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1 Introduction

The phenomenon of waves in excitable media, such as travelling pulses and spiral waves,
has received a significant amount of attention due to their occurrence in a wide range of
natural systems [26, 17]. The propagation of travelling waves along nerve fibres [22, 28] and a
chemically-active medium with the Belousov–Zhabotinsky reaction [27] are typical examples;
see [19, 28] for further examples of excitable media. An excitable medium is a non-linear,
spatially-extended system, characterized by three states: the rest, excited, and refractory or
recovery states [28]. Under a sufficiently strong stimulus, the excitable system switches from
the rest state to the excited state and then falls into the refractory state after a short time,
before returning to the rest state. Subsequent excitation cannot be generated until a suitable
amount of time, known as refractory time, has passed. Spatial coupling causes a rest state
to become excited when neighbouring an excited state and waves to be produced [17, 28].
A generic excitable medium can be represented simply by a two-variable system of reaction-
diffusion equations, such as the Barkley model [1] or the FitzHugh Nagumo system [5, 20].
Adding noise to these systems increases the production of spatio-temporal patterns, such as
spiral waves and travelling pulses [11, 10]. Noise, generally, can affect the excitable media in
various ways; see [13] for an extensive review and the references given there.

In this paper, we are concerned with the Barkley model in one dimension subject to
space-time additive noise [23],

du =
(
D
∂2u

∂x2
+ f(u, v)

)
dt+ σdw(t, x)

dv = g(u, v)dt, (1.1)

with initial conditions u(0, x) = u0(x), v(0, x) = v0(x) and periodic boundary conditions on
domain [0, L]. D is a diffusion coefficient and σ > 0 is a small noise parameter. w(t, x)
is a Wiener process on a probability space (Ω,F ,P), white in time and correlated in space
as [24, 7]

Ew(t, x)w(s, y) = min{t, s}C(x− y), C(x− y) =
1

2ξ
exp

(−π(x− y)2

4ξ2

)
, (1.2)
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where C, a function of x− y, describes the spatial correlation, the parameter ξ is the spatial
correlation length, and E denotes expectation with respect to the probability measure P. This
type of covariance is known as the squared exponential covariance function, and is stationary
and thus invariant to translations [21].

We assume the reaction terms take the form:

f̃(u, v) =

{
f(u, v), u ≤ 1,

−|f(u, v)|, u ≥ 1,
, g̃(u, v) =

{
g(u, v), v ≥ 0,

|g(u, v)|, v < 0,

where

f(u, v) =
1

ε
u(1− u)

(
u− v + b

a

)
,

g(u, v) =u− v,

for a, b > 0. Following [1], we set a = 0.75, and b = 0.01. The small parameter 0 < ε �
1 represents the time-scale separation of the fast variable u and the slow variable v. We
choose parameters in the sub-excitable regime, where the system can produce waves from the
homogeneous state when appropriate amounts of noise are added though no structure can be
nucleated under purely deterministic conditions [8]. The choice of f̃ , g̃ in place of f, g avoids
an instability not present in the deterministic model for initial data in (u(x), v(x)) ∈ [0, 1]2,
which may be stimulated by additive noise [24].

The nucleation and dynamics of patterns in spatially-extended systems have been studied
extensively, in particular for the φ4- equation in one-dimension with additive space-time white
noise [3]. The patterns in this case are defined by kinks, and their nucleation, propagation
and eventual annihilation are worth studying. A kink is defined here as a boundary with a
region close to 0 to its left and a region close to 1 to its right; the opposite case is called an
anti-kink [15].

Figure 1: Nucleation of the (a) front wave and (b) back wave of a travelling wave. (c) Il-
lustration of the kinks and anti-kinks of the front and back waves. The parameters used are
a = 0.75, b = 0.01, ε = 0.02, D = 1 and L = 40 with noise of correlation length ξ = 2 and
intensity σ = 0.09.

We study kinks and anti-kinks, their nucleation and dynamics, in the Barkley model with
additive noise on the periodic interval [0, L]. A nucleation event due to noise consists of the
following dynamics illustrated in Figure 1: (a) the noise causes the fast variable u to cross an
excitability threshold in some part of phase space and two wave fronts appear propagating in
opposite directions; (b) the excitation endures for a period of time before entering a refractory
state, causing a wave back to appear some fixed distance behind the wave front; (c) two
separate solitary structures have formed, comprising two pairs of wave fronts and wave backs
travelling in opposite directions. The left(right) sides of front waves and the right(left) sides
of back waves are examples of kink(anti-kink) structures. The nucleation time can be defined
as the first time the maximum value of the fast variable u passes the threshold of excitability,
which we treat as a first exit problem. The kinks and anti-kinks are nucleated at random
times and in random positions. As in Figure 2–3, they travel in opposite directions and due
to the periodic structure are annihilated in collision [9]. We will study excitation, nucleation
times, and kink lifetimes.

2



Figure 2: Plots of the nucleation and annihilation of a wave for the Barkley model(1.1). The
parameters of the system are a = 0.75, b = 0.01, ε = 0.02, D = 1 and L = 40 with noise of
correlation length ξ = 2 and intensity σ = 0.09.

Figure 3: (a) Space-time contour plot of dynamical behaviour of the Barkley model (1.1)
with parameters values used in Figure 2. (b) Simulation of the dynamical behaviour of the
Barkley model using the reduced model. N1 and N2 are nucleation points of the front and
back waves, respectively. A1 and A2 are corresponding points of annihilation.

The paper is arranged as follows. In §2, we review the dynamics of the Barkley model
without noise and in §3 we describe a numerical method for the Barkley model with noise
(i.e., the stochastic PDE (1.1)) with a view to determining the mean value for lifetime of
a wave. However, making accurate calculations over long time intervals requires a large
amount of computer time and this approach becomes computationally impractical in the
case of interacting waves. In §4, a reduced model is given that can deal with interacting
waves adequately. Numerical experiments with the stochastic PDE and the reduced model
are described in §5, where we calculate the mean number of kinks at a specific time and the
probability of a given part of the phase space of the Barkley system being excited.

2 Dynamics of the Barkley model

Figure 4: The Barkley model in the absence of diffusion (D = 0), for a = 0.75, b = 0.01,
ε = 0.02. The u and v nullclines intersect at the stable fixed point O = (0, 0) with excitation
threshold u = v+b

a . For initial conditions near O and to the left of the threshold u = v+b
a ,

the system decays directly to the fixed point O as shown for P2 = (0.4, 0.3). For the initial
conditions located to the right of the excitation threshold such as P1 = (0.25, 0.15), the system
undergoes a large excursion before returning to the fixed point O. The small boundary layer
δ is plotted as well.

For the deterministic Barkley model, the dynamics of the reaction kinetics (or, in other
words, the dynamics of the model in the absence of diffusion) is illustrated in Figure 4, with
nullclines shown for u and v. The u-nullclines (f(u, v) = 0) are represented by three straight
lines: u = 0, u = 1, u = v+b

a , whereas v-nullclines (g(u, v) = 0) is the line u = v. By setting a
small boundary, say δ, bordering the line u = 0, a given point (u, v) is said to be excited if
u > δ. For u ≤ δ, we say the system is recovering if v ≥ δ and at rest if v < δ. The physical
parameters ε, a and b specify the details of the local dynamics. ε is selected to be very small,
so that the activator u is much faster than the inhibitor v within the excited region. However,
u ≈ 0 within the recovery region and therefore the exponential decay of the inhibitor v affects
only the local dynamics [1]. Larger a would increase the duration of the excitation and a
larger value of b

a would raise the threshold of the excitation [2].
The intersection of all the nullclines yields the fixed points (0, 0) and (1, 1). The origin

(0, 0) is the stable and excitable fixed point of the model, with excitation threshold uth = v+b
a .

To be precise, when the starting point is located to the left of the threshold uth and close to
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the origin (0, 0), the solution to the ordinary differential equations (ODEs), du
dt = 0, dv

dt = 0,
converges directly to the origin fixed point. In contrast, when the starting point is to the
right of uth , the solution moves away initially, before finally shrinking to (0, 0) [1].

Adding spatial diffusion to these reaction kinetics leads to the propagation of waves for cer-
tain initial data. It will be necessary to understand the wave speed and width (the separation
between wave front and back) for the deterministic Barkley system,

∂u

∂t
= D

∂2u

∂x2
+

1

ε
u(1− u)

(
u− v + b

a

)
∂v

∂t
= u− v. (2.1)

To this end, we set z = x−ct, and so u(t, x) = U(x−ct) = U(z) and v(t, x) = V (x−ct) = V (z).
Consequently, we get

ut = −cdU
dz

= −cU ′ ,
∂2u

∂x2
=
d2U

dz2
= U ′′ and vt = −cV ′.

Substituting these into (2.1) and setting D = 1 yields

U ′′ + cU ′ +
1

ε
U(1− U)

(
U − V + b

a

)
= 0,

cV ′ − V + U = 0,

with boundary conditions U → 0, U ′ → 0 and V → 0 as |z| → ∞. Now, supposing ε → 0,
which implies ∂v

∂t → 0, and consequently, V ≈ const = 0, we obtain

L(U) = U ′′ + cU ′ +
1

ε
U(1− U)

(
U − b

a

)
= 0. (2.2)

Let us suppose that U ′ = AU(U −1), where A is a constant that needs to be determined [25].
It follows that

U ′′ = A2U(U − 1)(2U − 1).

Substituting these expressions for U ′ and U ′′into (2.2) gives [19]

L(U) = A2U(U − 1)(2U − 1) + cAU(U − 1) +
1

ε
U(1− U)

(
U − b

a

)
= 0

U(1− U)
[
A2(1− 2U)− cA+

1

ε

(
U − b

a

)]
= 0

U(1− U)
[(
− 2A2 +

1

ε

)
U − cA+A2 − b

aε

]
= 0.

Now, setting −2A2 + 1
ε = 0 and −cA+A2− b

aε = 0 yields L(U) = 0. This gives A = 1√
2ε

and

cA = A2 − b
aε . The wave speed can then be approximated as

c =
1√
2ε

(
1− 2b

a

)
. (2.3)

Following [6], the width W = cTdiff, where Tdiff is the time the system (2.1) spends in the
excited state and c is the wave speed. As ε→ 0, we have [6]

Tdiff =

∫ vm

0

dv

g(1, v)
=

∫ vm

0

dv

1− v
,
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where vm represents the maximum value that the inhibitor v over x reaches before the acti-
vator u leaves the excited level [6]. Consequently,

Tdiff =

∫ vm

0

dv

(1− v)
=
[
− ln(1− v)

]vm
0

= − ln (1− vm) = ln
( 1

1− vm

)
. (2.4)

Hence, the width can be written as [6]

W = c ln
( 1

1− vm

)
. (2.5)

We will assume that 1 = (vm + b)/a = uth so that vm = a− b.

3 Numerical approximation of the stochastic PDE

To simulate the stochastic PDE (1.1) numerically, we approximate the Laplacian and the
Wiener process w(t, x). We define approximations unk ,vnk , for k = 0, 1, 2, · · · , N−1 and n ∈ N
at time tn = n∆t to u(tn, xk), v(tn, xk) where ∆t is the time step, xk = kL

N is the spatial grid,
and L is the length of spatial domain.

Approximating the Wiener process We approximate w(x, t) and the increment wnk =
w(tn+1, xk)− w(tn, xk) using a spectral method. Assume w(t, x) has the expansion [24, 23]

w(t, x) =
∞∑
j=0

αj

[
ej(x)βj(t) + ẽj(x)β̃j(t)

]
, (3.1)

for independent standard Wiener processes βj(t), β̃j(t). Here,

ej(x) =

√
2

L
cos
(2πjx

L

)
, j = 1, 2, 3, · · · , e0(x) =

√
1

L
,

and

ẽj(x) =

√
2

L
sin
(2πjx

L

)
, j = 0, 1, 2, 3, · · ·

are orthonormal eigenfunctions of the Laplacian on [0, L] with periodic boundary conditions.
The coefficients αj are determined as [24]

αj =
1

2
exp

(−λjξ2

2π

)
, j = 1, 2, 3, · · · , for λj =

(2πj

L

)2
and α0 = 1 for λ0 = 0.

It follows that

w(t, x) = α0

√
1

L
β0(t) +

√
2

L

∞∑
j=1

αj

[
cos
(2πjx

L

)
βj(t) + sin

(2πjx

L

)
β̃j(t)

]
. (3.2)

For numerical purposes, we need to calculate the approximation wnk = w(tn+1, xk)−w(tn, xk)
at tn = n∆t, where ∆t is the time step, and at xk = kL

N , where xk is the spatial grid, and
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k = 0, 1, 2, · · · , N − 1. By substituting xk for x in (3.2) and truncating the series, σwnk is
given by [12]

σwnk = α0η
n
0 +
√

2

N
2∑
j=1

αj

[
cos
(2πjk

N

)
ηnj,1 + sin(

2πjk

N

)
ηnj,2

]
, (3.3)

where k = 0, 1, 2, · · · , N − 1, σ is the noise intensity, and ηn0 , η
n
j,1, η

n
j,2 ∼ N(0, σ

2∆t
L ) are

identical and independent normally distributed random variables. The exponential decay in
spatial correlation provides very rapid decay in the Fourier coefficient in expansion (3.1) and
therefore the Wiener process can be generated efficiently using FFTs[24]. Expressed in terms
of complex exponentials: [24]

cos
(2πjk

N

)
ηnj,1 + sin

(2πjk

N

)
ηnj,2 =

1

2

[
znj e

2iπjk
N + z̄nj e

−2iπjk
N

]
, (3.4)

where znj = ηnj,1 − iηnj,2, z̄nj = ηnj,1 + iηnj,2 and i =
√
−1. Now (3.3) becomes

σwnk = α0η
n
0 +

√
2

2

N
2∑
j=1

αj

[
znj e

2iπjk
N + z̄nj e

−2iπjk
N

]
. (3.5)

This is easily evaluated using a FFT by writing [24]

σwnk =

N−1∑
j=0

α̂jZ
n
j e

2iπjk
N , (3.6)

where α̂0 = 1, α̂j = α̂N−j = 1√
2
αj for j = 1, 2, · · · , N/2, Zn0 = ηn0 and

Znj =

{
znj , j = 1, 2, · · · , N2 ,
z̄nN−j , j = N

2 + 1, N2 + 2, · · · , N − 1.

Time stepping A geometric integrator is used for the time discretisation. First, look at
the one-dimensional diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, u(0, x) = f(x), (3.7)

on the interval [0, L] with boundary conditions u(t, 0) = u(t, L), where t ≥ 0 and the assump-
tion that f ∈ L2[0, L]. For the Fourier expansion, an approximation of u(t, x) can be obtained
as [4]

uN (t, x) =

N−1∑
k=0

ũk(t)e
−2πikx

L . (3.8)

From
∂uN
∂t

= D
∂2uN
∂x2

, (3.9)

we have
N−1∑
k=0

dũk
dt

e
−2πikx

L =
N−1∑
k=0

D
−4π2k2

L2
ũk(t)e

−2πikx
L , (3.10)
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which leads to the system of ODEs

dũk
dt

= −D4π2k2

L2
ũk(t), ũk(0) = Bk, k = 0, 1, 2, · · · , N − 1, (3.11)

where Bk = 1
L

∫ L
0 f(x)e

2πikx
L dx are the Fourier coefficients of the initial function f(x). Setting

λk = (4π2k2

L2 ) yields

dũk
dt

= −Dλkũk(t), ũk(0) = Bk, k = 0, 1, 2, · · · , N − 1. (3.12)

The exact solution of this system is given by

ũk(t) = Bke
−Dλkt, t ≥ 0, k = 0, 1, 2, · · · , N − 1. (3.13)

Numerically, we use the the exponential Euler method

ũn+1
k = e−Dλk∆tũnk , ũ0

k = Bk, k = 0, 1, 2, · · · , N − 1, n = 0, 1, 2, · · · (3.14)

which gives the exact solutions to the linear system (3.12) at mesh points tn(i.e. ũk(tn) = ũnk)
and is thus considered a linearization-preserving (geometric) integrator. For more details of
exponential integrators, see for instance [18], or for more on linearization-preserving methods,
see [16] and the further references given there.

Now we use the above discretisations in the case of (1.1), following [24, 14] in the following
manner:

• Calculate the Fourier coefficient ûnk , where unk =
∑N−1

j=0 ûnj [ej(xk) + ẽj(xk)] and k =
0, 1, · · · , N − 1 by the FFT.

• ûn+ 1
2

k = e−Dλk∆tûnk + α̂kZ
n
k , where α̂k and Znk are as defined in (3.6).

• un+ 1
2

k = ifft(û
n+ 1

2
k ) where ifft is the inverse FFT.

• Apply the modified reaction terms:

un+1
k = u

n+ 1
2

k + ∆tf̃(u
n+ 1

2
k , vnk )

vn+1
k = vnk + ∆tg̃(u

n+ 1
2

k , vnk ).

Using this numerical approach, we will calculate the mean first exit time or the mean of
nucleation time of a travelling wave and its mean lifetime, for the Barkley system (1.1).

Figure 5: Illustration of the threshold of nucleation of waves for the Barkley model using
maximum value of activator u over x. The parameters used are as in Figure 2 except for ε.
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Nucleation times We now study the time for a wave to be nucleated when started from
the homogeneous rest state u = v = 0. We use the infinity norm to formulate the problem
as a first exit time problem for a threshold θ, so that the nucleation of a wave occurs when
the infinity norm, or precisely, the maximum value umax, of the activator variable u over x
as a function of time, exceeds θ. As in the case illustrated in Figure 5, the threshold level
is assumed to be θ = 0.275. The nucleation time of a wave is, therefore, the first time the
threshold level is exceeded. Thus, the wave is nucleated when umax goes above θ for the
first time and then is annihilated when umax becomes smaller than the small boundary layer
δ = 0.008. The lifetime is then the difference between the time of nucleation and the time of
annihilation.

The lifetime is a random variable and therefore its mean is of great interest. The mean
lifetime is simply calculated as the average over a sample of random lifetimes produced using
the SPDE (1.1) over the spatial interval [0, L]. This technique can be applied when L is small
and consequently a single wave is nucleated at time T as shown in Figure 2. This technique
is used in §5. However, in the case of large L and when many waves are nucleated at almost
the same time, this approach becomes computationally impracticable. To overcome this
drawback, we develop a simple model of the dynamics of the underlying SPDE (1.1), which
allows us to compute the mean lifetime of the generated waves, even for a large domain.

4 The reduced model

Figure 6: The wave speed as a function of the noise parameter σ with initial condition
u0(x) = 1[1,5](x) (the indicator function on [1, 5] ⊂ [0, L]) and v0 = 0. The parameters
ε = 0.02, L = 40, (a) N = 512, ∆t = 0.01 and (b) N = 1024, ∆t = 0.001.

We derive a reduced model for the dynamics of the kinks and anti-kinks. For this pur-
pose, we need the wave speed and width of the wave. Unlike under multiplicative noise, the
characteristics of propagated waves are not affected, generally, by small additive noise [7, 6].
In Figures 6, the wave speed and width obtained from simulating the SPDEs (1.1) are plotted
as functions of the noise parameter σ, for ε = 0.02. The results indicate that both remain
approximately constant over different values of σ. Since we are looking at small additive
noise in our work, we expect the wave speed and width to be close to the deterministic case.
Numerical evidence given in Figures 6 supports this conclusion and theoretical values of wave
speed and width can be considered good approximations to the corresponding quantities ob-
tained in the simulation of the SPDEs (1.1), in particular for high resolution N and small
time step ∆t.

In order to construct the reduced model, we first model the wave nucleation positions and
times. The Wiener process w(t, x), with covariance given by (1.2), is a spatially stationary
Gaussian process, since the covariance is a function of the increment x−y, where 0 ≤ x < y ≤
L. The process is thus invariant to shifts in space and, therefore, the distribution of nucleation
events, which are caused by the input noise, is uniform in space. However, no wave can be
nucleated within a wave, as is observed from the dynamic behaviour of the SPDE (1.1). Thus
the position of a nucleation at time t is assumed to be uniformly distributed over [0, L]−W,
where W presents the excited region or region bounded by the union of all front and back
waves at time t.
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We now model the nucleation times of the front and back waves under the Barkley model.
Suppose Ti, i = 1 to N1 are the nucleation times of front waves. Since the nucleation events
occur with a constant probability per unit of time, the exponential distribution with rate λ
is appropriate for modelling the nucleation times. The rate of nucleation, λ, is calculated
simply as the inverse of the mean first exit time, λ = 1/Tm, obtained from the simulation
of the SPDE (1.1). The nucleation times of the back waves, T̄i are given by T̄i = Ti + Tdiff,
where Tdiff is given by (2.4).

Figure 7: Plots of the nucleation and annihilation of a wave for the Barkley model (1.1) with
ε = 0.02 and using the reduced model.

We are now in a position to simulate the spatio-temporal behaviour of the front and back
waves under the Barkley model (1.1). To this end, suppose YL and YR represent the position
of front waves towards the left and right, respectively as shown in Figure 7. Thus,

YL(t) = xi − c(t− Ti), t ≥ Ti,
YR(t) = xi + c(t− Ti), (4.1)

where xi is the nucleation position of the front wave, Ti is its nucleation time, c is the constant
wave speed and t > 0 is the time variable. Similarly,

ȲL(t) = xi − c(t− T̄i), t ≥ T̄i,
ȲR(t) = xi + c(t− T̄i),

are the corresponding expressions for the back waves.
As observed from the numerical simulation of the SPDE (1.1), a kink (anti-kink) at the

spatial position, i say, will keep moving until it meets an anti-kink (kink) at position, j say,
usually from a different nucleation process. Both the kink and the anti-kink then annihilate
on collision. To simulate such an annihilation event using the reduced model, we first solve
the equations for the front waves (4.1) (a similar process is then used for the back waves), in
order to find all the crossing points (xcij , t

c
ij) for i moving right and j moving left, where i 6= j

and, i, j = 1, 2, · · · , N1. We then set the minimum value of tcij , T
n
i1j1

say, to be the annihilation
time, and the corresponding value of xcij , x

n
i1j1

say, to be the annihilation position of i1 moving
to the right and j1 moving to the left. We then continue in this fashion to compute all the
annihilation points of other i right waves and j left waves, where i 6= i1 and j 6= j1. However,
as a result of the chosen finite time interval in the simulation, a few so-called survivor particles
(kinks or anti-kinks) will still be alive. A survivor particle with nucleation position xk and
nucleation time Tk will never meet another particle during the finite time interval of the
simulation. The particle then will move according to (4.1) as

YL(t) = xk − c(t− Tk) t ≥ Tk,
YR(t) = xk + c(t− Tk),

with the possibility that t can take the value infinity. However, for the purposes of plotting
the values, we assume that the particle will be killed at time Tk+Textra where Textra is chosen
to be a large value. The corresponding surviving back wave can be treated in a similar way.

It remains only to include the periodic boundary conditions of the Barkley system in or-
der to complete the reduced model algorithm. To do this, we duplicate the spatio-temporal
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dynamic behaviour of the underlying SPDE on [−L, 0] and [L, 2L] as reflections of its dy-
namics on [0, L]. This simple technique guarantees that the periodic boundary conditions, as
illustrated in Figure 8 are fulfilled.

Figure 8: Simulation of the Barkley model using the reduced model when L is large and many
waves are nucleated. The parameters values are a = 0.75, b = 0.01, ε = 0.02, D = 1 and
L = 400.

5 Computations

Figure 9: The mean first exit time (MFET) as a function of (a) ∆t and (b) N , with parameters
used are as in Figure 2.

We start by computing the mean first exit time (MFET) using numerical simulations of
the stochastic PDE. Using the numerical methods of §3 with θ = 0.0275, we approximate the
MFET and now describe two numerical experiments.

MFET We first plot the MFET, denoted by Tm, as a function of the time step ∆t (Fig-
ure 9(a)) and as a function of the resolutionN , where the values ofN are powers of 2: 128, 256,
512 and 1024, as shown in Figure 9(b). The parameters used are a = 0.75,b = 0.01,ε = 0.02,
D = 1, and the averages are taken over M = 104 realizations. The noise has a spatial cor-
relation of length ξ = 2 and with intensity σ = 0.09 over the domain [0, L], where L = 40.
In Figure 9(a), the resolution is N = 512 and in Figure 9(b), the time step ∆t is 0.01. The
results reveal that the MFET Tm is approximately independent of the value of ∆t and of the
value of ∆x = L

N , and therefore, approximately constant values of Tm are obtained in both
cases.

In the second case, Tm is plotted against the small parameter ε, in Figure 10(a), and the
spatial correlation length ξ, that is, the range of similarity between nearby points, in Figure
10(b), with other parameters as for Figure 9. Figure 10(a) shows that just a slight increase
in ε produces a dramatic increase in the MFET. In Figure 10(b), meanwhile, we observe that
the MFET grows as ξ increases.

Figure 10: The mean first exit time (MFET) as a function of (a) ε and (b) ξ, with parameters
used are as in Figure 2.

When the spatial domain becomes much larger, one may expect that the MFET will be
reduced considerably. To investigate this, we raise L to 400, and set N = 1024, with other
parameters remaining as they were for Figure 9(a). For L = 40, the MFET is Tm1 = 22.7521,
while for L = 400, it is Tm2 = 17.7819. Although the length of the spatial domain in the
second case (L = 400) is ten times that of the first (L = 40), the ratio τ = Tm1

Tm2
between

the corresponding values of MFET is only τ = 1.2795. One possible key reason for this
unexpected result is due to the effect of spatial correlation length ξ, which is chosen as ξ = 2
in both cases. In order to examine the effect of ξ, we calculate the ratio τ = Tm1

Tm2
for both
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cases (L = 40 and L = 400), for ξ = 1, 1.5, 2. To be more precise, it increases from τ = 1.2795
for ξ = 2 to τ = 2.1574 for 1.5 to τ = 2.8020 for ξ = 1.

We continue, now computing the mean lifetime of waves, and consider two cases, the mean
lifetime of a single wave and the mean lifetime of interacting waves.

Single wave Consider the computation of the mean lifetime of a single wave by direct
numerical simulation of the stochastic PDE in comparison to the reduced model. To apply
the reduced model, we first need the rate of nucleation times λ, the difference in nucleation
times Tdiff, and the wave speed c. The rate λ is calculated as the inverse of the mean first
exit time, obtained from the simulation of the underlying SPDE, as shown in Figure 9. Tdiff

and c are given by (2.3)–(2.4).
Figure 11 displays the mean lifetime of a wave, using the simulation of the SPDE (1.1)

and the reduced model discussed in §4, as a function of the small noise parameter σ, for
(a) ε = 0.02 and (b) ε = 0.025. The results obtained from the simulation of the SPDE
(1.1), represented by stars symbols, with parameters as used for Figure 2 and using M = 200
simulations, indicate that the additive noise does not affect the mean lifetime of the Barkley
wave, and this should be taken into account when we design the corresponding reduced model.
However, a comparison of the results from the reduced model, represented as solid lines, with
those obtained from the simulation of the SPDE, shows excellent agreement, in particular
for smaller ε. This is due to the asymptotic constant speed c used for the reduced model, as
ε→ 0.

In Figure 12, we plot the mean lifetime of a wave versus the small parameter ε for (a)
σ = 0.0825 and (b) σ = 0.09, where the shaded circles and red stars represent the results
obtained with the reduced model and simulation of the SPDE (1.1), respectively. Both graphs
indicate that the mean lifetime increases as ε increases, and there is close agreement between
the two methods. The harmony shown in Figures 11–12 between the two approaches led us
to use the reduced model to study the mean lifetime of the interacting waves, since applying
the simulation of the underlying SPDE directly becomes computationally impractical in this
case.

Interacting waves When the domain is large, many waves co-exist due to more frequent
nucleations, as shown in Figure 8, and the waves interact through annihilation events. In
Figure 8, a simulation of the reduced model is shown with a = 0.75, b = 0.01, ε = 0.02,
D = 1, L = 400 and λ = 1

Tm
= 1

17.78 , where λ is the rate of nucleation time and Tm is
the mean first exit time obtained by simulating the SPDE (1.1). The nucleation points and
corresponding annihilation points are represented by shaded circles and stars, respectively.

Due to the interaction of the waves with each other, we need to calculate the mean lifetime
of each kink and anti-kink, individually, as demonstrated in Figure 13. To be precise, Figure
13 shows the mean lifetime, computed using the reduced model, of (a) the first 10 front waves
and (b) the first 10 back waves, with number of trials M = 5000, ε = 0.02 and a total of
N1 = 30 front waves nucleated during the overall period of simulation on the space domain
[0, 400], with the same number of corresponding back waves. There are thus 2N1 = 60 kinks
and 60 anti-kinks. In the Figure 13, right-moving waves are represented by circles and left-
moving waves by stars. The results reveal that each kink has approximately the same mean
lifetime as its corresponding anti-kink, for a large number of trials M . Furthermore, the
first kink and anti-kink have the longest mean lifetimes. The lifetime falls sharply but then
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remains fairly constant for the rest of the particles.
The simplicity of the reduced model encourages us to explore further the dynamics of

kinks and anti-kinks under the Barkley model (1.1). For instance, the average number of
kinks and anti-kinks alive at a specific time, t, can be computed easily using the reduced
model, as shown in Figure 14(a). The figure describes the mean number of kinks at time t,
denoted by Nk, using the same parameters as used for Figure 13, except for the number of
trials, which is M = 1000. Firstly, we observe that no particles are nucleated at t = 0. The
mean number of kinks (anti-kinks) at time t then increases as t increases, until t = 30. At
this time, the mean number of kinks begins to level off, with the maximum being just above
2.3.

Our calculations of the mean number of kinks at time t can be used to obtain the prob-
ability of a part of the phase space of the Barkley model being excited at (t, x), where t > 0
and 0 ≤ x ≤ L. Precisely, this is calculated simply by multiplying the mean number of kinks
by the constant width W given in (2.5) and dividing the result by the length of the domain
L. Thus

P(a part of the phase space being excited at(t, x)) =
NK ×W

L
. (5.1)

These calculations are demonstrated as shaded circles in Figure 14(b). The results provide
important information about the excitability of the Barkley system (1.1). For instance, there
is an approximately 4% chance of the phase space of the system (1.1) being excited at t = 50,
whereas the chance is only around 0.8% at time t = 5. To check the validity of our calculations,
we also compute the probabilities using the simulation of the SPDE (1.1), with parameters
L = 400, ∆t = 0.01, N = 1024, ε = 0.02, σ = 0.09 and M = 2000. The probability obtained
from the simulation of the SPDE increases gradually until t = 30 when it begins to become
stable at around 0.03. In spite of this similarity, there are slight differences between the
results. Besides the effects of statistical errors and other errors which can arise due to the use
of numerical approximations, the wave speed c also affects the results. The wave speed used
in the reduced model is a symptomatic value, derived for ε → 0, whereas the corresponding
wave speed for the underlying SPDE is simulated for ε = 0.02.

Figure 11: Mean lifetime of a wave for the Barkley model as a function of noise parameter σ
is shown for (a) ε = 0.02 and (b) ε = 0.025, computed by simulation of (1.1) (stars) by the
reduced model (solid lines). There is good agreement between these results, in particular for
ε = 0.02.

Figure 12: Mean lifetime of a wave for the Barkley model plotted versus ε for (a) σ = 0.0825
and (b) σ = 0.09, computed by simulation of the underlying SPDE (stars) and by the reduced
model (shaded circles).

Figure 13: The mean lifetime of (a) the first 10 front waves and (b) the first 10 back waves.
The parameters of the system are a = 0.75, b = 0.01, ε = 0.02, D = 1 and L = 400.
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Figure 14: (a) The mean number of kinks (anti-kinks) at time t on space domain [0, 400] with
ε = 0.02, N1 = 30 and M = 1000. (b) The probability that a part of the phase space is
excited at (x, t) .
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[3] M. Büttiker and T. Christen, Nucleation of weakly driven kinks, Physical Review
Letters, 75 (1995), pp. 1895–1898.

[4] B. Costa, Spectral methods for partial differential equations, CUBO,A Mathematical
Journal, 6 (2004), pp. 1–32.

[5] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,
Biophysical Journal, 1 (1961), pp. 445–466.
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