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Abstract

We consider the fixed and exponential time-stepping Euler algorithms, with boundary
tests, to calculate the mean first exit times (MFET) of two one-dimensional neural diffu-
sion models, represented by the Ornstein–Uhlenbeck (OU) process and a stochastic space-
clamped FitzHugh–Nagumo (FHN) system. The numerical methods are described and the
convergence rates for the MFET analysed. We find that the boundary test improves the
rate of convergence from order one half to order one. We also discuss the Multi Level Monte
Carlo (MLMC) method for improving the Monte Carlo computation of the MFET.

Keywords: first exit time; fixed time-step Euler method; exponential time-stepping Euler algo-
rithm; FitzHugh–Nagumo model; Ornstein–Uhlenbeck process.

1 Introduction

A noisy neural model is a system of stochastic differential equations (SDEs) that models the

membrane potential of a single neuron. There has been significant interest in studying the so-

called First Exit Time (FET) of the membrane potential through a constant firing threshold, since

the time to the first spike is believed to hold significant information about the stimulus properties;

see Tuckwell and Wan (2005); Tuckwell (1988); Giraudo and Sacerdote (1998). In this paper,

we study the errors in the numerical computation of the mean FET (MFET) for the Ornstein–

Uhlenbeck (OU) model studied by Lánský and Lánská (1994) and for the stochastic version of the

space-clamped FHN system studied by Tuckwell et al. (2003).
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The simplest method for approximating the MFET is to employ a time stepping method

to generate an approximate path and step until the path crosses the threshold. This gives an

approximate exit time and a Monte Carlo method can be used to approximate the MFET. This

method suffers from two sources of error: the systematic error inherent from the time-stepping and

the Monte Carlo sampling error. We choose the Euler (or Euler–Maruyama) time-stepping method

with fixed and exponentially distributed time steps and discuss ways to reduce both sources of

error.

We first discuss the systematic error for the Euler method with fixed time step ∆t. The error in

the MFET, say Hb, through a constant threshold boundary, b, produced using the Euler method

has two undesirable properties. First, the error is O(∆t1/2) and converges slowly compared to

O(∆t) rate for other Euler type approximations. Second, the method overestimates the MFET

because there is no possibility that the threshold is reached between time steps. Mannella (1999)

dealt with this situation by applying a boundary test. Later, Gobet (2000) proved that this

test combined with the Euler method improves the weak order of convergence from O(∆t1/2) to

O(∆t) in the evaluation of a smooth functional of X(t) conditioned on t < Hb. Our numerical

experiments for the OU and stochastic FHN models suggest also that the MFET is approximated

with O(∆t).

In addition to fixed time steps, we investigate the Euler method with i.i.d time steps taken

from the exponential distribution as introduced by Jansons and Lythe (2003). This leads to a

convenient method for approximating the MFET and experiments show O(∆t) accuracy when a

boundary test is incorporated.

The Monte Carlo error is generically O(M−1/2) for M i.i.d samples and this holds also for

the computation of the MFET. Giles (2008) introduced the Multi Level Monte Carlo (MLMC)

method, using simulations on a sequence of grids and arranging the calculations so many cheap

coarse grid and fewer fine grid calculations are made, to reduce computation time while keeping

the same level of accuracy. In approximation of averages of solutions to SDEs at finite times, this

leads to a reduction in the work required from O(ε−3) to O(ε−2| log ε|2) for a given accuracy ε.

Recently Higham et al. (2012) analysed the MLMC method for exit time problems and showed the

method can be used with the Euler method with fixed time stepping to improve performance. We

will also apply MLMC to the computation of MFET and include a boundary test. We will show
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MLMC improves performance on some examples and appears to have the same rate of convergence

as the Monte Carlo method. When MLMC is used without boundary tests as in Higham et al.

(2012), the performance does improve (relative to a Monte Carlo simulation without boundary

tests) but not to an extent that is competitive with boundary tests. Exponential time stepping is

not easily adapted to MLMC.

The paper is organized as follows. In Section 2, the MFET problem is formulated and necessary

notations are introduced. In Section 3, we carefully define the exponential and fixed time stepping

Euler methods and the associated boundary tests. In Section 4, we include numerical experiments

concerning the OU and FHN equations, in order to investigate the convergence of the methods.

Section 5 covers the MLMC method and Section 6 contains our conclusions and some ideas for

future work.

2 Problem formulation

Let X(t), t ≥ 0, be a stochastic process satisfying the stochastic differential equation (SDE)

dX(t) = µ(X(t))dt+ σdW (t), X(0) = x ∈ R, (1)

where W (t) is a standard one-dimensional Wiener process on a probability space (Ω,F ,P). The

constant σ2 > 0 represents the diffusion and the function µ : R → R represents the drift and is

assumed to satisfy regularity conditions, sufficient to guarantee the existence and uniqueness of

the solution to (1); e.g., (Kloeden and Platen, 1999, Theorem 4.5.3). Define now the first exit

time Hb(x) and mean first exit time T (x) through a fixed point b ∈ R by

Hb(x) = inf{t ≥ 0 : X(t) = b}, T (x) = E[Hb], −∞ < x < b,

where E denotes expectation with respect to P. It is well known that T (x) obeys the boundary

value problem (Karlin and Taylor (1981))

LT (x) =− 1, −∞ < x < b, (2)

lim
a→−∞

T (a) =0, T (b) = 0,

where the generator

L = µ(x)
d

dx
+

1

2
σ2 d

2

dx2
.

3



Explicit solutions of first exit problems are limited to a few simple cases and numerical techniques

are required to approximate solutions.

We use the following standard notations: N(µ, σ2) for the Gaussian distribution with mean

µ and variance σ2, U(a, b) for the uniform distribution on [a, b], and Exp(λ) for the exponential

distribution with rate λ.

3 Simulation techniques

Consider the standard Euler method for approximating the solution X(tn) of (1) at time tn = n∆t

by Xn defined by

Xn+1 = Xn + µ(Xn)∆t+ σ
√

∆t ηn (3)

and X0 = x, where ∆t is the fixed time step and ηn ∼ N(0, 1) i.i.d. The simplest method for

approximating the MFET T (x) is to calculate

T (x) ≈ 1

M

M∑
m=1

min{tn : Xm
n ≥ b or n = N} (4)

where Xm
n , m = 1, . . . ,M , are i.i.d samples of the Euler approximation Xn and N is a maximum

number time steps. We also define the Euler method with boundary test. First, let

Px,b,y = exp
(−2(b− x)(b− y)

σ2∆t

)
. (5)

Then, if x, y < b and Y obeys

dY = µ(x)dt+ σdW (t), Y (0) = x

where we freeze the drift, Px,b,y = P(Y (t) = b, some 0 < t < ∆t given Y (∆t) = y). We expect

Px,b,y is a good approximation to the probability of an excursion in the interval [tn, tn+1] by the

solution X(t) of (1) given X(tn) = x and X(tn+1) = y. This motivates the time stepping Euler

method with boundary test, given as follows:

• The trajectories {Xn : n = 0, 1, 2, · · · , N} are generated according to equation (3).

• Generate un ∼ U(0, 1) i.i.d and say that an excursion during the time step (tn, tn+1] is

detected if un < Px,b,y for x = Xn and y = Xn+1.
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• We repeat the time stepping until an excursion is detected or n = N − 1 is reached and

output tn+1 as the exit time.

We approximate the MFET by the average of the exit time tn+1 over M independent samples as

in (4) and again a maximum number of time steps N is used in practise.

3.1 Exponential Euler method with boundary test

Under the exponential time stepping method (Jansons and Lythe (2003, 2000)), in place of a

fixed time step ∆t, we take time steps δtn that are i.i.d Exp(λ) random variables, where the rate

λ > 0 plays the role of discretisation parameter. If τ ∼ Exp(λ) and independent of W (t), then

Y (τ) = µτ + σWτ has density

p(x) =

∫ ∞
0

1√
2πσ2t

e−(x−µt)/2σ
2tλe−λt dt =

λ

σ2

1

N
×

e
−|x|(N+F ), xµ < 0,

e−|x|(N−F ), otherwise,

for F = µ/σ2 and N =
√
F 2 + ν2 and ν2 = 2λ/σ2. Note that

P(µY (τ) > 0) = (N + F )/2N (6)

and Y (τ) given ±µY (τ) > 0 has distribution Exp(N ∓ F ) and thus Y (τ) is easily sampled. We

see then that the Euler method with exponential time steps is given by Xn+1 = Xn +Y (τ), where

µ = µ(Xn).

To include the boundary test, let

P̃x,b,y = e−2N(x)(b−max{x,y}), x, y < b. (7)

In (Jansons and Lythe, 2003, (3.7)), it is shown that P̃x,b,y = P(Y (t) > b, some 0 ≤ t ≤ τ) and

this probability leads to the following exponential time stepping Euler algorithm with boundary

test for simulating X(t).

• Let un, pn be pairwise independent random variables with un ∼ U(0, 1) and pn ∼ Exp(1).

• Given the value of Xn ≈ X(tn), we generate the value of Xn+1 ≈ X(tn+1) for tn+1 = tn + δtn

as

Xn+1 = Xn +
(
N(Xn)− s(Xn)F (Xn)

)−1
s(Xn)pn, (8)
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where F (X) = σ−2µ(X), N(X) =
√
F (X)2 + ν2, s(X) = sign(1

2
(1 + F (X)

N(X)
)− un). Note that

(N(Xn)− s(Xn)F (Xn))−1pn ∼ Exp(N ± F ) and P(s(XN)pn > 0) = (N + F )/2N .

• Substituting x = Xn, y = Xn+1 in (7), we say an excursion is detected in (tn, tn+1] if

zn < e−2N(Xn)(b−max{Xn,Xn+1}), where zn ∼ U(0, 1) i.i.d.

• Repeat the time stepping until an excursion is detected or the maximum number of time

steps N is reached and output the number of steps taken n.

Notice that tn or δtn are never explicitly generated. The MFET is computed from the average

number of steps n multiplied by the mean time step Eδtn = 1/λ.

When σ is small, it is advantageous to replace the the update rule (9) with

Xn+1 =

Xn + 1
2λ
µ(Xn)δn + σ√

2λ
δn, un <

1
2

(
1 + µ(Xn)√

2λσ2

)
,

Xn + 1
2λ
µ(Xn)δn − σ√

2λ
δn, otherwise,

(9)

for δn ∼ exp(1) i.i.d. This is quite natural as Eδn/2λ = Var(δn/
√

(2λ)) reflects the usual ∆t =

Var(
√

∆tηn) we have for Euler’s rule with fixed time stepping. The term un gives a small correction,

so that in the limit λ→ 0, where (9) is dominated by the (σ/
√

2λ)δn term and P(µ(Xn)(Xn+1 −

Xn) > 0) tends to 1
2
(1 + µ(Xn)√

2λσ2
), the update rule (9) agrees with (6); i.e.,

N + F

2N
=

1

2
+

1

2N/F
→ 1

2

(
1 +

µ(Xn)√
2λσ2

)
as λ→∞.

It is also derived in (Jansons and Lythe, 2003, (4.16)) in a limit λ/σ2 →∞.

4 Numerical experiments

We employ the simulation techniques described above in two neurobiological examples, the Ornstein–

Uhlenbeck and FitzHugh–Nagumo models.

4.1 Ornstein–Uhlenbeck (OU) model

The simplest stochastic leaky integrate and fire (LIF) model for describing the behaviour of nerve

membranes is the Ornstein–Uhlenbeck (OU) process (Lánský and Ditlevsen (2008)). It is used
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to approximate the subthreshold membrane potential of a nerve cell receiving random synaptic

inputs and is given by the SDE

dX(t) =
(
− αX(t) + η

)
dt+ σdW (t), X(0) = x, (10)

where the constants η and σ reflect the input signal and its variability, resulting from the stochastic

dendritic currents that are caused by the action potential of other neurons or by external stim-

ulation in sensory neurons. The time membrane constant 1
α

= CR > 0 governs the spontaneous

decay of the membrane potential to its resting state, where R and C are the membrane resistance

and its capacitance respectively. The spiking activity of the OU model is identified by the FET

of the membrane potential through a constant boundary. In the OU model, the neuron emits a

spike whenever the firing threshold (b > x) is reached, and then the membrane potential is reset

to its equilibrium potential, which is conveniently set to zero (Ditlevsen and Ditlevsen (2008)).

Unlike more complex models such as the Hodgkin–Huxley model and the FHN model, the action

potential is not a part of the OU model; only its time generation is considered and so we have to

impose the threshold condition.

The action potential X(t) given by the OU model is Gaussian with

E[X(t)] =
η

α
+
(
x− η

α

)
e−tα, Var[X(t)] =

σ2

2α

(
1− e−2tα

)
.

For t → ∞, the asymptotic mean depolarization is η
α

and thus we have two firing regimes for

the OU model. The first is called suprathreshold firing and occurs when η
α
> b and the neuron

produces spikes even in the absence of noise. The other is called subthreshold firing and is caused

only by the random fluctuations of the depolarization when η
α
< b (Lánský and Ditlevsen (2008)).

The neuron, therefore, never fires when σ = 0. We are interested here in exploring the effect of

noise on the spiking activity of the OU model and so we limit ourselves to the second regime, in

particular when there is an absence of input (η = 0).

The spiking activity of the OU model is measured by the first exit time of the membrane

potential and it is interesting to calculate the MFET T (x). From Siegert (1951), T (x) is given by

the integral

T (x) =

√
π

ασ2

∫ b

x

(
1 + erf

(z√α
σ

))
exp

(z2α
σ2

)
dz, (11)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. In §4.3, we evaluate the integral in (11) using
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quad in MATLAB, to gain a reference solution to T (x) and compute errors for the numerical

methods in §3.

4.2 FitzHugh–Nagumo (FHN) model

Consider a space-clamped FHN system

dX =
(
f(X(t), Y (t)) + I

)
dt+ σdW (t)

dY = β
(
X(t)− γY (t)

)
dt, (12)

with initial conditions X(0) = x and Y (0) = y. X(t) represents the voltage variable and Y (t) the

recovery variable. W (t) is a standard Wiener process, σ is a noise parameter and I is a constant

input current. f is the cubic function

f(X, Y ) = kX(X − c)(1−X)− Y, 0 < c < 1.

c should be set to less than 1
2

in order to obtain suitable suprathreshold responses, as in Tuckwell

et al. (2003). γ and β are positive constants.

We are interested in finding the MFET for X(t) through a constant threshold b. The recovery

variable Y is practically unaffected during the elementary stages of the interspike interval, and

therefore the system (12) can be reduced to a one-dimensional equation by considering Y (t) = y

to be a constant. The system then takes the form

dX =
(
f(X(t), y) + I

)
dt+ σdW (t), (13)

with initial condition X(0) = x ∈ (−∞, b). To determine a reference solution T (x) for computing

errors, we solve the boundary value problem (2) for µ(x) = f(x, y)+I, with the boundary condition

T (a) = 0 for a = −100, using the MATLAB function bvp_4C. This allows us to compute errors

and evaluate the effectiveness of the numerical methods of §3.

4.3 Summary of simulation results

The random time step δt has expectation E[δt] = 1
λ

and this is used in the exponential time

stepping algorithm as an equivalent to ∆t in the fixed time stepping algorithm when we plot

errors against a discretisation parameter. The cpu time is normalised by the number of samples.
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Figure 1: Plots of the relative error against discretisation parameter ∆t = 1/λ and cpu time against

relative error for the OU model with initial data x = 0, dissipation α = 1 and noise σ =
√

2.

The threshold b = 1 and the number of samples M = 106. fixed is the fixed time stepping Euler

method with boundary test; exp is the exponential time stepping Euler method with boundary

test; and expVL is the variant of exp defined by (9). The reference solution T = 2.0934 is used for

computation of the relative errors.
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Figure 2: Similar to Figure 1, except for noise level σ = 0.5 and reference solution T = 56.59426.
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Figure 3: Similar to Figure 1, except the simulations are performed without the boundary tests.

Notice that compared to Figure 1, the lines have slope half rather than slope one and the compu-

tations are much less accurate (contrast the scale on the error axis).

OU We consider two cases of the OU process with parameters α = 1, b = 1 with the noise levels

σ =
√

2 and σ = 0.5. The model becomes significantly more difficult as σ → 0 as the noise must

exit from a potential well and the exit time grows like e1/σ
2

and indeed we see T (0) increases by

a factor of 25 in reducing σ from
√

2 to 0.5.

We present computations of the systematic error for both the fixed and exponential time

stepping Euler methods with and without boundary test in Figures 1–3 for σ =
√

2 and σ = 0.5.

In order to avoid any influence from statistical errors, M is chosen as 106 and, in this case, the

error bars which represent the statistical errors are smaller than the plotted symbols and can be

neglected. Figures 1–2 show that the systematic error is proportional to ∆t = 1/λ. In contrast,

in Figure 3, we see that without the boundary test, the systematic errors are proportional to

∆t1/2 = (1/λ)1/2. Notably, when a smaller σ is chosen in Figure 2, the exponential time stepping

method in its expVL variant (i.e., using (9)) is most accurate for a given amount of CPU time as

this method takes advantage of the small noise.

FHN We choose the parameters c = 0.1, k = 0.5, I = 1.5, and σ = 0.25. The initial values are

x = 0 and y = 1. To avoid any influence from the sampling errors, M is chosen as 106. Figure 4
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Figure 4: Plots of the relative error against discretisation parameter ∆t = 1/λ and cpu time

against relative error for the FHN model with initial data x = 0 and noise σ = 0.25. The

threshold b = 2 and the number of samples M = 106. fixed is the fixed time stepping Euler

method with boundary test; expVL is the variant of exp defined by (9). The reference solution

T = 2.5677 is used for computation of the relative errors.

displays the error in the computed MFET of the FHN model as a function of ∆t = 1
λ

and again

we see the error scales linearly with the discretisation parameter. For a given amount of cpu time,

both the exponential and fixed time stepping methods achieve similar levels of accuracy.

5 Multi Level Monte Carlo

We now discuss the Multi Level Monte Carlo (MLMC) method of Giles (2008) for improving the

the Monte Carlo calculation. To describe MLMC, fix γ = 2 and ∆t0 > 0 and introduce time steps

∆tk = γ−k∆t0 for k = 1, . . . , `. Let φk be the approximation to the exit time Hb(x) by the Euler
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Figure 5: Plots of cpu time against relative error for the computation of the MFET of the OU

process with α = 1, x = 0, b = 1 and noise level σ =
√

2 as the smallest time step ∆t` is varied.

The MLMC is applied with critical time step ∆tc = 0.05 and Mk = 50∆t−2`
√

Var(δk)∆tk. Three

lines are shown: MLMC is the MLMC algorithm incorporating the boundary test (9); MLMC NO BT

is the MLMC algorithm without the boundary test; and MC denotes the MLMC with ` = 0 levels

(conventional Monte Carlo). Notice that MLMC and MC are achieving the same levels of accuracy

for a given CPU time and the cpu time is proportional to the error−3. Without the boundary test,

the algorithm is significantly less accurate.
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Figure 6: Plots of cpu time against relative error for the computation of the MFET of the OU

process with σ = 0.5. The MLMC is applied with ∆tc = 0.1 and Mk = ∆t−2`
√

Var(δk)∆tk
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Figure 7: Plots of cpu time against relative error for the computation of the MFET of the FHN

example. Three methods are tried, as in Figure 5. The MLMC is applied with ∆tc = 0.1 and

Mk = 100∆t−2`
√

Var(δk)∆tk.
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method with time step ∆tk and consider the telescoping sum

E[φ`] =E[φ0] +
∑̀
k=1

E[δk], δk = φk − φk−1.

In conventional Monte Carlo, we approximate E[φ`] by the mean ofM i.i.d samples of φ`. The accu-

racy is proportional to
√

Var(φ`)/M` and to achieve an accuracy ε we require M` = O(Var(φ`)/ε
2).

In MLMC, we evaluate the expression on the right hand side, computing E[φ0] as the sample

average of φ0 using M0 samples and computing E[δk] using Mk samples. By choosing Mk =

const×ε−2
√

Var(δk)∆tk for small parameter ε, we minimises the variance of the MLMC estimator

for a given computational cost (see Giles (2008)). When δk is the difference of φk, φk−1 that are

approximate exit times for the same sample path X(t), we expect Var(δk) to be small and high

accuracy can be achieved with less work by choosing Mk � M0. Thus, we use far fewer samples

of δk for k that require a small time step and we achieve an algorithm that requires less compu-

tational time. This scheme has been rigorously justified in the weak approximation of SDEs at

finite times and accuracy ε can be achieved with O(ε−2| log ε|2) work, which compares favourably

to the naive Monte Carlo that requires O(ε−3) work. Recently, Higham et al. (2012) analysed a

MLMC method for the computation of the MFET using a fixed time step Euler method without

a boundary test and showed the complexity is reduced from O(ε−4) to O(ε−3| log ε|).

We introduce now a version of the MLMC method that works with the fixed time stepping Euler

method with boundary test. Notice that the exponential time stepping method is not naturally

set up to be used with MLMC, as the time steps ∆tk need to be replaced by exponential random

variable parameters λk and the random variables un, pn, zn understood at the different levels. The

effectiveness of MLMC depends on the size of Var(δk) for δk = φk − φk−1 and this is reduced by

computing φk, φk−1 using the “same” random variables. For the Brownian increments, this is easily

achieved by choosing the increments ηn, ηn+1 on the fine level for the intervals [tn, tn+1], [tn+1, tn+2].

The corresponding increment on the coarse level over [tn, tn+2] is found by adding the fine level

increments and choosing ηn+ηn+1. We are simply mimicking the property that W (tn+2)−W (tn) =

(W (tn+2)−W (tn+1)) + (W (tn+1)−W (tn)).

We need to achieve the same effect with the boundary test and this is less straightforward.

First, let Xn, Xn+1, Xn+2 be the fine approximation at times tn, tn+1, tn+2 respectively and let

Yn, Yn+2 be the coarse approximation at tn, tn+2. Let pf1 = PXn,Xn+1 , pf2 = PXn+1,Xn+2 , and

pc = PYn,Yn+2 ; then the boundary tests on the first fine level and the coarse level are as follows:
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Generate a random variable un ∼ U(0, 1); then an excursion is detected on

the fine level [tn, tn+1] if un <pf1,

the coarse level [tn, tn+2] if un <pc.

The choice of boundary test on the second fine level should be chosen to occur with probability

pf2 and to use the same uniform random variable un. Accordingly, we say an excursion is detected

on

the fine level [tn+1, tn+2] if pf1 ≤ un < pf1 + pf2 − pf1pf2,

which occurs with probability pf2 given no excursion on the first fine level (un ≥ pf1). This choice

of boundary test preserves the distribution of φk (whether computed for δk+1 or δk) and maximises

the chance that any excursions that occur happen on both fine and coarse levels, so that the fine

and coarse approximation will do the same thing most of the time and Var(δk) will be reduced.

We give the results of experiments with MLMC for the computation of mean first exit times

for the OU and FHN models, in comparison to conventional Monte Carlo (case ` = 0) and the

MLMC with no boundary test (as in Higham et al. (2012)). In each case, we increase the accuracy

by reducing the smallest time step ∆t` and seeting Mk = const×∆t−2`
√

Var(δk)∆tk (the variance

of δk is approximated by a sample variance). The number of MLMC levels ` is the largest ` such

that ∆t0 ≤ ∆tc, for some critical time step ∆tc, to ensure stability of the underlying integrator.

Figures 5–6 shows numerical experiments with the OU process (10) with parameters σ =
√

2 and

σ = 1/2 respectively (as before α = 1, b = 1 and we compute T (0)). The relative error shows the

root mean square average of relative errors taken from ten repetitions. Figure 7 shows numerical

experiments with the FHN example and model parameters as in Figure 4.

Broadly speaking, the MLMC method shows a similar rate of convergence to the Monte Carlo

method when the underlying method includes a boundary test, though in Figures 6–7 it is more

efficient. The key step in improving the efficiency is to include the boundary test as this improves

the cost of achieving order accuracy ε from O(ε−4) to O(ε−3). The experiments do not exhibit the

same degree of improvement as the weak approximation at a finite time. This is because Var(δk)

behaves experimentally as O(∆t
1/2
k ), whilst in weak weak approximation at a finite time it behaves

like O(∆tk). One reason for this is samples of exit times are unbounded, and samples of δk can

be arbitrarily large. If an excursion is detected at the fine level but not at the coarse level, the

coarse level may perform a large deviation and so δk is often large.
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6 Conclusion

We used the fixed and exponential time-stepping Euler methods with boundary tests to approxi-

mate the MFET for one-dimensional diffusion neural models, represented by the OU and stochastic

FHN models. We found the fixed time-stepping algorithm with Mannella’s boundary test improved

the order of convergence in the MFET from one half to one, which coincides with previous results,

such as those in Jansons and Lythe (2003) and Buchmann (2005). There is not yet a rigorous

proof of this rate of convergence, though Gobet (2000) addresses a number of related problems

with due rigour. We discussed a variant of the exponential time-stepping for small noise; however,

this problem remains difficult due to the exponentially large exit times.

Finally, we introduced a new MLMC method that allows the use of boundary tests in the

underlying time stepping method. Recent work of Higham et al. (2012) uses the fixed step Euler

method without a boundary test, but the complexity of the method is O(ε−3| log ε|) and is not

competitive with a Monte Carlo calculation that incorporates a boundary test with complexity

O(ε−3). Though it was hoped the development of a MLMC for time stepping methods with

boundary tests would give similar improvement in efficiency, we discovered the proposed MLMC

method has a very similar computational cost to the standard Monte Carlo method. The limiting

feature is the variation of the difference between fine and coarse levels, which is too high and

severely restricts the potential gains of MLMC. This study is restricted to simulations in dimension

d = 1, where the boundary test is simple to implement. For domains in higher dimensions,

the boundary test is more difficult to formulate and its effectiveness depends on the boundary

being relatively smooth (see Gobet (2000); Jansons and Lythe (2005)). In such cases, where the

boundary tests are unavailable or complicated to implement, the MLMC method does give a route

to improving the computation of mean exit times.
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