
Computing the Geodesic Interpolating Spline

Anna Mills∗ Stephen Marsland† Tony Shardlow‡

January 5, 2006

Abstract

We examine non-rigid image registration by knotpoint matching. We consider registering two

images, each with a set of knotpoints marked, where one of the images is to be registered to the

other by a nonlinear warp so that the knotpoints on the template image are exactly aligned with the

corresponding knotpoints on the reference image.

We explore two approaches for computing the registration by the Geodesic Interpolating Spline.

First, we describe a method which exploits the structure of the problem in order to permit efficient

optimization and second, we outline an approach using the framework of classical mechanics.

1 Introduction and Formulation of problem

Image registration is an important problem, arising, for instance, in medical image analysis and in cartog-
raphy. The principle of image registration is to transform one image, the template image, to increase the
similarity with a second reference image by rigid and non-rigid changes of the coordinate system. In this
paper, we concentrate on the non-rigid registration problem, using knotpoints on the images to identify
common features to be aligned by the registration. A comprehensive survey of registration methods is
given in [7]. We develop methods for computation of the Geodesic Interpolating Spline (GIS) as described
by Marsland and Twining in [6]. The GIS was developed from the thin-plate spline [3] to provide a
diffeomorphic mapping between images so that no folds or tears are introduced to the images and no
information is lost from the image being mapped.

The GIS uses, instead of one large step as in the thin-plate spline, a succession of small diffeomorphic
steps to warp the image. To achieve this, a dependence on time is introduced [3]. The warp is characterized
by a vector field v(x, t), selected to minimize a measure of deformation of the image. Then we define a
warp, Φ so that Φ(P) = Q = x(1) and x is the solution of

dx

dt
= v(t,x(t)), 0 ≤ t ≤ 1, x(0) = P, (1)

where P and Q are points on, respectively the template and reference images to be aligned.
We work with images in R

d where knotpoints Pi on the template image and Qi on the reference image
are given for i = 1, . . . , nc. We formulate this precisely as a minimization problem as follows. Minimize

l(qi(t),v(t,x)) =
1

2

∫ 1

0

∫

B

‖Lv(t,x)‖2

Rddx dt, (2)

over deformation fields, v(t,x) ∈ R
d and paths, qi(t) ∈ B for i = 1, . . . , nc, where B ⊂ R

d is the domain
of the image and L is a constant-coefficient, differential operator. We have constraints

dqi

dt
= v(t,qi(t)), 0 ≤ t ≤ 1, (3a)

∗School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD, UK.

amills@maths.man.ac.uk
†Institute of Information Sciences and Technology Massey University Private Bag 11222 Palmerston North New Zealand

s.r.marsland@massey.ac.nz
‡School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD, UK.

shardlow@maths.man.ac.uk

1

and
qi(0) = Pi, and qi(1) = Qi, i = 1, . . . , nc. (3b)

In our case an appropriate choice for the operator, L, is to have L = ∇2 with zero Dirichlet and Neu-
mann boundary conditions on B imposed, as this approximates the Willmore energy which quantifies the
“bending energy” of the warp. One alternative approach would be to use a regularizer based on elasticity
as discussed in [7]. We choose B to be the unit ball so we can have explicit Green’s functions. This is
an appropriate choice for B in analyzing brain images since brain images scale naturally to fit in the unit
ball.

If we have large displacements of the knotpoints, a thin-plate spline mapping may not give a diffeomor-
phism. The techniques of the thin-plate spline, the clamped-plate spline and the Geodesic Interpolating
Spline are all applied to the same problem in Figure 1. The clamped-plate spline is equivalent to the
thin-plate spline with boundary conditions on B. Notice the folding in the upper right-hand quadrant of
the mapping calculated by the clamped-plate technique. The GIS gives a diffeomorphic mapping so there
is no folding.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
The Movements of the Control Points

Initial Points
Final Points

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
The Geodesic Interpolating Spline

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
The Clamped−Plate Spline

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
The Thin−Plate Spline

Figure 1: A system of 6 control points subjected to displacements, and the corresponding thin-plate,
clamped-plate and geodesic interpolating splines

Using techniques in [4], it can be shown that we can represent the minimizing vector field as

v(t,x) =

nc
∑

i=1

αi(t)G(qi(t),x),

where αi(t),qi(t) are respectively multipliers and knotpoint positions at time t for a set of nc knotpoints
and where G(x,y) is the Green’s function derived by Boggio [2]. We will do numerical experiments with
the 2-dimensional Green’s function

G(x,y) = −|x− y|2 ln |x − y|2

2

for the biharmonic operator L with zero Dirichlet and Neumann boundary conditions on B. In this way,
we can derive the optimisation problem:

min

∫ 1

0

1

2

nc
∑

i,j=1

α
>
i αjG(qi,qj)dt (4a)

such that
dqi

dt
=

nc
∑

j=1

αjG(qi,qj), qi(0) = Pi i = 1, . . . , nc, (4b)

and qi(1) = Qi, (4c)

where (4b) gives the velocity constraint.
We explore two methods for the minimization. In Section 2, we examine the structure of the discretized

version of (4), and use an optimization method exploiting this structure. In Section 3, we reformulate the
problem in a Hamiltonian framework to compute the GIS. In Section 4, we test the methods on brain
images with knotpoints marked by clinicians. In Section 5, we summarize our results.

2 Numerical Optimization Exploiting Partial Separability

To find the minimizer of (4), we use numerical optimization techniques. First, we discretize in time to
achieve a finite dimensional system, by applying forward Euler to the velocity constraint and the rectangle
rule to the objective function. This yields a constrained optimization problem with a clear structure. The
numerical optimization package Galahad uses a concept called group partial separability to express the
dependence between different variables and make the structure of the resulting Hessian matrices clear and
usable by linear algebra routines. This can markedly improve the performance on large scale problems.
The discretization of the GIS is partially separable, because of the dependence on time, and we exploit
this in our Galahad implementation.

We move to a discretized version of the problem using time step ∆t = 1/N . We use α
n
i ≈ αi(n∆t), n =

0, . . . , N − 1 and qn
i ≈ qi(n∆t), n = 0, . . . , N to give the problem in the following form.

Minimize

l{αn
i ,qn

i } =
1

2

nc
∑

i,j=1

N−1
∑

n=0

α
n>
i α

n
j G(qn

i ,qn
j) (5)

over α
n
i ,qn

i i = 1, . . . , nc such that

N(qn+1

i − qn
i) =

nc
∑

j=1

α
n
j G(qn

i ,qn
j), n = 0, . . . , N − 1, i = 1, . . . , nc (6a)

with conditions
q0

i = Pi, and qN
i = Qi i = 1, . . . , nc, (6b)

where G(x,y) is the clamped-plate biharmonic Green’s function.
We can take advantage of the partial separable structure of the problem using the routine Lancelot B

from the optimization suite, Galahad [5]. Lancelot B is a Fortran 90 optimization routine for minimizing
a group partial separable, constrained problem. Our problem is group partial separable since every partial
separable problem is naturally group partial separable. As detailed in [5], Lancelot B uses an iterative
method. Outer iterations form an augmented Lagrangian merit functions, and inner iterations minimise
a quadratic model of the merit function. In Lancelot B, the objective function and constraints can be
described in terms of a set of group functions and element functions, where each element function involves
only a small subset of the minimization variables. Specifically, Lancelot B solves problems with objective
functions of the form (where we omit terms not relevant to our problem)

f(x) =
∑

i∈Γ0

wg
i gi

∑

j∈Ei

we
ijej(x

e
j)

 , x = (x1, x2, . . . , xn)>. (7)

3

In the above, Γ0 is a set of indices of group functions gi, Ei is a set of nonlinear element functions ej , and
wg

i and we
ij describe the element and group weight parameters. The constraints must be of the form

ci(x) = wg
i gi

∑

j∈Ei

we
ijej(x

e
j) + aN

i x

 = 0, (8)

for i in the set of indices of constraints Γc.
Examining our objective function, we see that there is a natural division into N groups, each group

being given by, for the nth group

wg
i gi

∑

j∈En

we
njej(x

e
j)

 =
1

2

nc
∑

i,j=1

(αn
i G(qn

i ,qn
j))αn

j , (9)

each of which contains n2
c nonlinear element functions. In this notation, xe

j is the vector containing the
optimization variables (qn

i , αn
i), i = 1, . . . , nc. Similarly, the 2ncN velocity constraints in Equation (6a)

can be characterized by 2ncN groups each comprising nc nonlinear elements and one linear element.
We require that the start and end points of each control point path coincide with the landmarks on,
respectively, the floating and reference images. This gives 4nc constraints of the form

0 = (q1
i −Pi)w, 0 = (qN+1

i −Qi)w, i = 1, . . . , nc. (10)

Each dimension of these 2nc constraints consists of one linear element and one constant. Hence we have
4nc groups characterizing the landmark constraints, each group being weighted by some w � 1. We
have N + 2ncN + 4nc groups characterizing the problem and within these groups, we have in total 3n2

cN
nonlinear elements.

The group partial separability of the problem introduces sparsity to the Hessian. We can see the
block diagonal sparsity structure of the Hessian for the augmented Lagrangian function for our problem in
Figure 2 where the Hessian for a problem involving 5 time steps and 8 knotpoints is shown. The Hessian
was calculated using a numerical scheme on the augmented Lagrangian function as used in Lancelot B,
given by

LA(x, λ; µ) = f(x) −
∑

i∈Γc

λici(x) +
1

2µ

∑

i∈Γc

c2
i (x), (11)

where f is the constrained objective function, µ is the penalty parameter, Γc is the set of indices of the
equality constraints, and λi for i ∈ Γc are Lagrangian multipliers. Lancelot B uses Newton methods which
require Hessian approximations. The routine exploits the group partial separability of the problem to
make the calculation and storage of the Hessian approximations more efficient.

The Hessian of the augmented Lagrangian has structure

[

B A>

A 0

]

, (12)

where B is the ∂2/∂x2 derivative, the matrix A is the ∂2/∂x∂λ derivative, and the zero block occurs since
λ only appears in the augmented Lagrangian as order one. This structure is clearly visible in Figure 2.
There are 5 time blocks on the main diagonal, each with coupling to the adjacent time blocks. There
is a banded off-diagonal structure, the two bands of A being due to the constraints being divided into
x-dimension and y-dimension constraints.

3 Classical Mechanics Approach

We present a novel formulation of the Geodesic Interpolating Spline for image registration as a problem in
Hamiltonian dynamics. The Geodesic Interpolating Spline problem is given by the minimization problem
(4). In the language of classical mechanics, we are minimising the following Lagrangian

L(q, q̇) =
1

2

nc
∑

i,j=1

α
>
i αjG(qi,qj), (13)

4

0 50 100 150 200

0

50

100

150

200

nz = 7278

Figure 2: The Sparsity Structure of the Hessian of the Augmented Lagrangian Function for a Problem
with 5 Time Steps and 8 Knotpoints

where the positions q = (q1, . . . ,qnc
) and velocities q̇ = (dq1

dt
, . . . ,

dqnc

dt
) are defined by (4b). Following

Arnold [1], we can convert to a Hamiltonian formulation by computing the Legendre transform of the
Lagrangian function as a function of the velocity, q̇: the Hamiltonian

H(p,q) = p>q̇ − L(q, q̇), (14)

where p = ∂L/∂q is the generalized momentum. The total differential of the Hamiltonian is

dH =
∂H

∂p
dp +

∂H

∂q
dq, (15)

where we abbreviate H(α,q) to H . Examining the total differential of the right-hand side of (14) we have

dH = q̇dp−
∂L

∂q
dq. (16)

We know that equations (15) and (16) must be equal so we see that

∂H

∂p
= q̇, (17)

∂H

∂q
= −

∂L

∂q
. (18)

Lemma The generalized momentum
∂L

∂q̇
≡ p = α. (19)

Proof. Construct a matrix A ∈ R
nc×nc so that

Aij = G(qi,qj) i, j = 1, . . . , nc, (20)

5

and a matrix G ∈ R
dnc×dnc as

G = A⊗ I,

(where I is the d-dimensional identity matrix). We can use equation (4b) and define a vector α =
[α>

1 , α>
2 , . . . , α>

nc
]> to derive an equation for the velocity constraint in matrix form,

dq

dt
= Gα. (21)

Similarly, we can express the Lagrangian (13) in matrix form as

L =
1

2
α

>Gα.

We calculate
∂L

∂q̇
=

∂L

∂α

∂α

∂q̇
. (22)

Examining the terms on the right hand side of equation (22),we have

∂L

∂α
= Gα,

and, from (21),
∂q̇

∂α
= G,

∂α

∂q̇
= G−1,

where G is known to be positive definite, and hence invertible, since the energy in the problem is always
positive for non-trivial mappings. Hence we see that the generalized momentum is given by,

∂L

∂q̇
= G−1Gα = α.

We have the Euler-Lagrange equations governing the system [1]

∂L

∂q
−

d

dt

(

∂L

∂q̇

)

= 0. (23)

Substituting the expression for generalized momentum given in equation (19) into the Euler-Lagrange
equations (23) gives

∂L

∂q
=

dα

dt
.

Hence, with equation (18), we have the coupled system of Hamiltonian equations

q̇ =
∂H

∂α
, (24a)

α̇ = −
∂H

∂q
. (24b)

Now we examine how the Geodesic Interpolating Spline minimization problem relates to the Hamiltonian
system. Equation (14) simplifies as follows. Substituting the first derivatives (21) into (17), the first term
of the right hand side of (14) becomes

α
>q̇ = α

>
αG. (25)

Hence we have

H(α,q) = α
>q̇ − L(q, q̇) (26)

=

nc
∑

i,j=1

α
>
i αjG(qi,qj) −

1

2

nc
∑

i,j=1

α
>
i αjG(qi,qj) (27)

=
1

2

nc
∑

i,j=1

α
>
i αjG(qi,qj), (28)

6

so that H is now a function of α and q.
We have shown that the solutions, qi(t) and αi(t) of (4) are solutions of the system of differential

equations, (24). We consider the Hamiltonian equations (24) with given initial data

[

q(0)
α(0)

]

=

[

P

A

]

= Y,

where P is the vector of initial knotpoint positions in Equation (4b) and A is the initial vector of generalized
momentum. We solve the nonlinear system of equations Φ(A;P) = Q for A as a shooting problem, where
Q is the vector of final knotpoint positions in (4c) and Φ(A;P) := q(1), the position component of the
solution of the following Hamiltonian system:

d

dt
qi =

nc
∑

j=1

αjG(qi,qj) (29a)

d

dt
αi = −

nc
∑

j=1

α
>
i αj

∂

∂qj

G(qi,qj) i = 1, . . . , nc, (29b)

with initial conditions
[

q(0)
α(0)

]

=

[

P

A

]

= Y. (29c)

3.1 Numerical Implementation

To solve the coupled system of differential equations (29), we discretize in time. We choose to discretize
using the Forward Euler method. Experiments with symplectic methods have shown no advantage for
this problem, principally because it is a boundary value problem where long time simulations are not of
interest, and no suitable explicit symplectic integrators are available. Using the notation qn

i ≈ qi(n∆t),
α

n
i ≈ αi(n∆t), n = 0, . . . , N, ∆t = 1/N , we have

[

qn+1

α
n+1

]

=

[

qn

α
n

]

+ ∆t

H(qn, αn)
∂α

−
H(qn, αn)

∂q

 , (30)

with initial conditions
[

P

A

]

=

[

q0

α
0

]

= Y. (31)

We wish to examine the variation with respect to the initial momentum, A, in order to provide Jacobians
for the nonlinear solver, so we need to approximate

dq(1)

dA
≈

dqN

dα0
. (32)

We can neglect the variation with respect to q0, the initial positions, since the initial positions, P, remain
fixed.

Using the Forward Euler scheme for some function f , we have

Xn+1 = Xn + ∆tf(Xn) (33)

with initial condition X0 = Y. Let Jn denote the Jacobian dXn

dA
. Differentiating (33) with respect to the

initial condition, we have

dXn+1

dA
=

dXn

dA
+ ∆t

df(Xn)

dXn

dXn

dA
,

dX0

dA
=

(

0
I

)

. (34)

Then we can solve numerically a coupled system of equations

Jn+1 = Jn + ∆t
df(Xn)

dXn
Jn (35)

Xn+1 = Xn + ∆tf(Xn) (36)

7

with initial conditions

J0 =

[

0
I

]

, X0 = Y. (37)

In our problem, we have

f(X) =

∂H
∂q

−∂H
∂α

 , X =

[

q

α

]

and so

df(Xn)

dXn =

∂2H
∂q∂α

∂2H
∂α

2

−∂2H
∂q2 − ∂2H

∂α∂q

. (38)

We calculate the entries of (38). We have

H(α,q) =
1

2

nc
∑

i,j=1

α
>
i αjG(qi,qj)

=
∑

i<j

α
>
i αjG(qi,qj) +

1

2

nc
∑

i=1

α
>
i αiG(qi,qi),

where we use the notation
∑

i<j to denote summation from 1 to nc such that i < j. We obtain first order
derivatives

∂H

∂αk

=

nc
∑

j=1

αjG(qk,qj) (39)

∂H

∂qk

=
∑

i6=k

α
>
i αk

∂G(qi,qk)

∂qk

+
1

2
α

>
k αk

∂G(qk ,qk)

∂qk

(40)

Then we can calculate second derivatives

∂2H

∂αk∂αl

= G(qk ,ql)I (41)

∂2H

∂αk∂ql

= αl

∂G(qk ,ql)

∂ql

, (42)

∂2H

∂αk∂qk

=

nc
∑

j=1

αj

∂G(qk,qj)

∂qk

, (43)

∂2H

∂qk∂ql

= α
>
k αl

∂2G(qk,ql)

∂qk∂ql

(44)

∂2H

∂qk∂qk

= α
>
k αk

∂2G(qk ,qk)

∂qk∂qk

, (45)

(where I is the 2-dimensional identity matrix). The calculation of the Jacobian permits efficient solution
of the nonlinear equation Φ(A;P) = Q using the NAG nonlinear solver nag_nlin_sys_sol [9].

4 Comparison of Techniques

4.1 Numerical Optimization Approach

The inner iterations of the optimization method of Lancelot B use a minimization of a quadratic model
function for which an approximate minimum is found. This leads to a model reduction by solving one or
more quadratic minimization problems, requiring a solution of a sequence of linear systems. The Lancelot
optimization package allows a choice of linear solver from 12 available options [5]. Experimentation
with the choice of linear solver for the problem shows that the choice of solver has a large effect on the
performance of the optimization, the best choice of linear solver varying from problem to problem. The
methods tested are described below.

8

CG - conjugate gradient method without preconditioning

DIAG - preconditioned gradient method with a diagonal preconditioner

EXP BAND - preconditioned conjugate gradient method with an expanding band incomplete Cholesky
preconditioner

MUNKS - preconditioned conjugate gradient method with Munksgaard’s preconditioner

SCHNABEL - preconditioned conjugate gradient method with a modified Cholesky preconditioner

GMPS - preconditioned conjugate gradient method with a modified Cholesky preconditioner

BAND - preconditioned conjugate gradient method with a band preconditioner, semi-bandwidth 7

LIN-MORE - preconditioned conjugate gradient method with an incomplete Cholesky factorization
preconditioner

MFRONTAL - a multifrontal factorization method

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
10 Spread Points

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
10 Close Points

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
20 Spread Points

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
20 Close Points

Figure 3: Test cases for testing the linear solvers showing Pi as circles and Qi as points

The implementation was initially tested on four selected test cases, as illustrated in Figure 3, two
comprising knotpoints taken from adjacent points in a data-set of 123 knotpoints hand-annotated on
an MRI brain image, and two comprising points taken equally spaced throughout the data-set. The
experiments used 10 time steps. It turns out that those involving adjacent points are harder to solve.

We see the results of the experiment in Table 1 and Table 2. We notice that for most methods, the
problems with the points closer together in the domain are hardest to solve. We see that this is not always
true, however. For instance, the diagonal method performs better with 10 close points than with 10 points
spread through the domain. This is also true of the method using the Munksgaard preconditioner. The
expanding band incomplete Cholesky preconditioner performs the best over the four test cases. It is clear,
however, from these experiments that it is difficult to predict how an individual linear solver will perform
on a particular problem. None of the linear solvers resulted in convergence for the case involving all of
the 123 knotpoints.

9

Solver 10 Spread 10 Close 20 Spread 20 Close Total

CG 20 23 29 34 106
DIAG 222 162 474 675 1533

EXP BAND 13 14 29 18 74
MUNKS 65 28 46 46 185

SCHNABEL 25 25 106 64 220
GMPS 14 17 78 105 214
BAND 21 24 114 98 257

LIN-MORE 23 20 37 64 144
MFRONTAL 15 17 102 26 160

Table 1: Number of Iterations to Converge

Solver 10 Spread 10 Close 20 Spread 20 Close Total

CG 5.78 4.86 54.04 71.07 135.74
DIAG 24.38 46.40 366.98 785.47 1223.23

EXP BAND 0.89 1.69 10.00 6.35 18.93
MUNKS 22.98 15.04 128.72 158.95 325.68

SCHNABEL 5.68 5.07 192.81 155.38 358.93
GMPS 1.34 2.01 62.35 96.76 162.46
BAND 5.55 8.70 220.94 227.10 462.28

LIN-MORE 4.53 4.62 49.26 89.20 147.61
MFRONTAL 1.42 2.09 76.07 21.00 100.58

Table 2: Time Taken to Converge (in seconds)

In order to understand this behaviour better, we explore the change in condition number of the
interpolation matrix with respect to the minimum separation between knotpoints. First, we examine the
interpolation matrix for the clamped-plate spline. Computing the clamped-plate spline requires solving
a linear system involving an interpolation matrix. Our nc × nc interpolation matrix, G, is constructed
of biharmonic Green’s functions in the same manner as that in which we constructed matrix A in (20),
namely

Gij = G(qi,qj),

where G(·, ·) denotes the d-dimensional biharmonic Green’s function and qi,qj are d-dimensional knot-
point position vectors. This interpolation matrix is also a key feature of the Hessian of the augmented
Lagrangian, as discussed in Section 2.

In Figure 4, we see the change in condition number for the interpolation matrix for two parallel
knotpoint paths. The separation of two knotpoint start and finish points were varied from 0.002 to 0.0001
in steps of 0.00001, the condition number of the interpolation matrix being calculated at each point. From
the literature [8], [10], we expect the condition number in the 2-norm, κ2(G) of the interpolation matrix to
vary with the minimum separation of the knotpoints in a manner bounded above by α mini,j ‖qi −qj‖

−β,
some α, β > 0. Accordingly, for comparison, we calculate and plot

α min
i,j

‖qi − qj‖
−β,

for each test set of knotpoints, where α and β are calculated using polynomial fitting in MATLAB. Where
the minimum separation distances are varied over the interval [0.002,0.0001], we see that α is calculated
to be 0.1232 and β is calculated to be 1.837. The corresponding function is plotted in Figure 4 against
the actual condition numbers. We see close correspondence between the condition numbers and their
predicted bounds. Thus the condition number of the Hessian in the Lancelot B optimisation is expected
to be large when points are close together; we suspect the poor performance of the linear solvers in the
test cases is due to ill conditioning and for knotpoints with small separation.

4.2 Classical Mechanics Approach

Experiments show that the Hamiltonian implementation can solve all of the test cases illustrated in Figure
3 in less than one second, whereas the Lancelot B implementation takes over 18 seconds to solve the test

10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x 10−3

1

1.5

2

2.5

3

3.5 x 104

Distance Between Patdsdfhs

condn numbers
0.12322q−1.8268

Figure 4: Condition Numbers for Knotpoints with Decreasing Separation

cases. An illustration of typical final knotpoint paths calculated by the classical mechanics approach is
given in Figure 5 where paths for 62 points are shown. The hooked paths are typical of paths calculated
by the Geodesic Interpolating Spline.

Experiments are presented which show the performance of the Hamiltonian method under increases in
the number of knotpoints and in the number of time steps, and the effect of the inclusion of a user-supplied
Jacobian. We see the effect of an increase in the number of time steps in Figure 6, comparing results
using a numerical gradient with those using a true gradient. We see that the performance of the method
using the true gradient is much superior to that using a numerical gradient, both in terms of function
evaluations and of time. For these tests, the first 60 knot points of the 123 point set were used.

−0.3 −0.2 −0.1 0 0.1 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

Knotpoint Paths for 62 Knotpoints

Start Points
End Points

Figure 5: Knotpoint Paths for the Geodesic Interpolating Spline

In Figure 7, we see the effect on performance of the Hamiltonian implementation under an increase in
the number of knotpoints, both with a numerical gradient and with a user-supplied analytic gradient, as
described above. The knotpoints are taken as consecutive excerpts from the same set of 123 points as for
the test sets above and 20 time steps are used. The speed of convergence of the method improves by a
factor of approximately 4 when there is a user-supplied gradient. Notice that solving for the full 123 point

11

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Number of Time Steps

Time (secs)

Increasing the Number of Time Steps

time fals
time true

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800
Increasing the Number of Knotpoints

Number of Knotpoints

Time (secs)

Figure 6: Increasing the number of time steps for the Hamiltonian method

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

Number of knotpoints

Ti
m

e
(s

ec
s)

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

Number of knotpoints

Fu
nc

tio
n

E
va

lu
tio

ns

numerical gradient
true gradient

numerical gradient
true gradient

The effect on performance of an increase in the number of knotpoints, with knotpoints from the handmarked set of 123 knotpoints and 20 timesteps

Figure 7: Increasing the number of knotpoints for the Hamiltonian method, ∆t = 1/20

set takes less than 40 seconds using this method. The Hamiltonian method significantly outperforms all
of the Lancelot B solvers (see Table 2) on the test problems, despite the results shown for the Hamiltonian
method being calculated using twice as many time steps as those shown for the Lancelot B solvers.

12

5 Conclusions

The Lancelot B implementation was developed by the authors as an improvement to Marsland and Twin-
ing’s original MATLAB method [6] for calculating the GIS and showed significant improvement over the
MATLAB implementation. The Hamiltonian method shows an impressive improvement over both of these
methods. We believe that the Lancelot B method shows disappointing performance due to the lack of a
preconditioner suitable for the ill-conditioning of the interpolation matrix. The Hamiltonian method for
computing the Geodesic Interpolating Spline dramatically outperforms the Lancelot B implementation
over the test set of real data. It is clear that exact Jacobians should be supplied to the Hamiltonian
implementation to give efficient performance. We see from the experiments carried out that, with exact
second derivatives provided, the performance of the Hamiltonian method is superior to the performance
of previous methods.

References

[1] V. I. Arnold, Mathematical methods of classical mechanics, vol. 60 of Graduate Texts in Mathe-
matics, Springer Verlag, New York, 2 ed., 1989. 508 pages.

[2] T. Boggio, Sulle funzioni di green d’ordine m., Circolo Matematico di Palermo, 20 (1905), pp. 97–
135.

[3] V. Camion and L. Younes, Geodesic interpolating splines, in M.A.T. Figueiredo, J. Zerubia, A K.
Jain ed., vol. 2134 of Energy Minimization Methods in Computer Vision and Pattern Recognition,
Lecture notes in Computer Science, Springer-Verlag, 2001, pp. 513–527.

[4] W. Cheney and W. Light, A Course in Approximation Theory, Brooks/Cole, 1999.

[5] N. I. M. Gould, D. Orban, and P. L. Toint, Galahad, a library of thread-safe FORTRAN 90

packages for large-scale nonlinear optimization, ACM Trans. Math. Softw., 29 (2003), pp. 353–372.

[6] S. Marsland and C. Twining, Measuring geodesic distances on the space of bounded diffeomor-

phisms, in British Machine Vision Conference (BMVC), 2002.

[7] J. Modersitzki, Numerical Methods for Image Registration, Oxford University Press, New York,
2004.

[8] F. J. Narcowich and J. D. Ward, Norms of inverses and condition numbers for matrices asso-

ciated with scattered data, J. Approx. Theory, 64 (1991), pp. 69–94.

[9] Numerical Algorithms Group, NAG Manual, http://www.nag.co.uk/numeric/FN/manual/.

[10] R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Ad-
vances in Computational Mathematics, 3 (1995), pp. 251–264.

13

