavior at 𝑅𝑜 ≈ 0.3 was attributed to the effect of the toroidal 

vortex affecting to flow in the cavity. 

Although Bayesian statistics have been applied to a number of 

inverse problems, as far as the authors are aware they have not been 

applied to heat transfer from rotating discs. It is hoped that this pa-

per will draw the attention of the research community to the poten-

tial use of the methods applied here to other rotating-disc problems. 

For heat-transfer experiments on rotating discs, it would be 

helpful if experimenters were to publish the measured disc tem-

peratures as well as the Nusselt numbers. It should also be re-

membered that the Nusselt numbers determined from the meas-

ured disc temperatures in this paper were an average value for 

the two surfaces of the disc. In future experiments, if one of the 

disc surfaces were insulated then the Nusselt numbers could be 

uniquely assigned to the uninsulated surface. Finally, for any 

analysis of experimental data, the results can only be as good as 

the data used to obtain them. 

The authors are currently developing a theoretical model of 

buoyancy-induced flow in rotating cavities, and we shall compare 

our predictions of the Nusselt numbers with those presented in this 

paper. We also plan to apply the methods used here to other rotat-

ing-disc problems. 
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APPENDIX 

The Bayesian method gives a probability distribution on the 

Biot numbers rather than a single set of Biot numbers. The MAP 

estimator is in some sense the most likely profile for the Biot 

numbers. To give further information about the reliability of the 

MAP estimator, we show how to find confidence intervals. The 

confidence intervals that we derive are approximate and depend 

on a Gaussian approximation to the posteriori distribution, which 

is effective when the posterior variance is small (i.e. the data can 

be well approximated). 

Recall from eq (23) that the posterior potential 

𝐹(𝐵𝑖|𝛩) = (𝑀)𝑙𝑛𝜖 +
(𝛩 − 𝜃(𝐵𝑖))

𝑇
(𝛩 − 𝜃(𝐵𝑖))

2𝜖2

+
1

2
𝐵𝑖𝑇𝐶−1𝐵𝑖 

(A1) 



 12  

where 𝛩 is the vector containing the experimental data points 

Θ𝑗(𝑗 ∈ 𝐽Θ)  and 𝜃  is a vector containing the corresponding 

𝜃𝑗(𝑗 ∈ 𝐽Θ). Denote the MAP estimator by 𝐵𝑖0 and compute the 

Taylor expansion of the posterior potential around 𝐵𝑖0: 

𝐹(𝐵𝑖|𝛩) = 𝐹 +
𝜕𝐹

𝜕𝐵𝑖
(𝐵𝑖 − 𝐵𝑖0)

+
1

2
(𝐵𝑖 − 𝐵𝑖0)𝑇

𝜕2𝐹

𝜕𝐵𝑖2
(𝐵𝑖 − 𝐵𝑖0)

+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

(A2) 

where all the 𝐹 terms on the right-hand side are evaluated 

at 𝐵𝑖0.  If 𝐵𝑖 − 𝐵𝑖0  is small, the higher-order terms can be 

dropped. It is the second-order terms that define the covariance  

of the approximating Gaussian distribution and that determine 

the confidence intervals. This method is known as the Laplace 

approximation. 

As 𝐵𝑖0 is the MAP estimator, it minimises 𝐹 and the first-

order necessary condition is 

𝜕𝐹

𝜕𝐵𝑖
|𝐵𝑖=𝐵𝑖0

 = 0 (A3) 

The second derivative of F is 

𝜕2𝐹

𝜕𝐵𝑖2
=

1

2𝜖2

𝜕2

𝜕𝐵𝑖2
(𝛩 − 𝜃)𝑇(𝛩 − 𝜃)

+
1

2

𝜕2

𝜕𝐵𝑖2
𝐵𝑖𝑇𝐶−1𝐵𝑖 

(A4) 

Note that 

𝜕2(𝛩 − 𝜃)𝑇(𝛩 − 𝜃)

𝜕𝐵𝑖2
= 2𝐽𝑇𝐽 − 2(𝛩 − 𝜃)𝑇

𝜕2𝜃

𝜕𝐵𝑖2
 (A5) 

where the Jacobian matrix𝐽 = ∂𝜃/𝜕𝐵𝑖. The finite-difference 

method for the fin eq.(17) can be written 

𝐸(𝐵𝑖)𝜃 = 𝑑 (A6) 

where d is the fixed vector from the fin eq. (17).Note that 

the 𝜃  here only contain the corresponding 𝜃𝑗  where 𝑗 ∈ 𝐽Θ . 

The product rule for differentiation gives 

𝜕𝐸

𝜕𝐵𝑖𝑗
𝜃 + 𝐸

𝜕𝜃

𝜕𝐵𝑖𝑗
= 0 (A7) 

hence 

∂𝜃

𝜕𝐵𝑖𝑗
= −𝐸−1

𝜕𝐸

𝜕𝐵𝑖𝑗
𝜃 (A8) 

The vectors ∂𝜃/𝜕𝐵𝑖𝑗gives the columns of the 𝐽. In eq.(A5), 

we assume that𝛩 − 𝜃 is small and,as the experimental data is 

well approximated by the model, we neglect the last term in the 

equation. Then, substitute into eq. (A4), to find 

𝜕2𝐹

𝜕𝐵𝑖2
≈

𝐽𝑇𝐽

𝜖2
+ 𝐶−1 (A9) 

Eqs (A9) and (A2) give 

𝐹(𝐵𝑖|𝛩) ≈ 𝐹(𝐵𝑖𝑜|𝛩) +
1

2
(𝐵𝑖 − 𝐵𝑖0)𝑇𝑄(𝐵𝑖 − 𝐵𝑖0) (A10) 

The posterior distribution has the density function propor-

tional to 𝑒𝑥𝑝 (−𝐹(𝐵𝑖|𝛩)) . This gives a new distribution with 

probability density function proportional to 𝑒𝑥𝑝 (−
1

2
(𝐵𝑖 −

𝐵𝑖0)𝑇𝑄(𝐵𝑖 − 𝐵𝑖0)), which is a mean-zero multivariate Gaussian 

distribution with covariance 

𝑄−1 = (
𝐽𝑇𝐽

𝜖2
+ 𝐶−1)

−1

 (A11) 

We use this distribution to determine confidence intervals. 

Let 𝜎𝐵𝑖𝑗
denote the square root of the 𝑗𝑡ℎ element on the leading 

diagonal of the covariance matrix. Then the 95% confidence in-

tervals for each Bi are taken to be 

𝐵𝑖0,𝑗 ± 1.96𝜎𝐵𝑖𝑗
 (A12) 
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