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Abstract

The Milstein scheme is the simplest nontrivial numerical scheme for
stochastic differential equations with a strong order of convergence one.
The scheme has been extended to the stochastic delay differential equa-
tions but the analysis of the convergence is technically complicated due
to anticipative integrals in the remainder terms. This paper employs an
elementary method to derive the Milstein scheme and its first order strong
rate of convergence for stochastic delay differential equations.
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1 Introduction

The Milstein scheme is the simplest nontrivial numerical scheme for stochas-
tic ordinary differential equations that achieves a strong order of convergence
higher than that of the Euler-Maruyama scheme. It was first derived by Mil-
stein, who used the Itô formula to expand an integrand involving the solution in
one of the error terms of the Euler-Maruyama scheme. The iterative repetition
of this idea underlies the systematic derivation of stochastic Taylor expansions
and numerical schemes of arbitrarily high strong and weak orders, as expounded
in Kloeden & Platen [9], see also Milstein [12].

Consider the Itô Stochastic Differential Delay Equation (SDDE) on Rd on
the time interval [0, T ] with delay τ > 0 given by

dx(t) = f(xt, t) dt+ g(xt, t) dw(t), (1.1)
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subject to initial data x0 = ξ ∈ C([−τ, 0],Rd), where w(t) is a Rm Brownian
motion,

f : C([−τ, 0],Rd)×R+ → Rd, g : C([−τ, 0],Rd)×R+ → Rd×m,

and we use xt to denote the segment {x(t + θ) : θ ∈ [−τ, 0]}. An analogue of
the Milstein scheme has been derived and analysed for SDDEs by Hu et al.
[4]. However, the proofs of convergence are technically complicated due to the
presence of anticipative integrals in the remainder terms.

The main contribution of this paper is to provide an elementary method
to derive the Milstein scheme for SDDEs that does not involve anticipative
integrals and anticipative stochastic calculus. Following the approach used by
Jentzen & Kloeden for random ordinary differential equations [7, 6] and stochas-
tic partial differential equations [8], we use deterministic Taylor expansions of
the coefficient functions, with lower order expansions being inserted into the
right hand side of higher order ones to give a closed form for the expansion. (A
similar idea, without the final insertion, was also considered in [5, 11]). The Itô
formula is not used at all and our proofs are much simpler than in [4].

The paper is organised as follows. §2 introduces notations and §3 gives
some theory for the SDDEs that we study. §4 derives the Milstein method
(see (4.12)) by use of Taylor expansions and calculates the local truncation
error by collecting the Taylor remainder terms. §5 estimates the size of the
remainder terms and §6 gives the main convergence result in Theorem 6.1. In
§7, we show the assumptions of Theorem 6.1 apply to the case of finitely many
discrete delays. An appendix gives some extra details to the proofs.

2 Notation

Consider two Banach spaces X and Y with norms ‖ · ‖X and ‖ · ‖Y . Let
L(X,Y ) denote the set of bounded linear operators L : X → Y with the operator
norm ‖L‖op = sup0 6=x∈X ‖Lx‖Y /‖x‖X . We consider the product space X × Y
of X and Y as a Banach space with the norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y for
x ∈ X, y ∈ Y . For a function φ : X → Y , denote by Djφ the jth Frechet
derivative. Let Cn(X,Y ) denote the space of functions from X to Y with
n uniformly bounded Frechet derivatives. Following [1], we interpret the jth
derivative of φ ∈ Cn(X,Y ) as a member of L(X, . . .L(X,Y )) for j = 0, . . . , n;
then

‖Djφ(x)h1 . . . hj)‖Y ≤ ‖Djφ‖op‖h1‖X‖h2‖X . . . ‖hj‖X , x, h1, . . . , hj ∈ X.

We use Taylor’s theorem for φ ∈ C2(X,Y ), which for x, x∗ ∈ X says

φ(x) =φ(x∗) +Dφ(x∗)(x− x∗)

+

∫ 1

0
(1− h)D2φ(x∗ + h(x− x∗))(x− x∗)2 dh.

(2.1)

Let (Ω,F ,Ft,P) denote a standard filtered probability space. We assume
the Brownian motion w(t) is Ft adapted. We denote the expectation of a

2



random variable X with respect to P by EX and conditional expectation
with respect to the σ-algebra Fs by E[X|Fs]. Consider Rd with the norm

‖x‖Rd = 〈x, x〉1/2 for x ∈ Rd. L2(Ω,Rd) is the space of square integrable

random variables X taking values in Rd with norm E
[
‖X‖2

Rd

]1/2
.

We often use the Banach space C([−τ, 0],Rd) of continuous functions η : [−τ, 0]→
Rd for τ > 0 with norm

‖η‖∞ = sup
−τ≤θ≤0

‖η(θ)‖Rd .

We make use of the following inequalities: for any a1, a2, . . . , aN and p ≥ 2,

( N∑
i=1

ai

)p
≤ Np−1

N∑
i=1

api . (2.2)

For any Rd×m valued adapted process z(s), there exists Kp such that

E
[

sup
0≤t≤T

∥∥∥∫ t

0
z(s) dw(s)

∥∥∥p
Rd

]
≤Kp

(
E

∫ T

0
‖z(s)‖2F ds

)p/2
, (2.3)

where ‖ ·‖F denotes the Frobenius norm (Burkholder-Gundy-Davis inequality).
Throughout the paper, K is a generic constant that varies from one place

to another and depends on f , g, the initial data ξ, the interval of integration
[0, T ], but is independent of the discretisation parameter and choice of time
points s, t ∈ [0, T ]. The notation O(n) is used to denote a quantity bounded
by Kn.

3 Regularity of solution

Consider the Ito SDDE

dx(t) = f(xt, t) dt+ g(xt, t) dw(t), (3.1)

subject to initial data xs = η ∈ C([−τ, 0],Rd). We denote the solution by
x(t; s, η) for t ≥ s and the corresponding segment by xt(s, η) ∈ C([−τ, 0],Rd).
Notice that x(t) = x(t; 0, ξ) and xt = xt(0, ξ) gives the solution of (1.1). We
make the following assumption of f and g.

Assumption 3.1. Suppose that f ∈ C3(C([−τ, 0],Rd) × R+,Rd) and g ∈
C3(C([−τ, 0],Rd)×R+,Rd×m).

Under this condition, there exists a unique solution to (3.1); that is, there exists
a unique continuous Ft adapted Rd valued process x(t) such that xs = η and
almost surely

x(t; s, η) = x(s)+

∫ t

s
f(xr(s, η), r) dr+

∫ t

s
g(xr(s, η), r) dw(r), t ≥ s, (3.2)
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where the stochastic integral is interpreted in the Ito sense. Assumption 3.1 can
be replaced by much weaker conditions without loosing existence and unique-
ness; see [10, 13] for further background on SDDEs.

We will make use of the following results concerning the regularity of xt(s, η)
and the derivative of x(t; s, η) with respect to the initial condition η.

Theorem 3.2. Suppose that p ≥ 2. There exists K > 0 such that

E
[

sup
s−τ≤t≤T

‖x(t; s, η)‖p
Rd

]
≤K(1 + E‖η‖p∞) (3.3)

E
[

sup
s−τ≤t≤T

‖x(t; s, η1)− x(t; s, η2)‖p
Rd

]
≤KE‖η1 − η2‖p∞ (3.4)

for any Fs measurable C([−τ, 0],Rd) valued random variables η, η1, η.

Proof. (3.3) is given by [13, p.152]. (3.4) follows by applying Gronwall inequal-
ity and (2.3) as in [15].

We will use the following assumption of the initial condition.

Assumption 3.3. Suppose that the initial function ξ ∈ C([−τ, 0],Rd) is uni-
formly Lipschitz continuous from [−τ, 0] to Rd.

Corollary 3.4. Suppose that p ≥ 2 and that the initial function ξ satisfies
Assumption 3.3. There exists K > 0 such that

E
[

sup
−τ≤s≤t≤T

‖x(t)− x(s)‖p
Rd

]
≤K|t− s|p/2 (3.5)

where x(t) is the solution of (1.1).

Proof. Consider 0 ≤ s ≤ t ≤ T . The integral form (3.2) implies that

x(t)− x(s) =

∫ t

s
f(xq, q) dq +

∫ t

s
g(xq, q) dw(q), a.s.

As f and g are bounded functions, we see by applying (2.3) that

E
[

sup
0≤s≤t≤T

‖x(s)− x(t)‖p
Rd

]
≤ K|t− s|p/2. (3.6)

As ξ is Lipschitz, this is easily extended to give (3.5).

Theorem 3.5 (derivative in initial condition). Suppose that 0 ≤ s ≤ t ≤ T .
For h ∈ C([−τ, 0],Rd), let yht denote the solution to

dyh(t) = D1f(xt(s, η), t)yht dt+D1g(xt(s, η), t)yht dw(t), yhs = h (3.7)

where D1 denotes the derivative with respect to the first argument. Then yh(t)
is the L2 Frechet derivative of x(t; s, η) with respect to η and

sup
‖h‖∞<1

E
[

sup
s≤t≤T

∥∥∥x(t; s, η + εh)− x(t; s, η)

ε
− yh(t)

∥∥∥2

Rd

]
→ 0 as ε→ 0. (3.8)
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We write ∂x(t;s,η)
∂η h for yh(t) and note that ∂x(t;s,η)

∂η ∈ L(C([−τ, 0],Rd),

L2(Ω,Rd)). There exists K > 0 such that, for η ∈ C([−τ, 0],Rd),

E
[

sup
0≤s≤t≤T

∥∥∥∂x(t; s, η)

∂η

∥∥∥2

op

]
≤K. (3.9)

Proof. (3.7)–(3.8) are derived in [15]. Because Df and Dg are bounded, equa-
tion (3.9) follows by applying standard techniques to (3.7).

Theorem 3.6 (second derivative in initial condition). Under the assumptions
of Theorem 3.5, there exists a second L2 Frechet derivative for x(t; s, η), which

we denote by ∂2

∂η2
x(t; s, η), in the space

L(C([−τ, 0],Rd),L(C([−τ, 0],Rd), L2(Ω,Rd))).

There exists K > 0 such that, for η ∈ C([−τ, 0],Rd),

E
[

sup
0≤s≤t≤T

∥∥∥∂2x(t; s, η)

∂η2

∥∥∥2

op

]
≤ K. (3.10)

Proof. By using the second variational equation in place of (3.7), this is similar
to Theorem 3.5.

Following §2, we consider the N times product space C([−τ, 0],Rd)N as a
Banach space with norm

‖η‖ = ‖η1‖∞ + ‖η2‖∞ + · · ·+ ‖ηN‖∞, (3.11)

for η = (η1, η2, . . . , ηN ) ∈ C([−τ, 0],Rd)N . The product space C([−τ, 0],Rd)N×
RM has the norm ‖(η, y)‖ = ‖η‖ + ‖y‖RM for each η ∈ C([−τ, 0],Rd)N and

y ∈ RM .

Corollary 3.7. Fix J ∈ N and let X be the product space C([−τ, 0],Rd)4 ×
R4dJ . Consider t1, . . . , tJ ≥ s and Ψ ∈ C2(X,Rm×m). For η = [η1, . . . , η4] ∈
C([−τ, 0],Rd)4, let

E(η) = EΨ(η1, . . . , η4, x(t1; s, η1), . . . , x(tJ ; s, η4)).

Then, we can find K > 0 such that

‖DE(η)‖op ≤ K, ‖D2E(η)‖op ≤ K,

for any Fs measurable C([−τ, 0],Rd)4 valued random variables η.

Proof. We consider a simple case: let t ≥ s ≥ 0 and Ψ ∈ C2(C([−τ, 0],Rd) ×
Rd,R) and E(η) = EΨ(η, x(t; s, η)) for η ∈ C([−τ, 0],Rd). For h1, h2 ∈
C([−τ, 0],Rd),

DE(η)(h1) =E
[
DΨ(η, x(t; s, η))(h1,

∂x(t; s, η)

∂η
h1)
]

D2E(η)(h1, h2) =E
[
D2Ψ(η, x(t; s, η))

(
(h1,

∂x(t; s, η)

∂η
h1), (h2,

∂x(t; s, η)

∂η
h2)

)]
+ E

[
DΨ(η, x(t; s, η))

(
0,
∂2x(t; s, η)

∂η2
(h1, h2)

)]
.
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Consequently,

‖D2E(η)‖op ≤E
[
‖D2Ψ(x(t; s, η))‖op

(
1 +

∥∥∥∂x(t; s, η)

∂η

∥∥∥
op

)2 ]
+ E

[
‖DΨ(x(t; s, η))‖op

∥∥∥∂2x(t; s, η)

∂η2

∥∥∥
op

]
.

As Ψ ∈ C2(C([−τ, 0],Rd),R), we can find a constant K such that

‖D2E(η)‖op ≤KE
[(

1 +
∥∥∥∂x(t; s, η)

∂η

∥∥∥
op

)2]
+KE

[∥∥∥∂2x(t; s, η)

∂η2

∥∥∥
op

]
,

which is uniformly bounded (for any η) by (3.9) and (3.10). The argument for
DB is similar.

For the general case, the main difference is the number of arguments in
the function. Without giving details, (3.9) and (3.10) are easily applied to the
derivative to give the proof in the general case.

4 Derivation of the Milstein method and remainders

We now derive the Milstein method by using Taylor expansions. We treat f as a
function from C([−τ, 0],Rd)×R to Rd and use the second order Taylor theorem
for functions on a Banach space (in this case, we consider C([−τ, 0],Rd) ×R
as the Banach space with the norm ‖η‖∞ + |t| for (η, t) ∈ C([−τ, 0],Rd) ×
R). This approach gives f(xr, r) in terms of f and its Frechet derivatives
evaluated at (xs, s). A similar approach is taken to g. The derivation is simple
compared to using an Ito formula on f(xs, s) and all the remainder terms in
the Taylor expansion are written as non-anticipative integrals. The estimation
of the size of the remainder terms is routine, and depends on the Ito isometry
and Burkholder-Gundy-Davis inequality (2.3), and is given in the Appendix.

First, using (2.1), we write down the second order Taylor expansion for f
and g. For 0 ≤ s ≤ r

f(xr, r) = f(xs, s) +Df(xs, s)(xr − xs, r − s)

+

∫ 1

0
(1− h)D2f

(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2
dh

g(xr, r) = g(xs, s) +Dg(xs, s)(xr − xs, r − s)

+

∫ 1

0
(1− h)D2g

(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2
dh.

(4.1)

We write

f(xr, r) =f(xs, s) +Rf (r; s, xs) (4.2)

g(xr, r) =g(xs, s) +Dg(xs, s)(xr − xs, r − s) +Rg(r; s, xs), (4.3)
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where the remainder terms Rf and Rg are defined by (4.1). Substitute the
expansions for f and g into the integral form (3.2) on [s, t], to find

x(t) =x(s) + f(xs, s)(t− s) + g(xs, s)

∫ t

s
dw(r)

+

∫ t

s
Dg(xs, s)(xr − xs, r − s) dw(r) +R1(t; s, xs), a.s.

where the remainder R1(t; s, xs) is defined by

R1(t; s, xs) =

∫ t

s
Rf (r; s, xs) dr +

∫ t

s
Rg(r; s, xs) dw(r). (4.4)

Let I(s, t) =
∫ t
s dw(r) = w(t) − w(s). Then, writing x(t) = x(t; s, xs), we

have for s ≥ 0

x(t; s, xs) =x(s) + f(xs, s)(t− s) + g(xs, s)I(s, t)

+

∫ t

s
Dg(xs, s)(xr(s, xs)− xs, r − s) dw(r) +R1(t; s, xs) a.s.

and
x(t; s, xs) = x(s) + g(xs, s)I(s, t) +R2(t; s, xs), a.s. (4.5)

where R2(t; s, xs) is given by

R2(t; s, xs) =f(xs, s)(t− s)

+

∫ t

s
Dg(xs, s)

(
xr(s, xs)− xs, r − s

)
dw(r) +R1(t; s, xs).

For θ ∈ [−τ, 0] and s+ θ ≤ 0 ≤ t+ θ,

x(t+ θ; s, xs) = x(s+ θ) +
(
x(t+ θ; 0, x0)− x(0)

)
+
(
x(0)− x(s+ θ)

)
because x(t+ θ; 0, x0) = x(t+ θ; s, xs). By (4.5) and x0 = ξ

x(t+ θ; s, xs) =x(s+ θ) +
(
g(x0, 0)I(0, t+ θ) +R2(t+ θ; 0, x0)

)
+
(
ξ(0)− ξ(s+ θ)

)
.

(4.6)

For t+ θ < 0,

x(t+ θ; s, xs) = ξ(t+ θ) = xs(s+ θ) + (ξ(t+ θ)− ξ(s+ θ)). (4.7)

We combine (4.5)–(4.7), to get an expression for the segment xt as a perturba-
tion of xs for any 0 ≤ s ≤ t.

xt(s, xs)(θ) = xs(θ) +


(see (4.5)), 0 ≤ s+ θ,

(see (4.6)), s+ θ ≤ 0 ≤ t+ θ,

(see (4.7)), t+ θ < 0,

(4.8)
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As xs(θ) = x(s+θ), the correction term for (4.5) depends on x̂s ∈ C([−2τ, 0],Rd),
which we define for θ ∈ [−2τ, 0] by

x̂s(θ) =


x(s+ θ), 0 < s+ θ,

ξ(s+ θ), −τ < s+ θ ≤ 0,

ξ(−τ), s ≤ −τ.

The choice of constant for s ≤ −τ ensures continuity. We further require the
following notations:

1. G : C([−2τ, 0],Rd)×R+ → L(C([−τ, 0],Rd), C([−τ, 0],Rd)), defined by

G(ζ, s)η(θ) =

{
g(πθζ, s+ θ)η(θ), s+ θ > 0,

g(ξ, 0)η(θ), s+ θ ≤ 0,

where ζ ∈ C([−2τ, 0],Rd), s ∈ R+, η ∈ C([−τ, 0],Rd), θ ∈ [−τ, 0], and
πθ : C([−2τ, 0],Rd) → C([−τ, 0],Rd) is defined by πθζ(φ) = ζ(φ+ θ) for
φ ∈ [−τ, 0].

2. define It(s) ∈ C([−τ, 0],Rd) by

It(s)(θ) =


I(s+ θ, t+ θ), 0 ≤ s+ θ ≤ t+ θ,

I(0, t+ θ), −τ ≤ s+ θ ≤ 0 ≤ t+ θ,

0, otherwise.

3. For s ≤ t,

δt(s)(θ) =


0, 0 ≤ s+ θ,

ξ(0)− ξ(s+ θ), s+ θ ≤ 0 ≤ t+ θ,

ξ(t+ θ)− ξ(s+ θ), t+ θ ≤ 0.

Using this notation, we have from (4.8) that

xt(s, xs) = xs +G(x̂s, s)It(s) + δt(s) +R2,t(s, x̂s), a.s. (4.9)

with R2,t(s, x̂s) ∈ C([−τ, 0],Rd) defined by

R2,t(s, x̂s)(θ) =


R2(t+ θ; s+ θ, πθx̂s), 0 ≤ s+ θ,

R2(t+ θ; 0, ξ), s+ θ < 0 ≤ t+ θ,

0, t+ θ ≤ 0.

Let

R(t; s, xs) = R1(t; s, xs) +

∫ t

s
Dg(xs, s)(R2,r(s, x̂s), 0) dw(r). (4.10)
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Then, almost surely,

x(t; s, xs) =x(s) + f(xs, s)(t− s) + g(xs, s)I(s, t)

+

∫ t

s
Dg(xs, s)

(
G(x̂s, s)Ir(s) + δr(s), r − s

)
dw(r) +R(t; s, xs).

(4.11)

Let N ∈ N denote a discretisation parameter and define a time step ∆t =
T/N and a grid of points tk = k∆t for k = 0, . . . , N . We now introduce the
process x∆t(t): let x∆t(0) = ξ and for tk < t ≤ tk+1 let x∆t(t) solve

x∆t(t) =x∆t(tk) + f(x∆t
tk
, tk)(t− tk) + g(x∆t

tk
, tk)

∫ t

tk

dw(r)

+

∫ t

tk

Dg(x∆t
tk
, tk)

(
G(x̂∆t

tk
, tk)Ir(tk) + δr(tk), r − tk

)
dw(r).

(4.12)

This is a continuous time process and at the grid points t = tk, the evaluation
of x∆t(tk) is a simple update rule: x∆t(tk+1) depends on f and g evaluated at
(x∆t(tk), tk) and on the random variables

∆wk =

∫ tk+1

tk

dw(r) = w(tk+1)− w(tk), Zk =

∫ tk+1

tk

Ir(tk) dw(r).

Note that Zk ∈ C([−τ, 0],Rd) and

Zk(θ) =


∫ tk+1

tk

∫ r+θ
tk+θ dw(q) dw(r), 0 ≤ tk + θ ≤ r + θ.∫ tk+1

tk
w(r + θ) dw(r), −τ ≤ tk + θ ≤ 0 ≤ r + θ,

0, otherwise.

Given the initial data ξ, samples of ∆wk and Zk, and the ability to evaluate f , g
and Dg, x∆t(tk) is easily computed and x∆t(tk) is known as Milstein’s method
for approximating the solution of (1.1). Our main result (Theorem 6.1) gives
conditions so that x∆t(t) is a first order approximation in the mean square sense
to x(t) over an interval [0, T ].

The practical implementation of this method can be more difficult. ∆wk are
independent Gaussian random variables and are easily sampled. However, Zk is
a generalisation of the iterated stochastic integral and in general this problem
is not well understood. See, for example, [9] for an approximate method for
sampling Zk.

5 Estimation of the remainder

The main result of this paper, given in Theorem 6.1, concerns the mean square
convergence of the Milstein approximation x∆t(t) defined in (4.12). First, we
estimate the size of the remainder term that was dropped when deriving the
Milstein method (4.12) from (4.11).
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Lemma 5.1. Let Assumptions 3.1 and 3.3 hold. There exists K > 0 such that
the remainder R defined in (4.10) satisfies

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ sup

tk≤t
2E
[ k−1∑
i,j=0

〈RX(ti), RX(tj)〉
]

+K∆t2,

(5.1)
for 0 ≤ t ≤ T and ∆t > 0, where

RX(ti) =

∫ ti+1

ti

Df(xti , ti)(G(x̂ti , ti)Ir(ti), 0) dr. (5.2)

Proof. If Sk =
∑k−1

j=0 rj+1, where rk are Rd valued Ftk measurable random
variables, then Sk−ESk is a discrete martingale and Doob’s maximal inequality
gives E supk≤n ‖Sk − ESk‖2Rd ≤ 2E‖Sn − ESn‖2Rd ≤ 4E‖Sn‖2Rd + 4‖ESn‖2Rd .
Hence,

E sup
k≤n
‖Sk‖2Rd ≤8E‖Sn‖2Rd + 10 sup

k≤n
‖ESk‖2Rd

≤8E‖Sn‖2Rd + 10 sup
k≤n

E‖Sk‖2Rd ≤ 18 sup
k≤n

E‖Sk‖2Rd ,

because ‖EX‖ ≤ E‖X‖ ≤ (E‖X‖2)1/2. Now

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ 8 sup

tk≤t
E
[∥∥∥ k−1∑

j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]

+ 10 sup
tk≤t

∥∥∥E k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd
.

From (4.10), and the definition of R1 in (4.4),

R(t; s, xs) =

∫ t

s
Rf (r; s, xs) dr +

∫ t

s
Rg(r; s, xs) dw(r)

+

∫ t

s
Dg(xs, s)(R2,r(s, x̂s), 0) dw(r).

Hence,

E
[∥∥∥ k−1∑

j=0

R(t; tj , xtj )
∥∥∥2

Rd

]
≤ 3E

∥∥∥ k−1∑
j=0

∫ tj+1

tj

Rf (r; tj , xtj ) dr
∥∥∥2

Rd

+3
k−1∑
j=0

∫ tj+1

tj

E‖Rg(r; tj , xtj )‖2F dr

+3
k−1∑
j=0

∫ tj+1

tj

E‖Dg(xs, s)(R2,r(s, x̂s), 0)‖2F dr.

The last two term terms are estimated using standard Ito calculus techniques.
We give the statements of the estimates in the Appendix (Lemmas A.1 and A.3)
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and find both terms are O(∆t2) when estimated in the mean square sense. For
the first term, we further develop Rf from (4.1).

Rf (r; s, xs)

= Df(xs, s)(xr − xs, r − s)

+

∫ 1

0
(1− h)D2f

(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2
dh

(substituting (4.9))

=Df(xs, s)(df(xs, s)G(x̂s, s)Ir(s), r − s) +Df(xs, s)(δr(s) +R2,r(s, x̂s), 0)

+

∫ 1

0
(1− h)D2f

(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2
dh

(substituting (5.2))

=RX(s) +Df(xs, s)(0, r − s) +Df(xs, s)(δr(s) +R2,r(s, x̂s), 0)

+

∫ 1

0
(1− h)D2f

(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2
dh.

Hence,∥∥∥ k−1∑
j=0

∫ tj+1

tj

Rf (r; tj , xtj ) dr
∥∥∥2

Rd
= 2
∥∥∥ k−1∑
j=0

RX(tj)
∥∥∥2

Rd

+ 2
∥∥∥ k−1∑
j=0

∫ tj+1

tj

Df(xtj , tj)(0, r − tj)

+Df(xtj , tj)(δr(tj) +R2,r(tj , x̂tj ), 0) +

∫ 1

0
(1− h)×

×D2f
(
xtj + h(xr − xtj ), tj + h(r − tj)

)(
xr − xtj , r − tj

)2
dh dr

∥∥∥2

Rd
.

Note that the first term can be written

2
∥∥∥ k−1∑
j=0

RX(tj)
∥∥∥2

Rd
= 2

k−1∑
i,j=0

〈RX(tj), RX(ti)〉

and this gives the first term in (5.1). The second term is O(∆t2) in the sense
of mean square. To see this, note

E
[∥∥∥ k−1∑

j=0

∫ tj+1

tj

Df(xtj , tj)(0, r − tj) dr
∥∥∥2

Rd

]
≤ K∆t2

as Df is bounded.

E
[∥∥∥ k−1∑

j=0

∫ tj+1

tj

Df(xtj , tj)(δr(tj) +R2,r(tj , x̂tj ), 0)
∥∥∥2

Rd

]
≤ K∆t2
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as ‖δr(tj)‖∞ ≤ K|tj − r| because ξ is Lipschitz and Lemma A.3 controls R2,r.

E
[∥∥∥ k−1∑

j=0

∫ tj+1

tj

∫ 1

0
(1− h)D2f

(
xtj + h(xr − xtj ), tj + h(r − tj)

)
×

×
(
xr − xtj , r − tj

)2
dh dr

∥∥∥2

Rd

]
≤ K∆t2

by using the boundedness of D2f and (3.5) (which applies because of Assump-
tion 3.3). The proof is complete.

Unfortunately, the estimate in Lemma 5.1 is not always of size ∆t2. As
Df and g (and hence G) are bounded, it follows from (5.2) that for a constant
K > 0

E‖RX(ti)‖2Rd ≤ E
[( ∫ ti+1

ti

‖Df‖op‖G(x̂ti , ti)‖op‖Ir(ti)‖∞ dr
)2]
≤ K∆t3.

Hence, the sum of up to N2 terms in (5.1) involving RX(t) gives a term of size
O(∆t) . We make the following assumption to gain an O(∆t2) estimate.

Assumption 5.2. For PN = {(i, j) : i, j = 0, . . . , N}, suppose there exists
QN ⊂ PN such that for some K > 0

E 〈RX(ti), RX(tj)〉 ≤

{
K∆t3, (i, j) ∈ QN
K∆t4, (i, j) ∈ PN −QN

, for all ∆t > 0.

Clearly, the assumption holds with QN = PN and in the stochastic ordinary
differential equation case with QN = {(i, i) : i = 1, . . . , N}, as

RX(ti) = Df(x(ti), ti)
(
g(x(ti))

∫ ti+1

ti

w(r) dr, 0
)

and E 〈RX(ti), RX(tj)〉 = 0 for i 6= j (for i < j, use the fact that RX(ti) is Fti+1

measurable and E
[
RX(tj)|Ftj

]
= 0). We show in Theorem 7.4 that QN has

O(N) members when f and g have finitely many discrete delays. Then, O(N)
terms in (5.1) are of size ∆t3 and the remaining O(N2) terms are of size ∆t4.
This yields an O(∆t2) estimate for (5.1).

6 Convergence theorem

We prove the following convergence theorem for Milstein’s method.

Theorem 6.1. Let Assumptions 3.1 and 3.3 hold. Let Assumption 5.2 hold
when QN has O(N) members. For some constant K > 0, we have for any
∆t > 0 (

E sup
t∈[−τ,T ]

‖x(t)− x∆t(t)‖2Rd

)1/2
≤ K∆t. (6.1)
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Proof. From (4.11) and (4.12), we have almost surely for tk ≤ s < tk+1,

x∆t(s)− x(s) =x∆t(tk)− x(tk)

+

∫ min{tk+1,s}

tk

(
f(x∆t

tk
, tk)− f(xtk , tk)

)
dr

+

∫ min{tk+1,s}

tk

(
g(x∆t

tk
, tk)− g(xtk , tk)

)
dw(r)

+

∫ min{tk+1,s}

tk

[
Dg(x∆t

tk
, tk)(G(x̂∆t

tk
, tk)Ir,tk + δr(tk), r − tk)

−Dg(xtk , tk)(G(x̂tk , tk)Ir,tk + δr(tk), r − tk)
]
dw(r)

+R(s; tk, xtk).

For tk ≤ s < tk+1, let

D(s) =f(x∆t
tk
, tk)− f(xtk , tk)

M(s) =
[
g(x∆t

tk
, tk)− g(xtk , tk)

]
+
[
Dg(x∆t

tk
, tk)(G(x̂∆t

tk
, tk)Is,tk + δs(tk), s− tk)

−Dg(xtk , tk)(G(x̂tk , tk)Is,tk + δs(tk), s− tk)
]
.

Then, almost surely,

x∆t(s)− x(s) =

∫ s

0
D(r) dr +

∫ s

0
M(r) dw(r)

+
k−1∑
j=0

R(tj+1; tj , xtj ) +R(s, tk, xtk).

For tk ≤ t < tk+1, let e(t) = E sups≤t ‖x∆t(s)− x(s)‖2
Rd .

e(t) ≤4E
[

sup
s≤t

∥∥∥∫ s

0
D(r) dr

∥∥∥2

Rd

]
+ 4E

[
sup
s≤t

∥∥∥∫ s

0
M(r) dw(r)

∥∥∥2

Rd

]
+ 4E

[∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
+ 4E

[
sup

tk≤s≤t
‖R(s; tk, xtk)‖2Rd

]
.

For tk ≤ t < tk+1,

E
[

sup
s≤t

∥∥∥∫ s

0
D(r) dr

∥∥∥2

Rd

]
≤K

∫ t

0
E
[

sup
s≤r
‖D(s)‖2Rd

]
dr

≤K
∫ t

0
E sup
s≤r
‖f(x∆t

s , s)− f(xs, s)‖2Rd dr

≤K
∫ t

0
e(r) dr.
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By (2.3),

E
[

sup
s≤t

∥∥∥∫ s

0
M(r) dw(r)

∥∥∥2

Rd

]
≤K sup

s≤t

∫ s

0
E‖M(r)‖2F dr.

Now, for tk ≤ s < tk+1,

E
[
‖M(s)‖2F

]
≤2E

[
‖g(x∆t

tk
, tk)− g(xtk , tk)‖

2
F

]
+ 2E

[∥∥∥Dg(x̂∆t
tk
, tk)(G(x̂∆t

tk
, tk)Is,tk + δs(tk), s− tk)

−Dg(xtk , tk)(G(x̂tk , tk)Is,tk + δs(tk), s− tk)
∥∥∥2

F

]
≤K e(s),

as g ∈ C3(C([−τ, 0],Rd),Rd×m). Consequently,

E
[

sup
s≤t

∥∥∥∫ s

0
M(r) dw(r)

∥∥∥2

Rd

]
≤K

∫ t

0
e(s) ds.

As QN has O(N) terms, Assumption 5.2 and Lemma 5.1 gives

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ K∆t2.

Putting the estimates together, we have

e(t) ≤ K
∫ t

0
e(s) ds+K∆t2

and an application of Gronwall’s inequality completes the proof.

7 Discrete delays

We now give a particular class of SDDEs where Theorem 6.1 applies; namely,
the class of SDDEs where f and g depend on a finite number of discrete delays.
This case appears frequently in applications.

Assumption 7.1. For 0 = τ1 < τ2 < · · · < τJ ≤ τ , suppose that

f(η, t) = F (η(−τ1), . . . , η(−τJ)), g(η, t) = G(η(−τ1), . . . , η(−τJ)),

for η ∈ C([−τ, 0],Rd).

Lemma 7.2. Suppose that Assumption 7.1 holds and p ≥ 2. There exists
K > 0 such that, for 0 ≤ r ≤ t ≤ T and 0 ≤ r ≤ s ≤ T ,

E
[
‖πsxt(r, η)‖p∞

]
≤K|t− s|p/2, (7.1)

E
[
‖πsxt(r, η1)− πsxt(r, η2)‖2op

]
≤K|t− s| ‖η1 − η2‖2∞, (7.2)

where πsxt(r, η) = xt(r, η)−E
[
xt(r, η)|Fs

]
, for any η, η1, η2 ∈ C([−τ, 0],Rd).
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Proof. For t+ θ ≤ s, πsxt(r, η)(θ) = 0. For t+ θ > s and s ≥ r,

πsx(t+ θ; r, η) =x(t+ θ; r, η)−E
[
x(t+ θ; r, η)|Fs

]
=x(t+ θ; s, xs(r, η))−E

[
x(t+ θ; s, xs(r, η))|Fs

]
=

∫ t+θ

s
f(xq(s, xs(r, η))) dq +

∫ t+θ

s
g(xq(s, xs(r, η))) dw(q)

−
∫ t+θ

s
E
[
f(xq(s, xs(r, η)))|Fs

]
dq

and

πsx(t+ θ; r, η) =

∫ t+θ

s
f(xq(r, η))) dq +

∫ t+θ

s
g(xq(r, η)) dw(q)

−
∫ t+θ

s
E
[
f(xq(r, η))|Fs

]
dq.

(7.3)

Now, inequality (2.3) gives the bound on E‖πsxt(r, η)‖2∞.
Denote ∂jf = ∂F (x1, . . . , xJ)/∂xj ∈ Rd×d. Under Assumption 7.1, f(xq(r, η))

and g(xq(r, η)) are mean square differentiable in η with uniformly bounded
derivative. Hence,

E
∥∥∥∂f(xq(r, η))

∂η

∥∥∥p
op

= E
∥∥∥ J∑
j=1

∂jf(xq(r, η))
∂x(q − τj ; r, η)

∂η

∥∥∥p
op
≤ K

because ‖∂x(q−τj ; r, η)/∂η‖op ≤ 1 for q−τj ≤ r and E‖∂x(q−τj ; r, η)/∂η‖2op ≤
K for q − τj ≥ r from (3.9) of Theorem 3.5. A similar estimate holds for the
partial derivatives in g. As the derivatives are uniformly bounded, the Lipschitz
condition (7.2) is easily derived form (7.3).

Lemma 7.3. Let Assumption 7.1 hold and let the initial data ξ satisfy As-
sumption 3.3. Suppose that q+ ∆t ≤ r ≤ s and that ∆q,∆s are mean zero Rm

random variables such that

∆q is Fq+∆t measurable and independent of Fq,
∆s is independent of Fs.

Consider h ∈ C2(C([−τ, 0],Rd)4,Rm×m). For some K > 0,

E
[
〈∆q, h(xq, xr, xs, xs+∆t)∆s〉

]
≤ K∆t

(
E‖∆q‖4RmE‖∆s‖4Rm

)1/4
, ∆t > 0.

(7.4)
If ∆q,∆s ∼ N(0, σ2I), then for some K > 0

E
[
〈∆q, h(xq, xr, xs, xs+∆t)∆s〉

]
≤ K∆t σ2.
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Proof. Let y = [xq, xr, xs, xs+∆t] and let y∗ = E[y|Fs]. Taylor’s theorem pro-
vides

h(y) =h(y∗) +Dh(y∗)
(
y − y∗

)
+Rh, (7.5)

where the remainder satisfies ‖Rh‖op ≤ 1
2‖D

2h‖op ‖y − y∗‖2. As the second
derivative of h is uniformly bounded,

‖Rh∆s‖Rm ≤ ‖Rh‖op‖∆s‖Rm ≤ K‖y − y∗‖2∞‖∆s‖Rm .

By Lemma 7.2, for each p ≥ 2, a constant K such that

E‖y∗ − y‖p ≤ E‖πsy‖p ≤ K∆tp/2 (7.6)

(where the ‖ · ‖ is the product space norm defined in (3.11)). The Cauchy-
Schwarz inequality gives

E
[
‖Rh∆s‖2Rm

]
≤K

(
E
[
‖y − y∗‖8∞

]
E
[
‖∆s‖4Rm

])1/2

≤K∆t2E
[
‖∆s‖4Rm

]1/2
. (7.7)

We now examine h(y)∆s. Note that E
[
∆s|Fq+∆t

]
= 0 and h(y∗) is Fs

and hence is also Fq+∆t measurable. Therefore, E
[
h(y∗)∆s|Fq+∆t

]
= 0 and,

using (7.5),

E
[
h(y)∆s|Fq+∆t

]
=E
[
Dh(y∗)(y − y∗)∆s|Fq+∆t

]
+ E

[
Rh∆s|Fq+∆t

]
.

We introduce the following notations. For η = [η1, η2] ∈ C([−τ, 0],Rd)2, let

Y (η) =[η1, xr(q + ∆t, η2), xs(q + ∆t, η2), xs+∆t(q + ∆t, η2)]

Y ∗(η) =E
[
Y (η)|Fs

]
.

For η, ν ∈ C([−τ, 0],Rd)2, by Lemma 7.2,

E
[
‖Y (η)− Y ∗(η)‖p

]
= E

[
‖πsY (η)‖p

]
≤K∆tp/2 (7.8)

E
[
‖Y (η)− Y ∗(η)− Y (ν) + Y ∗(ν)‖p

]
=E
[
‖πsY (η)− πsY (ν)‖p

]
≤K∆tp/2‖η − ν‖p. (7.9)

By (3.4), E‖Y (η)− Y (ν)‖p ≤ K‖η − ν‖p and hence

E
[
‖Y ∗(η)− Y ∗(ν)‖p

]
≤ K‖η − ν‖p. (7.10)

Let a(η) = E
[
Dh(Y ∗(η))

(
Y (η) − Y ∗(η)

)
∆s

]
. In the case η = [xq, xq+∆t], we

have Y (η) = [xq, xr, xs, xs+∆t] and

E
[
h(y)∆s|Fq+∆t

]
= a(η) + E

[
Rh∆s|Fq+∆t

]
, (7.11)
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We derive a Lipschitz property for a. For any η, ν ∈ C([−τ, 0],Rd)2,

‖a(η)− a(ν)‖Rm

≤E
[∥∥∥Dh(Y ∗(η))(Y (η)− Y ∗(η))−Dh(Y ∗(ν))(Y (ν)− Y ∗(ν))

∥∥∥2

op

× ‖∆s‖2Rm

]1/2

≤E
[∥∥∥Dh(Y ∗(η))(Y (η)− Y ∗(η))−Dh(Y ∗(ν))(Y (ν)− Y ∗(ν))

∥∥∥2

op

]1/2

×E
[
‖∆s‖2Rm

]1/2
.

As h has two bounded derivatives, Dh is Lipschitz and∥∥∥Dh(Y ∗(η))(Y (η)− Y ∗(η))−Dh(Y ∗(ν))(Y (ν)− Y ∗(ν))
∥∥∥

op

≤
∥∥∥(Dh(Y ∗(η))−Dh(Y ∗(ν)))(Y (η)− Y ∗(η))

∥∥∥
op

+
∥∥∥Dh(Y ∗(ν))(Y (η)− Y ∗(η)− Y (ν) + Y ∗(ν))

∥∥∥
op

≤K
∥∥∥Y ∗(η)− Y ∗(ν)

∥∥∥ ∥∥∥Y (η)− Y ∗(η)
∥∥∥

+K
∥∥∥Y (η)− Y ∗(η)− Y (ν) + Y ∗(ν)

∥∥∥.
Hence, by (7.8)–(7.10),

E
[∥∥∥Dh(Y ∗(η))(Y (η)− Y ∗(η))−Dh(Y ∗(ν))(Y (ν)− Y ∗(ν))

∥∥∥2

op

]
≤KE

[
‖Y ∗(η)− Y ∗(ν)‖2‖Y (η)− Y ∗(η)‖2

]
+K∆t‖η − ν‖2

≤KE
[
‖Y ∗(η)− Y ∗(ν)‖4

]1/2
E
[
‖Y (η)− Y ∗(η)‖4

]1/2
+K∆t‖η − ν‖2

≤K‖η − ν‖2∆t+K∆t‖η − ν‖2.

We conclude for some K > 0 that

‖a(η)− a(ν)‖Rm ≤ K∆t1/2E
[
‖∆s‖2Rd

]1/2
‖η − ν‖.

Consider η = [xq, xq+∆t] and η∗ =
[
xq,E

[
xq+∆t|Fq

]]
. ∆q has mean zero

and is independent of Fq and therefore

E
[ 〈

∆q, a(η)
〉 ]

= E
[ 〈

∆q, a(η)− a(η∗)
〉 ]
.

By Lemma 7.2, E‖η − η∗‖p∞ = E‖πqη‖p∞ ≤ K∆tp/2 and hence

E‖a(η)− a(η∗)‖2Rm ≤K∆tE
[
‖∆s‖2Rm

]
E‖η − η∗‖2∞

≤K∆t2E
[
‖∆s‖2Rm

]
. (7.12)
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To complete the proof of (7.4), note that

E
[
〈∆q, h(xq, xr, xs, xs+∆t)∆s〉

]
= E

[ 〈
∆q,E

[
h(y)∆s|Fq+∆t

]〉 ]
because ∆q is Fq+∆t measurable. From (7.11),

E
[ 〈

∆q,E
[
h(y)∆s|Fq+∆t

]〉 ]
=E
[ 〈

∆q, a(η)
〉

+
〈

∆q,E
[
Rh∆s|Fq+∆t

]〉 ]
.

We estimate the first term using (7.12)

E
[ 〈

∆q, a(η)
〉 ]
≤E
[
‖∆q‖Rm ‖a(η)− a(η∗)‖Rm

]
≤
[
E‖∆q‖2Rm E

[
‖a(η)− a(η∗)‖2Rm

]]1/2

≤K∆tE
[
‖∆q‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
.

Together with (7.7), this gives (7.4) as follows

E
[ 〈

∆q,E
[
h(y)∆s|Fq+∆t

]〉 ]
=E
[ 〈

∆q, a(η)
〉

+
〈

∆q,E
[
Rh∆s|Fq+∆t

]〉 ]
≤K∆tE

[
‖∆q‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
+
(
E
[
‖∆q‖2Rm

]
E
[
‖Rh∆s‖2Rm

])1/2

≤K∆tE
[
‖∆q‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
+K∆t

(
E
[
‖∆q‖2Rm

]
E
[
‖∆s‖4Rm

])1/4
.

The inequality (7.4) follows as
(
E‖∆s‖2Rm

)2 ≤ E‖∆s‖4Rm .
To complete the proof, recall that for mean zero Gaussian random variables

the fourth moment is proportional to the second moment squared.

The final theorem says that under the assumption of discrete delays, As-
sumption 7.1, we can show that QN has O(N) members and hence Theorem 6.1
applies and Milstein method converges in mean square with order one.

Theorem 7.4. Suppose that Assumption 7.1 holds. If ∆t < τ2 then Assump-
tion 5.2 holds where QN has O(N) members. In particular, the error esti-
mate (6.1) holds and the Milstein method converges with order one.

Proof. Let ∆(s, t) =
∫ t
s I(s, r) dr. Then, RX defined by (5.2) is given by

RX(ti) =
J∑
a=1

∂af(xti)g(xti−τa)∆(ti − τa, ti+1 − τa).
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Suppose that ti < tj .

E
[
〈RX(ti), RX(tj)〉

]
(7.13)

=
J∑

a,b=1

E
[〈
∂af(xti)g(xti−τa)∆(ti − τa, ti+1 − τa), (7.14)

∂bf(xtj )g(xtj−τb)∆(tj − τb, tj+1 − τb)
〉]

=
J∑

a,b=1

E
[〈

Υij∆(ti − τa, ti+1 − τa),∆(tj − τb, tj+1 − τb)
〉]
, (7.15)

where we define Υij below in the following cases

1. for ti − τa ≤ ti ≤ ti+1 − τa ≤ tj − τb ≤ tj

2. for ti+1 − τa ≤ ti ≤ tj − τb ≤ tj

3. for ti+1 − τa ≤ tj − τb ≤ tj and ti ≥ tj − τb

4. for tj+1 − τb ≤ ti − τa ≤ ti < tj

5. ti − τa ≤ tj+1 − τb and tj − τb ≤ ti+1 − τa.

We work out the contribution to E
[
〈RX(ti), RX(tj)〉

]
for each case.

1. The condition ti ≤ ti+1 − τa implies that 0 ≤ ∆t − τa. As ∆t < τ2, we
must have τa = τ1 = 0 and hence ti < ti+1 ≤ tj − τb ≤ tj . In this case, let

Υij = E
[
g(xti)

T∂af(xti)
T∂bf(xtj )g(xtj−τb)|Ftj+1−τb

]
,

Using xtj = xtj (tj+1 − τb, xtj+1−τb) for τb ≥ ∆t, we write

Υij =Ea,b(xti , xtj−τb , xtj−τb , xtj+1−τb)

Ea,b(η1, η2, η3, η4) =E
[
g(η1)T∂af(η1)T∂bf(xtj (tj+1 − τb, η4))g(η3))

]
For τb = 0, we write

Ea,b(η1, η2, η3, η4) = E
[
g(η1)T∂af(η1)T∂bf(η3)g(η3)

]
(the second argument is included to make h have four arguments).

By Corollary 3.7, Ea,b ∈ C2(C([−τ, 0],Rd)4,Rm×m) and Lemma 7.3 ap-
plies to hab with p = ti, r = tj − τb, s = tj − τb, ∆p = I(p, p + ∆t) and
∆s = I(s, s+ ∆t). Because ∆p,∆s are N(0, σ2I) with

σ2 =

∫ ∆t

0

∫ ∆t

0
E[w1(r)w1(s)] dr ds ≤ ∆t3,

we find for some K > 0 that

E
[〈

Υij∆(ti − τa, ti+1 − τa),∆(tj − τb, tj+1 − τb)
〉]
≤ K∆t4. (7.16)
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2. for ti+1 − τa ≤ ti ≤ tj − τb,

Υij =Ea,b(xti−τa , xti , xtj−τb , xtj+1−τb)

=E
[
g(xti−τa)T∂af(xti)

T∂bf(xtj )g(xtj−τb)|Ftj+1−τb

]
Ea,b =E

[
g(η1)T∂af(η2)T∂bf(xtj (tj+1 − τb, η4))g(η3)

]
for τb ≥ ∆t and

Ea,b = E
[
g(η1)T∂af(η2)T∂bf(η3)g(η3)

]
for τb = 0. As in case 1., Lemma 7.3 applies with p = ti − τa, r = ti,
s = tj − τb.

3. for ti+1 − τa ≤ tj − τb ≤ tj and ti ≥ tj − τb

Υij =Ea,b(xti−τa , xti+1−τa , xtj−τb , xtj+1−τb),

=E
[
g(xti−τa)T∂af(xti)

T∂bf(xtj )g(xtj−τb)|Ftj+1−τb

]
Ea,b =E

[
g(η1)T∂af(xti(xtj+1−τb , η4))T∂bf(xtj (tj+1−τb , η4))g(η3)

]
for τb ≥ ∆t and

Ea,b = E
[
g(η1)T∂af(xti(xtj+1−τb , η4))T∂bf(η3)g(η3)

]
for τb = 0 (the second argument is included to make h have four argu-
ments). Lemma 7.3 applies with p = ti − τa, r = ti+1 − τa, s = tj − τb.

4. for tj+1 − τb ≤ ti − τa < ti < tj

Υij =Ea,b(xtj−τb , xtj+1−τb , xti−τa , xti+1−τa)

=E
[
g(xti−τa)T∂af(xti)

T∂bf(xtj )g(xtj−τb)|Fti+1−τa

]
.

Ea,b =E
[
g(η3)T∂af(xti(ti+1 − τa, η4))T∂bf(xtj (ti+1 − τa, η4))g(η1)

]
for τa ≥ ∆t and

Ea,b = E
[
g(η3)T∂af(η3)T∂bf(xtj (ti+1 − τa, η4))g(η1)

]
.

for τa = 0. Lemma 7.3 applies with p = tj − τb, r = tj+1 − τb, s = ti − τa.

5. This is the exceptional case and can occur for (a, b) only for O(N) pairs
(i, j). The term Υij is bounded (as it is defined in terms of f and g and
their derivatives). It is easily to show

E
[〈

Υij∆(ti − τa, ti+1 − τa),∆(tj − τb, tj+1 − τb)
〉]
≤ K∆t3. (7.17)
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LetQN be the set of (i, j) such that condition 5. holds for at least one pair (a, b),
where a, b = 1, . . . , J . Notice that QN has O(N) members. For (i, j) ∈ QN ,
we have a sum of O(J2) terms of size O(∆t3) (most of the terms are order
O(∆t4) ) and

E
[
〈RX(ti), RX(tj)〉

]
≤ K∆t3.

If (i, j) ∈ PN −QN , no term in the sum (7.15) depends on condition 5., so that

E
[
〈RX(ti), RX(tj)〉

]
≤ K∆t4.

Hence QN has O(N) members and Theorem 6.1 completes the proof.
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A Estimates

We derive some estimates on the remainder terms given in §4 on the time
interval [0, T ].

Lemma A.1. There exists K > 0 such that

E
[

sup
0≤s≤r≤t≤T

‖Rf (r; s, xs)‖2Rd

]
≤K|t− s|

E
[

sup
0≤s≤r≤t≤T

‖Rg(r; s, xs)‖2F
]
≤K|t− s|2.

Proof. Using (3.3) and the regularity of f, g, both inequalities follow from the
definitions in (4.2)–(4.3).

Lemma A.2. There exists K > 0 such that, for 0 ≤ s ≤ t ≤ T ,

E
[

sup
s≤r≤t≤T

‖R1(r; s, xs)‖2Rd

]
≤ K|t− s|3.

Proof. Apply (2.2) and (2.3) to (4.4). Then,

E
[

sup
s≤r≤t≤T

‖R1(r; s, xs)‖2Rd

]
≤2
(
E
[

sup
s≤r≤t≤T

‖Rf (r; s, xs)‖2Rd |t− s|2
]

+K

∫ t

s
E
[
‖Rg(r; s, xr)‖2F

]
dr
)
.

The estimates in Lemma A.1 complete the proof.

Lemma A.3. There exists K > 0 such that, for ∆t > 0,

E
[

sup
s≤r≤s+∆t≤T

‖R2(r; s, xs)‖2Rd

]
≤ K∆t2

and
E sup
s≤r≤s+∆t≤T

‖R2,r(s, x̂s)‖2∞ ≤ K∆t2. (A.1)
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Proof. By (2.2) and (2.3),

E
[

sup
s≤r≤s+∆t≤T

‖R2(r; s, xs)‖2Rd

]
≤3
(
K|t− s|2 + Ĉ2 sup

s≤r≤s+∆t≤T

∫ r

s
E
[
‖Dg(xs, s)(xp(s, xs)− xs, p− s)‖2F

]
dp

+ E sup
s≤r≤s+∆t≤T

‖R1(r; s, xs)‖2Rd

)
≤K

(
∆t2 + ∆t

(
E
[

sup
s≤r≤s+∆t≤T

‖xr(s, xs)− xs‖2∞
]

+ ∆t2
)

+ E sup
s≤r≤s+∆t≤T

‖R1(r; s, xs)‖2Rd

)
.

By Lemma A.1 and (3.5), this is O(∆t2) as required. As R2,r is defined in
terms of R2 in (4.9), (A.1) follows easily.
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