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Abstract

A numerical method for a class of Itô stochastic differential equations with a finite
delay term is introduced. The method is based on the forward Euler approximation and
is parameterised by its time step. Weak convergence with respect to a class of smooth
test functionals is established by using the infinite dimensional version of the Kolmogorov
equation. With regularity assumptions on coefficients and initial data, the rate of conver-
gence is shown to be proportional to the time step. Some computations are presented to
demonstrate the rate of convergence.
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1 Introduction

Consider stochastic differential delay equations on Rd of the form

dY (t) =
[

∫ 0

−τ
a(ds)Y (t+ s) + f(Y (t))

]

dt+ b(Y (t)) dW (t),

Y (0) =YS , Y (s) = YD(s) for −τ ≤ s < 0,

(1.1)

for initial conditions YS ∈ Rd and YD ∈ C([−τ, 0],Rd), where a(·) is a d × d matrix valued
measure on [−τ, 0], f(·) : Rd → Rd, b(·) : Rd → Rd×d, and W (·) is a Brownian motion on Rd

with covariance I. The delay is τ , which should be finite and positive. The equation should
be interpreted in the sense of Itô.

We now define the forward Euler method for (1.1). Denote the floor function by btc, which
equals the greatest integer less than or equal to t. Let

ai :=

∫ 0

−τ
a(ds)1[i∆t,(i+1)∆t)(s), i = −bτ/∆tc, . . . ,−1,

where 1[t1,t2)(s) is the d×d identity matrix on [t1, t2) and is zero otherwise. Let ∆βn be inde-
pendent and normally distributed with mean zero and variance ∆tI. Generate approximations
Yn to Y (n∆t) for n = 1, 2, . . . by

Yn+1 − Yn =
[

−1
∑

i=−bτ/∆tc

aiYn+i + f(Yn)
]

∆t+ b(Yn)∆βn, (1.2)
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with initial conditions Yi = YD(i∆t) for i = −bτ/∆tc, . . . ,−1 and Y0 = YS .
In a series of papers, strong approximation methods for stochastic differential delay equa-

tions were considered by C. and M. Tudor [24, 25, 26, 27, 28]. Recently this topic has gained
more attention, see [1], [2], [13], and [15]. The theory gives convergence rates of order ∆t1/2

for the forward Euler method, which is optimal, and applies to delay equations more general
than (1.1). The aim of this work is to understand the weak convergence properties of the
forward Euler method for (1.1). The theoretical grounding developed for the Euler method in
this paper should make it possible to understand higher order weak approximation methods
for stochastic differential delay equations. There are two basic approaches to achieving this
goal. As developed in [14, 16] for SDEs, we can look for higher order methods. The drawback
is the difficulty in implementing higher order methods for practical problems. The second
approach is to use Richardson extrapolation based on a lower order numerical method such
as forward Euler. An understanding of the behaviour of the error as developed in [23] (where
the error in weak approximation is expanded in ∆t power series) is needed to justify this
rigorously. We leave these issues as open problems.

We now describe the hypothesis needed for our weak convergence analysis. The hypothesis
are more restrictive than those needed for strong convergence, but give better convergence
rates.

Hypothesis 1.1 (i) Suppose that f : Rd → Rd is four times continuously differentiable
with f ′, f ′′, f ′′′, f ′′′′ bounded. Suppose that b : Rd → Rd×d is bounded with four bounded
derivatives.

(ii) Suppose that a(ds) has a C1 density a : [−τ, 0] → R.

For an integer p ≥ 4, introduce the spaces Gp of test functions φ : Rd → R that are four
times continuously differentiable and satisfy ‖φ(n)(h)‖L(Rd×n ,R) ≤ K(1 + ‖h‖p−n

Rd
), for h ∈ Rd

and some constant K, for n = 0, 1, 2, 3, 4 (‖ · ‖L(Rm,R) is the standard norm induced on linear
operators from Rm to R by the Euclidean norm). In one dimension, this space is sufficiently
general to include polynomials.

For x = (YS , YD)T , write ‖x‖ := (‖YS‖2
Rd +‖YD‖2

L2([−τ,0],Rd)
)1/2. For a continuous function

YD : [−τ, 0] → Rd, let

‖YD‖Lip := sup
−τ≤t,t′≤0

‖YD(t) − YD(t′)‖Rd

|t− t′| .

Theorem 1.2 Let Hypothesis 1.1 hold. Consider YS ∈ Rd and a Lipschitz function YD :
[−τ, 0] → Rd. Let Y (t) (respectively, Yn) denote the solution of (1.1) (resp., (1.2)) corre-
sponding to initial data x = (YS , YD)T . For T > 0 and φ ∈ Gp, p ≥ 4, there exists a constant
Kx > 0 such that

∣

∣

∣
Eφ(Y (T )) −Eφ(YN )

∣

∣

∣
≤ Kx∆t, N∆t = T

and a constant K independent of the initial data such that

Kx ≤ K(1 + ‖x‖p) +K(1 + ‖x‖p−1)‖YD‖Lip. (1.3)

This is the main result of the present paper. The theorem makes a number of assumptions
on the regularity of the problem. Compared to the results available for SDEs, the hypothesis
on f , b, and φ come as no surprise as four derivatives are required to derive the analogous result
for SDEs. The assumptions can be relaxed for SDEs under a non-degeneracy assumption on
the noise by use of the Malliavin calculus [4], but such techniques are not used in this paper.
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The assumption on the delay term is more restrictive and excludes the important case of
discrete delays, a(ds) =

∑

δτi
(ds).

The main motivation for considering weak approximations is the computation of the ex-
pectation of functionals of the solutions of equation (1.1). This problem arises for example in
stochastic finance theory for the fair pricing of options. The standard model there is that of
Black and Scholes. Recently, though, several papers have appeared, where the authors propose
generalisations of this model by including (some part of) the history of the evolution of the
price of the security. Equation (1.1) fits into the framework of [6, Remark 2.3] and is similar
to the model in [12]. Optimal harvesting strategies are considered in [9]; equation (1.1) is a
special case of the type of equations investigated. Another purpose for weak approximations
is the computation of Lyapunov exponents of systems described by stochastic functional dif-
ferential equations. Lyapunov exponents for stochastic functional differential equations have
been considered in [18, 19, 11]; equation (1.1) fits into the class of equations treated. The use
of weak approximations for computing Lyapunov exponents has been suggested by Milstein
and Tretyakov in [17].

The proof of our main theorem is built by developing the delay equation (1.1) as a stochastic
evolution equation on an infinite dimensional space in order to achieve a Markov process and a
Kolmogorov equation. We review the theory in §2 for (1.1) and develop the numerical method
on this space in §3. Two corollaries of the Itô calculus are established in §4 concerning certain
functionals of the solutions. The Kolmogorov equation is introduced in §5 and developed
for the regularised delay equation. It is important to establish sufficient time and spatial
regularity of vk(t, x) := Eφ(Y k(t)), where Y k(t) is a regularised version of the solution of (1.1)
for initial data x := (YS , YD)T , and the terms in the Kolmogorov equation, to apply again the
Itô formula. To gain the necessary regularity, Hypothesis 1.1 (ii) was introduced. The proof
of Theorem 1.2 is completed in §6.

The convergence of weak approximations has been established for many numerical approx-
imations of SDEs by looking at the Kolmogorov equation. The argument given in this paper
follows closely [14] and appeared first in [22]. The difference in the present case is the intro-
duction of a delay term. A similar technique has been applied to study weak approximation
of a linear stochastic heat equation [21].

The Kolmogorov equation is difficult for evolution equations forced by a Wiener process.
The drift term in the underlying evolution equation frequently involve a differential operator
A which is unbounded. Further, the covariance of the Wiener process may involve an infinite
number of non-trivial eigenvalues. In our case, the Kolmogorov equation is simplified as there
are only finitely many noise terms and the operator A has a nice structure. Though A is
unbounded, we can take advantage of A being bounded in its first component. To do this,
we have taken a particularly simple space of test functions by working over averages at the
current time and keeping the test functions independent of the delay. The averages of these
test functions carry no information about the correlation between the state variable over the
delay interval, but are a natural space of functions to use in this situation.

1.1 Notation

We will work on the space H := Rd × L2([−τ, 0],Rd) with norm ‖(XS , XD)‖ := (‖XS‖2
Rd +

‖XD‖2
L2([−τ,0],Rd)

)1/2, which consists of the state variable and delay function. IfX = (XS , XD)T ,

let πSX := XS and πDX := XD. The norm of a continuous linear operator between normed
vector spaces H1 to H2 is denoted by ‖ · ‖L(H1,H2). Let

|X|? := ‖πSX‖Rd +
∥

∥

∥

∫ 0

−τ
a(ds)πDX(s)

∥

∥

∥

Rd

.
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Then | · |? is a well defined semi-norm on H and, for a constant K, |X|? ≤ K‖X‖, all X ∈ H.
Further define H ′ := Rd × L∞([−τ, 0],Rd) with

‖X‖H′ := max{‖πSX‖Rd , ‖πDX‖L∞([−τ,0],Rd)}, X ∈ H ′. (1.4)

For an orthonormal basis ei of Rd, a Hilbert space H1 with norm ‖ · ‖H1
, and B ∈ L(Rd,H1),

define the Hilbert-Schmidt norm

‖B‖2
L0

2
(Rd,H1)

:=

d
∑

i=1

‖Bei‖2
H1
.

Let L0
2(R

d,H1) equal the space L(Rd,H1) taken with the Hilbert-Schmidt norm. Throughout
the paper, we will make use of a generic constant K, which will be independent of the time
interval [0, T ], the initial data x, and k, the parameter of the Yosida approximant Ak. Let
ŝ := ∆tbs/∆tc.

2 Background

2.1 Stochastic Evolution Equations

For the analysis, it is convenient to present (1.1) as a stochastic evolution equation on the
infinite dimensional space H as follows. Consider

dX(t) =
[

AX(t) + F (X(t))
]

dt+B(X(t)) dW (t), X(0) = x := (YS , YD)T , (2.1)

where for X ∈ H

F (X) =

(

f(πSX)
0

)

B(X) =

(

b(πSX)
0

)

and A is a densely defined linear operator with domain D(A),

D(A) :=
{

(XS , XD)T ∈Rd ×W 1,2([−τ, 0];Rd) : XD is absolutely continuous, XD(0) = XS

}

and for X ∈ D(A)

AX :=

(

0 C

0 d
dt

)

X, CXD :=

∫ 0

−τ
a(ds)XD(s).

For further details see [7, p. 123] and [5, 10]. The evolution equation (2.1) has a unique mild
solution subject to Lipschitz conditions on f and b. That is, we can find X(t;x), an adapted
H valued process such that

X(t;x) = S(t)x+

∫ t

0
S(t− s)F (X(s;x)) ds+

∫ t

0
S(t− s)B(X(s;x)) dW (s),

where S(t) is the semigroup with generator A. The solution X(t;x) corresponds to the solution
of (1.1), in the sense that πSX(t;x) = Y (t). The process X(t;x) is a Markov process [8].
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2.2 Itô Calculus

For reference, we state two basic results of the Itô calculus on infinite dimensional spaces. Let
A(t) be aH valued predictable process, Bochner integrable on [0, T ]. Let B(t) be an L0

2(R
d,H)

valued process such that
∫ t
0 ‖B(s)‖2

L0

2
(Rd,H)

ds is finite almost surely. Consider X(t) such that

dX(t) = A(t) dt+ B(t) dW (t),

where W (t) is a Wiener process on Rd with covariance I. The next two results are dealt with
by [7].

Theorem 2.1 (Itô Formula) Consider a function Φ: [0, T ] ×H → R. Suppose that Φ and
its partial derivatives Φt, Φx, Φxx are uniformly continuous on bounded subsets of [0, T ] ×H.
For 0 ≤ t ≤ T , almost surely,

Φ(t,X(t)) = Φ(0, X(0)) +

∫ t

0
Φx(s,X(s))B(s) dW (s)

+

∫ t

0

{

Φt(s,X(s)) + Φx(s,X(s))A(s) + 1
2 TrΦxx(s,X(s))B(s)B(s)∗

}

ds,

where (for an orthonormal basis ei of Rd)

TrΦxx(s,X(s))B(s)B(s)∗ =
d

∑

i=1

Φxx(s,X(s))(B(s)ei,B(s)ei).

Lemma 2.2 The Itô Isometry:

E
[
∥

∥

∥

∫ T

0
B(s) dW (s)

∥

∥

∥

2]

=

∫ T

0
E‖B(s)‖2

L0

2
(Rd,H) ds.

The Burkholder-Davis-Gundy Inequality: for p > 0, there exists a constant cp with

E
[

sup
0≤t≤T

∥

∥

∥

∫ t

0
B(s) dW (s)

∥

∥

∥

p]

≤ cpE
∣

∣

∣

∫ T

0
‖B(s)‖2

L0

2
(Rd,H) ds

∣

∣

∣

p/2
.

2.3 Regularity of solutions

Denote by Lp(Ω,H) the set of H valued random variables on the sample space Ω with finite
pth moment, E‖X‖p <∞.

Theorem 2.3 (dependence on initial condition) Let Hypothesis 1.1(i) hold. There ex-
ists a unique mild solution X(t;x) of (2.1). For fixed t > 0, the solution map from x ∈ H
to X(t;x) ∈ Lp(Ω,H) is four times continuously Frechet differentiable, with derivatives de-
noted by Xx(t, x), Xxx(t;x), Xxxx(t;x), Xxxxx(t;x). The derivatives are mild solutions of the
corresponding variational equation (obtained by differentiating (2.1) with respect to the initial
condition). For T > 0, the solution X(t;x) of (2.1) obeys for 0 ≤ t ≤ T

E‖X(t;x)‖p ≤K(1 + ‖x‖p)

(E‖X(t;x) −X(t;x′)‖2)1/2 ≤K‖x− x′‖
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and for hi ∈ H for i = 1, 2, 3, 4,

(E‖Xx(t;x)h1‖p)1/p ≤K‖h1‖,
(E‖Xxx(t;x)(h1, h2)‖p))1/p ≤K‖h1‖ · ‖h2‖,

(E‖Xxxx(t;x)(h1, h2, h3)‖p)1/p ≤K‖h1‖ · ‖h2‖ · ‖h3‖,
(E‖Xxxxx(t;x)(h1, h2, h3, h4)‖p)1/p ≤K‖h1‖ · ‖h2‖ · ‖h3‖ · ‖h4‖.

Proof See Da Prato–Zabczyk [7] Theorem 9.4, which gives existence of the first and second
derivatives and shows for example that Xx(t;x)h is a mild solution of the variational equation

Xx(t;x)h = S(t)h+

∫ t

0
S(t−s)Fx(X(s;x))Xx(s;x)h ds+

∫ t

0
S(t−s)Bx(X(s;x))Xx(s;x)h dW (s).

Thus, using the Burkholder-Davis-Gundy inequality and Hypothesis 1.1(i),

E‖Xx(t;x)h‖p ≤K‖h‖p +K

∫ t

0
E‖Xx(s;x)h‖p ds+KE

[

∫ t

0
‖Xx(s;x)h‖2 ds

]p/2

(using (
∫ t
0 φ(s) ds)p ≤ K(

∫ t
0 φ(s)p ds) for p > 1)

≤K‖h‖p +K

∫ t

0
E‖Xx(s;x)h‖p ds+KE

[

∫ t

0
(‖Xx(s;x)h‖p) ds

]

.

This leads to the quoted bounds on E‖Xx(t;x)h‖p. The higher order derivatives are under-
stood by writing the appropriate variational equation. The bound is uniform in x because of
the boundedness of the derivatives of f and b in Hypothesis 1.1. QED

Corollary 2.4 Let Hypothesis 1.1(i) hold. Consider φ ∈ Gp for p ≥ 4 and let v(t, x) :=
Eφ(πSX(t;x)). The function v and its derivatives vx, vxx, vxxx, and vxxxx are uniformly
continuous in x on bounded subsets of R+ ×H. For 0 ≤ t ≤ T ,

|v(t, x)| ≤ K(1 + ‖x‖p)

and

‖vx‖L(H,R), ‖vxx‖L(H×H,R), ‖vxxx‖L(H×H×H,R), ‖vxxxx‖L(H×H×H×H,R)

are all bounded by K(1 + ‖x‖p−1) on the interval [0, T ].

Proof Clearly, |v(t, x)| ≤ KE(1 + ‖X(t;x)‖p) ≤ K(1 + ‖x‖p) from Theorem 2.3. Similar
estimates follow for vx, vxx, vxxx, and vxxxx given the estimates on Xx, Xxx, Xxxx and Xxxxx

in Theorem 2.3 and the hypothesis on φ.
To argue for uniform continuity, consider data x, x′ with ‖x‖, ‖x′‖ ≤M and choose ε > 0.

Choose R sufficiently large that P(‖X(t;x)‖ ≤ R, 0 ≤ t ≤ T ) ≥ 1 − ε. Then, as φ is locally
Lipschitz, for a constant KR,

|v(t, x) − v(t, x′)| ≤εK(1 + ‖x‖p) +KR(E‖X(t;x) −X(t;x′)‖2)1/2

≤εK(1 +Mp) +KR(1 +M)‖x− x′‖.

This can be made arbitrarily small by choosing ε small (viz. R large) and then ‖x−x ′‖ small,
and implies uniform continuity of v(t, x) in x on bounded subsets of R+ ×H. The argument
extends to vx, vxx, vxxx, and vxxxx given the continuity in the initial condition of Xx, Xxx,
etc. described in Theorem 2.3. QED
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2.4 Yosida approximations

The operator A is unbounded due to the differential operator in the second component. We
will frequently approximate A by its Yosida approximant Ak (defined shortly). By use of the
Yosida approximant, we find strong solutions of an SDE that converge to the mild solutions
of (2.1) and that yield to the Itô formula. For a review of these ideas, see [20, 7].

The Yosida approximant Ak := kAR(k : A) = k2R(k : A) − kI, where the resolvent
R(k : A) := (kI −A)−1. A simple calculation shows that

AkX =

(

0 Ck(kI − d
dt )

−1

0 d
dtk(kI − d

dt )
−1

)

X = A

(

0
PkX

)

, (2.2)

where PkX = h, the solution on [−τ, 0] of

kXD = kh− d

dt
h, for h(0) = πSX. (2.3)

Define Sk(t) = eAkt and S(t) = eAt, the semigroups generated by Ak and A. The following
properties hold.

Proposition 2.5 (Yosida approximants) (i) Akh→ Ah for h ∈ D(A) as k → ∞.

(ii) Sk(t)h → S(t)h as k → ∞ for h ∈ H and Sk(t) is bounded in L(H,H) uniformly in k.
Moreover, ‖Sk(t)h− S`(t)h‖ ≤ K‖Akh−A`h‖ for k, ` = 1, 2, . . . and 0 ≤ t ≤ T .

(iii) πSAk is an operator from H to Rd uniformly bounded in k. Further πSAkh converges
in Rd for every h ∈ H to a limit, which we denote by πSAh. In practice, for φ ∈ Gp,
this means φ′(πSX)πSAh is well defined as the limit of φ′(πSX)πSAkh.

(iv) For X ∈ H, ‖PkX‖L2([−τ,0],Rd) ≤ K‖X‖ and for X ∈ H ′,

‖PkX‖L∞([−τ,0],Rd) ≤ max{‖πSX‖Rd , ‖πDX‖L∞([−τ,0],Rd)}.

Proof The first two properties are standard results from C0 semigroups (see §1.5 of [20]).
The third property follows from property (i), if ‖πSAk‖L(H,Rd) is bounded. But πSAk = CPk,
a product of two operators, both of which are bounded for k large.

To understand the fourth property, one can show that

Pk

(

0
cos(2πks/τ)

)

=
2πknτ

4π2n2 + k2τ2
sin(2πns/τ) +

k2τ2

4π2n2 + k2τ2
cos(2πns/τ),

Pk

(

0
sin(2πks/τ)

)

=
k2τ2

4π2n2 + k2τ2
sin(2πns/τ) +

−2πknτ

4π2n2 + k2τ2
cos(2πns/τ).

Note that the coefficients of the Fourier modes are less than one in magnitude. Hence by
expanding XD in Fourier series we can show that ‖Pk(XS , XD)‖L2([−τ,0],Rd) ≤ K‖(XS , XD)‖.
For the L∞([−τ, 0],Rd) bound,

(PkX)(t) =

∫ 0

t
kek(t−s)(πDX)(s) ds+ ektπSX, −τ ≤ t ≤ 0,

so that
∥

∥

∥
(PkX)(t)

∥

∥

∥

Rd

≤‖πDX‖L∞([−τ,0],Rd)

∫ 0

t
kek(t−s) ds+ ekt‖πSX‖Rd ,

=‖πDX‖L∞([−τ,0],Rd)(1 − ekt) + ekt‖πSX‖Rd ,

which completes the proof as 0 ≤ ekt ≤ 1. QED
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Lemma 2.6 Let Hypothesis 1.1(i) hold. Consider the mild solution X(t;x) of

dX =
[

AX + F (X)
]

dt+B(X) dW, X(0) = x,

and the strong solution Xk(t;x) of

dXk =
[

AkX
k + F (Xk)

]

dt+B(Xk) dW, Xk(0) = x. (2.4)

Then,
sup

0≤t≤T
E‖X(t;x) −Xk(t;x)‖p → 0, as k → ∞.

Proof Proposition 7.5 [7]. QED

3 The numerical method on H

To perform the convergence analysis, we find an interpolant of the numerical solution Yn in H
that can be represented as a stochastic integral. We carefully write down the regularisation
steps to define the interpolant rigorously. The main difficulty as before is working with the
unbounded part of A.

We will denote the interpolant by X∆t(t;x) and will also consider a smoothed process
X∆t,k(t;x). Introduce W̄ (t), an Rd valued Wiener process with covariance I such that the
increments generate ∆βn in (1.2). Thus, W̄ ((n + 1)∆t) − W̄ (n∆t) = ∆βn. Consider n∆t ≤
t < (n+1)∆t and we remind the reader of the notation ŝ = ∆tbs/∆tc, defined in Section 1.1.
Then, define X∆t = (X∆t

S , X∆t
D )T by

X∆t
S (t;x) :=Yn +

[

−1
∑

i=−bτ/∆tc

aiYn+i + f(Yn)
]

(t− t̂) + b(Yn) (W̄ (t) − W̄ (t̂))

=X∆t
S (t̂;x) +

[

−1
∑

i=−bτ/∆tc

aiXD( t̂;x)(i∆t) + f(XS( t̂;x))
]

(t− t̂)

+ b(XS( t̂;x)) (W̄ (t) − W̄ (t̂ ))

X∆t
D (t;x)(s) :=

{

XS(t+ s;x), t+ s ≥ 0,

YD(t+ s), −τ ≤ t+ s < 0,
− τ ≤ s ≤ 0.

(3.1)

It is necessary to develop this equation as a well defined H valued stochastic integral.
To simplify calculations later on, we smooth out the delay term by using Pk as in (2.2) and
writing for a continuous function XD : [−τ, 0] → Rd

C∆tXD :=
−1
∑

i=−bτ/∆tc

aiXD(i∆t).

The expression C∆tPk is a well defined operator from H to Rd. Introduce

Ã :=

(

0 0

0 d
dt

)

(3.2)
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and denote the Yosida approximation of Ã by Ãk (in fact, Ãk = Ã[0,Pk]T ). Let X∆t,k(t;x)
solve

dX∆t,k(t;x) =
[

ÃkX
∆t,k(t;x) +

(

C∆t

0

)

PkX
∆t,k( t̂;x) + F (X∆t,k( t̂ ;x))

]

dt

+B(X∆t,k( t̂ ;x)) dW̄ (t), X∆t,k(0;x) = x.

(3.3)

All terms on the right hand side are evaluated at t̂, except the first which is evaluated at t.
This equation admits a unique strong solution, which converges to X∆t as described in the
following lemma. Notice that the effects of smoothing and applying the numerical method to
A is that the integral term acts on at the frozen function X(t̂;x) rather than X(t;x); the time
derivative is smoothed as in (2.2).

Lemma 3.1 Let Hypothesis 1.1(i) hold. The solution X∆t,k(t;x) of (3.3) converges to the
interpolant X∆t(t;x) defined in (3.1) in the sense that

sup
0≤t≤T

E‖X∆t(t;x) −X∆t,k(t;x)‖2 → 0, as k → ∞.

Proof Note that X∆t(t;x) is the mild solution of

dX∆t(t;x) =
[

ÃX∆t(t;x) +

(

C∆t

0

)

X∆t( t̂;x) + F (X∆t( t̂ ;x))
]

dt (3.4)

+B(X∆t( t̂ ;x)) dW̄ (t), X∆t(0;x) = x. (3.5)

Now the result can be established as in Lemma 2.6. QED

For X ∈ H, let

‖X‖∆t =
(

‖X‖2 +
−1
∑

i=−bτ/∆tc

∆t‖PkX(i∆t)‖2
Rd

)1/2
. (3.6)

Lemma 3.2 Let Hypothesis 1.1(i)-(ii) hold. Suppose that x = (YS , YD), where YD is a con-
tinuous function on [−τ, 0]. Then, for each T > 0 and 2 ≤ p < ∞, there exists K > 0 such
that

(

E‖X∆t,k(t;x)‖p
∆t

)1/p
≤ K

(

1 + ‖YS‖ + sup
−τ≤s≤0

‖YD(s)‖Rd

)

, 0 ≤ t ≤ T. (3.7)

Further for any Q ∈ L(H ′,Rd) (recall the definition of H ′ in (1.4))

(

E‖QX∆t,k(t;x)‖p
Rd

)1/p
≤ K(1 + ‖YS‖ + sup

−τ≤s≤0
‖YD(s)‖Rd), 0 ≤ t ≤ T

and

E‖X∆t,k(∆t;x) −EX∆t,k(∆t;x)‖2 ≤K∆t (3.8)

E‖Q(X∆t,k(∆t;x) −EX∆t,k(∆t;x))‖2
Rd ≤K‖Q‖L(H′,Rd)∆t. (3.9)

For 0 ≤ t ≤ T and x, x′ ∈ H and p ≥ 2 and Q = C∆tPk,

E
[

‖Q(X∆t,k(t;x) −X∆t,k(t;x′))‖2
Rd+‖πS(X∆t,k(t;x) −X∆t,k(t;x′))‖2

Rd

]

≤K
[

‖QS̃k(t)(x − x′)‖2
Rd + ‖πS(x− x′)‖2

]

.
(3.10)
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Proof Recall that, Ãk = k2R(k : Ã)−kI, where R(k : Ã) = (kI − Ã)−1, or otherwise written

R(k : Ã)X =

(

k−1XS

k−1PkX

)

.

Hence, by Proposition 2.5(iv), ‖R(k : Ã)‖L(H′,H′) ≤ 1/k. Let S̃k denote the semigroup on H

generated by Ã. Because S̃k(t) = e−ktek
2R(k : Ã)t, we conclude that ‖S̃k(t)‖L(H′ ,H′) ≤ K for

0 ≤ t ≤ T .
Let Ψ0(t) = S̃k(t)x and note that ‖Ψ0(t)‖H′ ≤ K‖x‖H′ . Let

Ψ1(s) = S̃k(s)

(

C∆t

0

)

PkX
∆t,k(ŝ;x)

and note that under Hypothesis 1.1(ii)

‖Ψ1(s)‖H′ ≤K‖C∆tPkX
∆t,k(ŝ;x)‖Rd ≤ K‖X∆t,k(ŝ;x)‖∆t.

Let Ψ2(s) = S̃k(s)F (X∆t,k(ŝ;x)) and note that

‖Ψ2(s)‖H′ ≤K(1 + ‖πSX
∆t,k(ŝ;x)‖Rd).

For h ∈ Rd, let Ψ3(s)h = S̃k(s)B(X∆t,k(ŝ;x))h and note that

‖Ψ3(s)h‖H′ ≤ K‖h‖Rd .

For −τ ≤ r ≤ 0, let Ψ3(s, r)h = πD(Ψ3(s)h)(r) so that ‖Ψ3(s, r)h‖Rd ≤ K‖h‖Rd .
Because ‖X‖∆t ≤ K‖X‖H′ , we have ‖Ψ0(t)‖∆t ≤ K‖x‖H′ and

‖Ψ1(s)‖∆t ≤ K‖X∆t,k(ŝ;x)‖∆t, ‖Ψ2(s)‖∆t ≤ K(1 + ‖X∆t,k(ŝ;x)‖∆t),

‖Ψ3(s)‖L0

2
(Rd,H) ≤ K, ‖Ψ3(s, r)‖L0

2
(Rd,Rd) ≤ K.

Note that

E
∥

∥

∥

∫ t

0
Ψ3(t− s) dW̄ (s)

∥

∥

∥

p

∆t

≤KE
∥

∥

∥

∫ t

0
Ψ3(t− s) dW̄ (s)

∥

∥

∥

p
+KE

[

−1
∑

i=−bτ/∆tc

∆t
∥

∥

∥

∫ t

0
Ψ3(t− s, i∆t) dW̄ (s)

∥

∥

∥

2

Rd

]p/2

≤KE
[

∫ t

0
‖Ψ3(t− s)‖2

L0

2
(Rd,H) ds

]p/2
+KE

−1
∑

i=−bτ/∆tc

∆t
∥

∥

∥

∫ t

0
Ψ3(t− s, i∆t) dW̄ (s)

∥

∥

∥

p

Rd

(using that (
∑−1

i=−bτ/∆tc ∆tφi)
q ≤ K∆t

∑−1
i=−bτ/∆tc φ

q
i for q ≥ 1)

≤KE
[

∫ t

0
‖Ψ3(t− s)‖2

L0

2
(Rd,H) ds

]p/2
+K

−1
∑

i=−bτ/∆tc

∆tE
[

∫ t

0
‖Ψ3(t− s, i∆t)‖2

L0

2
(Rd,Rd) ds

]p/2
,

which is bounded uniformly in ∆t and k. From the Variation of Constants formula for (3.3),

X∆t,k(t;x) =Ψ0(s) +

∫ t

0
Ψ1(t− s) ds+

∫ t

0
Ψ2(t− s) ds+

∫ t

0
Ψ3(t− s) dW̄ (s),

10



we gain

(

E‖X∆t,k(t;x)‖p
∆t

)1/p
≤K‖x‖H′ +

∫ t

0
(E‖X∆t,k(ŝ;x)‖p

∆t)
1/p ds

+

∫ t

0
K(1 + (E‖X∆t,k(ŝ;x)‖p

∆t)
1/p) ds+K,

and the Gronwall inequality implies that

(

E‖X∆t,k(t;x)‖p
∆t

)1/p
≤ K(‖x‖H′ + 1), 0 ≤ t ≤ T. (3.11)

This certainly implies (3.7).
As Q ∈ L(H ′,Rd), we see ‖QΨ0(s)‖Rd ≤ K‖x‖H′ , ‖QΨ1(s)‖Rd ≤ K‖X∆t,k(ŝ;x)‖∆t,

‖QΨ2(s)‖Rd ≤ K(1 + ‖πSX
∆t,k(ŝ;x)‖Rd), and

‖QΨ3(s)‖L0

2
(Rd,Rd) ≤ K.

We conclude using (3.11) that

(

E
∥

∥

∥
QX∆t,k(t;x)

∥

∥

∥

p

Rd

)1/p
≤ K‖x‖H′ +K

∫ t

0
(E‖X∆t,k(t;x)‖p

∆t)
1/p ds

+

∫ t

0
K(1 + (E‖πSX

∆t,k(ŝ;x)‖p
Rd

)1/p) ds+
(

E
[

∫ t

0
‖QΨ3(t− s, r)‖2

L0

2
(Rd,Rd) ds

]p/2)1/p

≤K(‖x‖H′ + 1).

We now deal with the final two statements. For 0 ≤ t ≤ ∆t, X∆t,k(t̂;x) = x and

X∆t,k(t;x) = S̃k(t)x+

∫ t

0
S̃k(t−s)

(

C∆t

0

)

Pkx ds+

∫ ∆t

0
S̃k(t−s)F (x) ds+

∫ ∆t

0
S̃k(t−s)B(x) dW̄ (s).

Consequently,

X∆t,k(∆t;x) −EX∆t,k(∆t;x) =

∫ ∆t

0
S̃k(∆t− s)B(x) dW̄ (s).

With Lemma 2.2, this implies (3.8)–(3.9). Second, note that

X∆t,k(t;x) −X∆t,k(t;x′)

=S̃k(t)(x − x′) +

∫ 0

t
S̃k(t− s)

(

C∆t

0

)

Pk

[

X∆t,k(ŝ;x) −X∆t,k(ŝ;x′)
]

ds

+

∫ ∆t

0
S̃k(t− s)

[

F (X∆t,k(ŝ;x)) − F (X∆t,k(ŝ;x′))
]

ds

+

∫ ∆t

0
S̃k(t− s)

[

B(X∆t,k(ŝ;x) −B(X∆t,k(ŝ;x′))
]

dW̄ (s).

Let Q = C∆tPk; then

E‖Q(X∆t,k(t;x) −X∆t,k(t;x′))‖2
Rd ≤ K‖QS̃k(t)(x− x′)‖2

Rd

+K

∫ t

0
E‖Q(X∆t,k(ŝ;x) −X∆t,k(ŝ;x′))‖2

Rd ds+K

∫ t

0
E‖πS(X∆t,k(ŝ;x) −X∆t,k(ŝ;x′))‖2

Rd ds

+K

∫ t

0
E‖πS(X∆t,k(ŝ;x) −X∆t,k(ŝ;x′))‖2

Rd ds.
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Hence, using ‖X‖# = (‖QX‖2
Rd + ‖πSX‖2

Rd)
1/2 and πSS̃k(t)x = πSx,

E‖X∆t,k(t;x) −X∆t,k(t;x′)‖2
# ≤K‖S̃k(t)(x− x′)‖2

# +K

∫ t

0
E‖X∆t,k(ŝ;x) −X∆t,k(ŝ;x′)‖2

# ds

+K

∫ t

0
E‖X∆t,k(ŝ;x) −X∆t,k(ŝ;x′)‖2

# ds.

From which,

E‖X∆t,k(t;x) −X∆t,k(t;x′)‖2
# ≤K‖S̃k(t)(x− x′)‖2

#, 0 ≤ t ≤ T.

This completes the proof. QED

We next state properties of the interpolant and explain two lemmas that will be used to
understand the approximation of integrals with respect to the measure a. Let 〈·, ·〉 denote the
standard Euclidean inner product and o(k−1) denote a real valued function that tends to zero
as k → ∞.

Lemma 3.3 Let Hypothesis 1.1(i)-(ii) hold. For 0 ≤ t ≤ T ,

E‖πS(X∆t,k(t;x) −X∆t,k(t̂;x))‖2
Rd ≤K(1 + ‖x‖)2∆t. (3.12)

For −bτ/∆tc ≤ i 6= j ≤ −1 and t̂+ min(i, j)∆t ≥ 0,

I := E
[〈

∫ (i+1)∆t

i∆t
a(dr)πS(X∆t,k( t̂+ r;x) −X∆t,k(t̂+ r̂;x)),

∫ (j+1)∆t

j∆t
a(dr)πS(X∆t,k(t̂+ r;x) −X∆t,k(t̂+ r̂;x))

〉]

≤ K(1 + ‖x‖)2∆t4.
(3.13)

Proof The process X∆t,k solves (3.3) and hence satisfies

X∆t,k(t;x) −X∆t,k(t̂;x) = (S̃k(t− t̂) − I)X∆t,k(t̂;x)

+

∫ t

t̂
S̃k(t− s)

(

C∆t

0

)

PkX
∆t,k(t̂;x) ds+

∫ t

t̂
S̃k(t− s)F (X∆t,k(t̂;x)) ds

+

∫ t

t̂
S̃k(t− s)B(X∆t,k(t̂;x)) dW̄ (s),

where S̃k is the semigroup with infinitesimal generator Ãk. As πSS̃k(t)x = πSx and ‖S̃k‖L(H,H)

is bounded and |t− t̂| ≤ ∆t, this implies (3.12).
Consider integers j < i with t+j∆t ≥ 0. Let Ft be the σ-algebra generated by {W̄ (s) : s ≤

t}. Because X∆t,k(t̂+ j∆t+ r) for 0 ≤ r ≤ ∆t is F t̂+i∆t measurable,

I =E
[〈

∫ ∆t

0
a(dr)πSE

[

(X∆t,k(t̂+ i∆t+ r;x) −X∆t,k(t̂+ i∆t;x))
∣

∣

∣
Ft̂+i∆t

]

,

∫ ∆t

0
a(dr)πS(X∆t,k(t̂+ j∆t+ r;x) −X∆t,k(t̂+ j∆t;x))

〉]

.

Now, almost surely,

E
[

X∆t,k(t̂+ i∆t+ r;x) −X∆t,k(t̂+ i∆t;x)
∣

∣

∣
F t̂+i∆t

]

=(S̃k(r) − I)X∆t,k(t̂+ i∆t;x) +

∫ r

0
S̃k(r − s)

(

C∆t

0

)

PkX
∆t,k(t̂+ i∆t;x) ds

+

∫ r

0
S̃k(r − s)F (X∆t,k(t̂+ i∆t;x)) ds.
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Let X∆t,k(t2, t1;x) be the solution to (3.3) at time t2 with initial condition x at time t1 for
0 ≤ t1 ≤ t2 ≤ T . Then, X∆t,k(t2, 0;x) = X∆t,k(t2, t1;X

∆t,k(t1, 0;x)) expresses the Markov
property. Let

Γt2,t1(x) :=

∫ ∆t

0
a(dr)πSE

[

X∆t,k(t̂2 + r, t̂1;x) −X∆t,k(t̂2, t̂1;x)
∣

∣

∣
Ft̂2

]

=

∫ ∆t

0
a(dr)

∫ r

0
C∆tPkX

∆t,k(t̂2, t̂1;x) ds+

∫ ∆t

0
a(dr)

∫ r

0
πSF (X∆t,k(t̂2, t̂1;x)) ds.

Let Q = C∆tPk. From (3.10) and Hypothesis 1.1(ii), for 0 ≤ t2 − t1 ≤ T ,

‖Γt2 ,t1(x) − Γt2,t1(x
′)‖ ≤K

[

‖Q(X∆t,k(t̂2, t̂1;x) −X∆t,k(t̂2, t̂1;x
′))‖Rd ∆t2

+ ‖πS(X∆t,k(t̂2, t̂1;x) −X∆t,k(t̂2, t̂1;x
′))‖Rd ∆t2

]

≤K‖X∆t,k(t̂2, t̂1;x) −X∆t,k(t̂2, t̂1;x
′)‖#∆t2

where ‖ · ‖# = (‖Q · ‖2
Rd + ‖πS · ‖2

Rd)
1/2. Now, from (3.10),

(E‖Γt2 ,t1(x) − Γt2,t1(x
′)‖2)1/2 ≤ K

[

‖QS̃k(t)(x− x′)‖2
Rd + ‖πS(x− x′)‖2

Rd

]1/2
∆t2.

Consider the case ∆t = t1 ≤ t2 and let y = X∆t,k(∆t, x) and y′ = Ey. Then from (3.8)–(3.9)
with Q = C∆tPkS̃k(t),

(E‖Γt2,t1(y) − Γt2,t1(y
′)‖2)1/2 ≤ K∆t5/2. (3.14)

We have, dropping two integrals which are easier to bound, |I| ≤ |Ihard|+K(1+ ‖x‖)2∆t4
and

Ihard :=E
[〈

Γt+i∆t,0(x),

∫ ∆t

0
a(dr)

∫ t̂+j∆t+r

t̂+j∆t
πSB(X∆t,k(t̂+ j∆t;x)) dW̄ (s)

〉]

.

We consider the case t̂+ j∆t = 0; the general case is similar.

Ihard = E
[〈

Γ(i−j)∆t,0(x),

∫ ∆t

0
a(dr)

∫ r

0
πSB(x) dW̄ (s)

〉]

=E
[〈

Γ(i−j)∆t,∆t(X
∆t,k(∆t;x)) − Γ(i−j)∆t,∆t(EX

∆t,k(∆t;x)),

∫ ∆t

0
a(dr)

∫ r

0
πSB(x) dW̄ (s)

〉]

,

because for all h ∈ H the average E〈Γ(i−j)∆t,∆t(h),
∫ ∆t
0 a(dr)

∫ r
0 πSB(x) dW̄ (s)〉 = 0 by the

independent increment property. Now, from (3.14),

|Ihard| ≤
(

E
∥

∥

∥
Γ(i−j)∆t,∆t(X

∆t,k(∆t;x)) − Γ(i−j)∆t,∆t(EX
∆t,k(∆t;x))

∥

∥

∥

2

Rd

×E
∥

∥

∥

∫ ∆t

0
a(dr)

∫ r

0
πSB(x) dW̄ (s)

∥

∥

∥

2

Rd

)1/2

≤K
(

∆t5∆t3
)1/2

= K∆t4.

QED
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Lemma 3.4 Let Hypothesis 1.1(i)–(ii) hold. Suppose that the delay function of the initial data
is Lipschitz, ‖YD‖Lip = ‖πDx‖Lip <∞. Let α(s, r;x) := PkX

∆t,k(s;x)(r) −PkX
∆t,k(s;x)(r̂).

For 0 ≤ t ≤ T and −τ ≤ s ≤ 0 and for −bτ/∆tc ≤ i 6= j ≤ −1,

E
∥

∥

∥

∫ (i+1)∆t

i∆t
a(dr)α(ŝ, r;x)

∥

∥

∥

2

Rd

≤K(1 + ‖x‖ + ‖πDx‖Lip)
2∆t3 + o(k−1). (3.15)

E
[〈

∫ (i+1)∆t

i∆t
a(dr)α(t̂, r;x),

∫ (j+1)∆t

j∆t
a(dr)α(t̂, r;x)

〉]

≤ K(1 + ‖x‖ + ‖πDx‖Lip)
2∆t4 + o(k−1).

(3.16)

Proof To prove the lemma, we interpret the inequalities in Lemma 3.3 for the delay func-
tion πDX

∆t,k(t, x)(·). For small time, the delay function carries information from the initial
condition as in (3.1). The Lipschitz assumptions on the initial delay function can be used to
derive the required estimates for small time. For larger time, the state variable translates into
the delay function as described by X∆t

S (t+ s;x) = X∆t
D (t;x)(s) for −τ ≤ s < 0 and t+ s ≥ 0.

If this statement held for the smoothed process X∆t,k and Pk = πD, the lemma would follow
immediately from Lemma 3.3 using

E
∥

∥

∥

∫ (i+1)∆t

i∆t
a(dr)α(ŝ, r;x)

∥

∥

∥

2

Rd

≤E
[

∫ (i+1)∆t

i∆t
ā(r)‖α(ŝ, r;x)‖Rd dr

]2

≤E
[

sup
i∆t≤r<(i+1)∆t

‖α(ŝ, r;x)‖Rd

∫ (i+1)∆t

i∆t
ā(r) dr

]2

≤K(1 + ‖x‖ + ‖πDx‖Lip)
2∆t3 + o(k−1)

for (3.15).
By applying Proposition 2.5, Pk → πD in L(H,L2([−τ, 0],Rd)). Now, from Lemma 3.1,

we have PkX
∆t,k(t;x)(r) → X∆t

S (t+r;x). The left hand side of both inequalities in the lemma
are continuous with respect to perturbation in L2([−τ, 0],Rd) of α(ŝ, ·;x). Consequently, the
introduction of the Pk term for πD introduces a small error that goes to zero as k goes to
infinity, which accounts for the o(k−1) term in the final result. QED

3.1 Derivatives in the Ãkh direction

We provide two lemmas giving boundedness of spatial derivatives of X k(t;x) in the direction
Ãkh, which are uniform in k and improve on the bounds given in Theorem 2.3.

Lemma 3.5 Let Hypothesis 1.1(i)–(ii) hold and consider p ≥ 2. For h, x ∈ H, the following
holds

(E sup
0≤t≤T

‖πSX
k
x(t;x)Ãkh‖p

Rd
)1/p ≤K‖h‖. (3.17)

Proof Let ξk,h(t;x) := Xk
x(t;x)h, where h ∈ H. This is a strong solution of

dξk,h(t;x) =
[

Akξ
k,h(t;x) + Fx(Xk(t;x))ξk,h(t;x)

]

dt+Bx(Xk(t;x))ξk,h(t;x) dW (t),

14



with initial condition ξk,h(0) = h. We are interested in ξk,Ãkh(t;x), in this case the Variation
of Constants formula states

ξk,Ãkh(t;x) =Sk(t)Ãkh+

∫ t

0
Sk(t− s)Fx(Xk(s;x))ξk,Ãkh(s;x) ds

+

∫ t

0
Sk(t− s)Bx(Xk(s;x))ξk,Ãkh(s;x) dW (s).

We first look at Sk(t)Ãkh. As Ak and Sk commute and as, under Hypothesis 1.1(ii), the
first component of Ak is bounded uniformly from H to Rd, we see

‖πSSk(t)Akh‖Rd = ‖πSAkSk(t)h‖Rd ≤ K‖Sk(t)h‖,

for a constant K independent of k. Further,

‖πSSk(t)Ãkh‖Rd ≤ ‖πSSk(t)Akh‖Rd + ‖πSSk(t)(Ãk −Ak)h‖Rd .

Because Ãk −Ak is bounded in L(H,H) uniformly in k, we conclude that ‖πSSk(t)Ãkh‖Rd ≤
K‖Sk(t)‖L(H,H)‖h‖. Together with the Burkholder-Davis-Gundy inequality, this gives

(E sup
0≤s≤t

‖πSξ
k,Ãkh(s;x)‖p

Rd)
1/p

≤ sup
0≤s≤t

K‖Sk(s)‖L(H,H)‖h‖ +
(

E
[

∫ t′

0
‖πSSk(t

′ − s)Fx(Xk(s;x))ξk,Ãkh(s;x)‖Rd ds
]p)1/p

+K
(

E
[

∫ t′

0
‖Sk(t

′ − s)Bx(Xk(s;x))ξk,Ãkh(s;x)‖2
HS ds

]p/2)1/p

(using the boundedness of Fx, Bx, Sk(t), and p ≥ 2)

≤K‖h‖ +
(

E
[

sup
0≤t′≤t

∫ t′

0
‖πSξ

k,Ãkh(s;x)‖Rd ds
]p)1/p

+K
(

E sup
0≤t′≤t

∫ t′

0
‖πSξ

k,Ãkh(s;x)‖p
Rd

ds
)1/p

.

Thus,

(E sup
0≤s≤t

‖πSξ
k,Ãkh(s;x)‖p

Rd
)1/p ≤ K‖h‖ +K

∫ t

0

(

E sup
0≤s′≤s

‖πSξ
k,Ãkh(s′;x)‖p

Rd

)1/p
ds.

By applying the Gronwall Lemma, for each T > 0, there exists K > 0 such that for each k

(

E sup
0≤t≤T

‖πSξ
k,Ãkh(t;x)‖p

Rd

)1/p
≤ K‖h‖, 0 ≤ t ≤ T. (3.18)

With this inequality in hand, the result (3.17) follows.
QED

Lemma 3.6 Let Hypothesis 1.1(i)–(ii) hold and consider p ≥ 2. For h, g ∈ H and 0 ≤ t ≤ T ,

(E‖πSX
k
xx(t;x)(h, Ãkg)‖p

Rd
)1/p ≤ K‖g‖ ‖h‖.
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Proof Denote Xk
x(t;x)h by ξk,h(t;x) and Xk

xx(t;x)(h, g) by ηk,(h,g)(t;x). Then ηk,(h,Ãkg)

satisfies the following variational equation:

dηk,(h,Ãkg)(t;x)

=
[

Akη
k,(h,Ãkg)(t;x) + Fxx(Xk(t;x))(ξk,h(t;x), ξk,Ãkg(t;x)) + Fx(Xk(t;x))ηk,(h,Ãkg)(t;x)

]

dt

+ (Bxx(Xk(t;x))(ξk,h(t;x), ξk,Ãkg(t;x)) +Bx(X
k(t;x))ηk,(h,Ãkg)(t;x)) dW (t),

where ηk,(h,Ãkg)(0) = 0. Again the Variation of Constants formula yields a bound on ηk,(h,Ãkg):

ηk,(h,Ãkg)(t;x)

=

∫ t

0
Sk(t− s)

(

Fxx(Xk(s;x))(ξk,h(s;x), ξk,Ãkg(s;x)) + Fx(Xk(s;x))ηk,(h,Ãkg)(s;x)
)

ds

+

∫ t

0
Sk(t− s)

(

Bxx(Xk(s;x))(ξk,h(s;x), ξk,Ãkg(s;x)) +Bx(Xk(s;x))ηk,(h,Ãkg)(s;x)
)

dW (s).

Thus, arguing as in the previous lemma,

(

E
[

sup
0≤s≤t

‖πSη
k,(h,Ãkg)(s;x)‖p

Rd

])1/p
≤K

(

E
[

∫ t

0
‖πSξ

k,h(s;x)‖p
Rd

‖πSξ
k,Ãkg(s;x)‖p

Rd
ds

])1/p

+K
(

E
[

∫ t

0
‖πSη

k,(h,Ãkg)(s;x)‖p
Rd

ds
])1/p

+K
(

E
[

∫ t

0
‖πSξ

k,h(s;x)‖p
Rd

‖πSξ
k,Ãkg(s;x)‖p

Rd
ds

])1/p

+K
(

E
[

∫ t

0
‖πSη

k,(h,Ãkg)(s;x)‖p
Rd

ds
])1/p

.

Hence,

(

E sup
0≤s≤t

‖πSη
k,(h,Ãkg)(s;x)‖p

Rd

)1/p
≤K

∫ t

0

(

E sup
0≤s′≤t

‖πSξ
k,h(s′;x)‖p

Rd ‖πSξ
k,Ãkg(s′;x)‖p

Rd

)1/p
ds

+K

∫ t

0

(

E sup
0≤s′≤s

‖πSη
k,(h,Ãkg)(s′;x)‖p

Rd

)1/p
ds.

Now, by Cauchy-Schwarz,

(

E sup
0≤s′≤t

‖πSξ
k,h(s′;x)‖p

Rd ‖πSξ
k,Ãkg(s′;x)‖p

Rd

)1/p
≤

(

E sup
0≤s′≤t

‖πSξ
k,h(s′;x)‖2p

Rd

)1/2p

×
(

E sup
0≤s′≤t

‖πSξ
k,Ãkg(s′;x)‖2p

Rd

)1/2p
.

Apply the estimate on ξk,h in Lemma 2.3 and on ξk,Ãkh in Lemma 3.5, to derive for
0 ≤ t ≤ T

(E sup
0≤s≤t

‖πSη
k,(h,Ãkg)(t;x)‖p

Rd
)1/p ≤K ‖h‖ ‖g‖ +K

∫ t

0

(

E sup
0≤s′≤s

‖πSη
k,(h,g)(s′;x)‖p

Rd
ds

)1/p
.

Apply Gronwall’s inequality to complete the proof. QED
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4 Corollaries of the Itô calculus

We formulate and prove two corollaries of the Itô calculus, concerning the time regularity for
certain functionals of solutions of a class of stochastic evolution equations.

The first corollary is set up for an abstract equation, but we have in mind Z(t;x) =
(Xk(t;x), Xk

x (t;x)h), which obeys

dZ1 =
[

AZ1 + F (Z1)
]

dt+B(Z1) dW (t), Z1(0) = x

dZ2 =
[

AZ2 + Fx(Z1)Z2

]

dt+Bx(Z1)Z2 dW (t), Z2(0) = h.
(4.1)

A similar equation can be written down for the second derivative X k
xx(t;x)(h, g) involving four

equations. Let Hm denote the product space H ×H × · · · ×H (m times).

Corollary 4.1 Consider locally Lipschitz functions F̄i : Hm → H and B̄i : Hm → L0
2 for

i = 1, . . . ,m such that F̄i(Z1, . . . , Zm) and B̄i(Z1, . . . , Zm) are independent of πDZi. Suppose
that there exists a unique strong solution Zk(t;x) in Hm of

dZk
i =

[

AkZ
k
i + F̄i(Z

k)
]

dt+ B̄i(Z
k) dW, Zk

i (0) = zk
i (x). (4.2)

Suppose further that for some p ≥ 2 and for each 0 ≤ t ≤ T and i = 1, . . . ,m, we have

E|Zk
i (t;x)|p? ≤K(1 + ‖x‖p) (4.3)

and
E‖F̄i(Z

k(t;x))‖2 ≤ K(1 + ‖x‖)2, E‖B̄i(Z
k(t;x))‖2

HS ≤ K. (4.4)

Consider continuously differentiable G : Hm → R such that G(Z1, . . . , Zm) is independent of
πDZi and the first derivatives Gi and second derivatives Gij obey

|Gi(Z)| ≤ K
(

1 +

m
∑

`=1

‖πSZ`‖p−1
Rd

)

, |Gij(Z)| ≤ K
(

1 +

m
∑

`=1

‖πSZ`‖p−2
Rd

)

. (4.5)

Let wk(t, x) := EG(Zk(t;x)). Then, wk
t is uniformly continuously differentiable in time on

bounded subsets of R+ ×H and, for a constant K independent of k,

|wk
t (t, x)| ≤ K(1 + ‖x‖p), 0 ≤ t ≤ T.

Proof Let wk(t, x) := EG(Zk(t;x)). Because G is continuously differentiable and Z k(t;x) is
a strong solution, the Itô formula implies that

wk(t, x) − wk(0, x) =E
m

∑

i=1

∫ t

0
Gi(Z

k(s;x))(AkZ
k
i (s;x) + F̄i(Z

k(s;x))) ds

+ 1
2

m
∑

i,j=1

E

∫ t

0
TrGij(Z

k(s;x))B̄i(Z
k(s;x))B̄j(Z

k(s;x))∗ ds.

We attain limits from the dominated convergence theorem because, under (4.3) and (4.5),

E
∣

∣

∣

∫ t

0
Gi(Z

k(s;x))(AkZ
k
i (s;x) + F̄i(Z

k(s;x))) ds
∣

∣

∣
≤K t (1 + ‖x‖p)

1
2E

∣

∣

∣

∫ t

0
TrGij(Z

k(s))B̄i(Z
k(s;x))B̄j(Z

k(s;x))∗ ds
∣

∣

∣
≤K t (1 + ‖x‖p−2).
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Thus,

wk
t (t, x) =E

m
∑

i=1

Gi(Z
k(t;x))(AkZ

k
i (t;x) + F̄i(Z

k(t;x)))

+ 1
2

m
∑

i,j=1

TrGij(Z
k(t;x))B̄i(Z

k(t;x))B̄j(Z
k(t;x))∗.

(4.6)

With this expression, it is easy to derive the required growth bound on wk
t (t, x) in ‖x‖ uniform

in k → ∞.
To establish uniform continuity of wk

t (t, x) with respect to time, consider

Sk(t)x− x = Ak

∫ t

0
Sk(s)x ds, x ∈ H.

Hence,

‖Sk(t)x− x‖ ≤K‖Ak‖L(H,H)‖x‖, 0 ≤ t ≤ T.

It follows easily that Z is uniformly continuous in time in the following sense: for R, T > 0,
there exists Kk with

E‖Zi(t;x) − Zi(t
′;x)‖2 ≤ Kk|t− t′|, 0 ≤ t, t′ ≤ T, ‖x‖ ≤ R. (4.7)

We use here and below Kk to denote a generic constant that is independent of the initial data
x but may diverge in the limit k → ∞. In the above inequality, the constant Kk diverges
because it depends on ‖Ak‖.

Fix R the radius of a ball in H and consider x ∈ H with ‖x‖ ≤ R. For any δ > 0,
there exists L large by (4.3) and the Chebyshev inequality so that if O := {‖πSZi(t;x)‖Rd ≤
L, 0 ≤ t ≤ T, i = 1, . . . ,m}, the probability P(O) ≥ 1 − δ. Consider the expectations defining
wk

t in (4.6) split as a sum over O and Oc. On the set O, we have that Gi, Gij , F̄ , B̄ are
all Lipschitz and the expectations in the difference wk

t (t, x) − wk
t (t′, x) may be bounded by

Kk|t − t′|1/2 using (4.7). By using (4.3), the expectations on the set Oc are bounded by
δ|wk

t (t, x)| ≤ δK(1 + Rp). Thus to show uniform continuity on the bounded subset of H of
radius R, pick L large enough that δK(1+Rp) < ε/2 (a bound on the integral over Oc). Then,
for |t− t′| ≤ ε2/2K2

k and 0 ≤ t, t′ ≤ T ,

|wk
t (t, x) − wk

t (t′, x)| ≤ ε/2 + ε/2, if ‖x‖ ≤ R.

This gives uniform continuity of wk
t on bounded subsets of R+ ×H. QED

The following lemma gives an order ∆t estimate on a functional of the numerical interpolant
X∆t,k.

Lemma 4.2 Let Hypothesis 1.1(i)–(ii) hold. Consider the strong solution X∆t,k(t;x) of (3.3)
under the condition that F is globally Lipschitz, that B is bounded, and that the initial data
x = (YS , YD) where YD is continuous. Consider a function w : R+ ×H → R with one time
and two spatial derivatives that are uniformly continuous on bounded subsets of R+ ×H. Fix
p ≥ 2. Further suppose, for 0 ≤ t ≤ T and for a constant K, that

|wt(t, x)| ≤K(1 + ‖x‖p), (4.8)

‖wx(t, x)‖L(H,R), ‖wxx(t, x)‖L(H×H,R) ≤K(1 + ‖x‖p−1), (4.9)
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and that, for h ∈ D(A) and some Q ∈ L(H ′,Rd),

|wx(t, x)Ãkh| ≤ K(1 + ‖x‖p−1)
[

‖h‖ + ‖Qh‖Rd

]

, (4.10)

Then,
∣

∣

∣
E

[

w(s,X∆t,k(s;x)) − w(ŝ, X∆t,k(ŝ;x))
]∣

∣

∣
≤ Kx∆t, 0 ≤ s ≤ T.

where the constant Kx is independent of k but depends on x as follows

Kx ≤ K(1 + ‖x‖p) +K(1 + ‖x‖p−1) sup
−τ≤s≤0

‖YD(s)‖Rd .

Proof This is Lemma 14.1.6 of [14]. Apply the Itô formula to the strong solution X∆t,k:

E
[

w(s,X∆t,k(s;x)) − w(ŝ, X∆t,k(ŝ;x))
]

=E
[

∫ s

ŝ

{

wt(s
′, X∆t,k(s′;x))

+ wx(s′, X∆t,k(s′;x))
(

ÃkX
∆t,k(ŝ;x) +

(

C∆tPkX
∆t,k(ŝ;x)
0

)

+ F (X∆t,k(ŝ;x))
)

+ 1
2 Trwxx(s′, X∆t,k(s′;x))B(X∆t,k(ŝ;x))B(X∆t,k(ŝ;x))∗

}

ds′
]

.

Now using (4.8)–(4.10) with the boundedness of B and the Lipschitz property of F , we have
∣

∣

∣
E

[

w(s,X∆t,k(s;x)) − w(ŝ, X∆t,k(ŝ;x))
]
∣

∣

∣

≤E
[

∫ s

ŝ
K(1 + ‖X∆t,k(s′;x)‖p) +K(1 + ‖X∆t,k(s′;x)‖p−1)

[

‖X∆t,k(ŝ;x)‖ + ‖QX∆t,k(ŝ;x)‖Rd

]

+K(1 + ‖X∆t,k(s′;x)‖p−1)(1 + ‖X∆t,k(ŝ;x)‖) ds′
]

≤
∫ s

ŝ
K(1 + E‖X∆t,k(s′;x)‖p) +K

[

E‖X∆t,k(ŝ;x)‖ + E‖QX∆t,k(ŝ;x)‖Rd

]

+K(E‖X∆t,k(s′;x)‖2(p−1))1/2
[

(E‖X∆t,k(ŝ;x)‖2)1/2 + (E‖QX∆t,k(ŝ;x)‖2
Rd)

1/2
]

+KE
[

(1 + ‖X∆t,k(s′;x)‖p−1)2
]1/2

E
[

(1 + ‖X∆t,k(ŝ;x)‖)2
]1/2

ds′.

By using Lemma 3.2, we have
∣

∣

∣
E

[

w(s,X∆t,k(s;x)) − w(ŝ, X∆t,k(ŝ;x))
]
∣

∣

∣

≤K
∫ s

ŝ
(1 + ‖x‖p) + (1 + ‖x‖p−1)(1 + ‖x‖ + sup

−τ≤s≤0
‖YD(s)‖Rd) ds′.

As |s− ŝ| ≤ ∆t, this completes the proof. QED

5 The Kolmogorov equation

We introduce the Kolmogorov equation for the regularised delay equation (2.4). The back-
ground theory is developed in Da Prato and Zabczyk [7], where further references are also
given. The Kolmogorov equation is described in Theorem 5.1. We also discuss the regularity
of the terms in the equation so that the Itô formula applies to v(t, x) = Eφ(πSX(t;x)) and to
the terms in the Kolmogorov equation.

19



Theorem 5.1 Let φ ∈ Gp for p ≥ 4 and set vk(t, x) := Eφ(πSX
k(t;x)). Then vk satisfies for

x ∈ H and 0 ≤ t ≤ T

vk
t (t, x) = 1

2 Tr
[

vk
xx(t, x)B(x)B(x)∗

]

+ vk
x(t, x)Akx+ vk

x(t, x)F (x).

The functional vk has two spatial derivatives and one time derivative, which are uniformly
continuously differentiable on bounded subsets of R+ ×H.

Proof Because Ak is a bounded operator, the Kolmogorov equation is a special case of that
derived in [7]. The spatial regularity is described in Corollary 2.4. To establish time regularity,
apply Corollary 4.1 with Zk(t;x) = Xk(t;x). QED

Proposition 5.2 Let Hypothesis 1.1(i). Let vk(t, x) := Eφ(πSX
k(t;x)) where φ ∈ Gp, p ≥ 4.

(i) Consider a function ψ : H → H that is globally Lipschitz with two uniformly continuous
derivatives. Let wk(t, x) := vk

x(t, x)ψ(x). Then wk
t , w

k
x, and wk

xx exist and are uniformly
continuous on bounded subsets of R+ ×H such that, for a constant K independent of
k, ‖wk

t (t, x)‖ is bounded by K(1 + ‖x‖p) and

‖wk
x(t, x)‖L(H,R), ‖wk

xx(t, x)‖L(H×H,R) ≤ K(1 + ‖x‖p−1).

(ii) Consider a function Ψ: H → L(Rd,H) that is bounded with two uniformly continuous
derivatives. Let wk(t, x) := Tr vxx(t, x)Ψ(x)Ψ∗(x). Then wk

t , w
k
x, and wk

xx exist and are
uniformly continuous on bounded subsets of R+ ×H. For a constant K independent of
k, ‖wk

t (t, x)‖ is bounded by K(1 + ‖x‖p) and

‖wk
x(t, x)‖L(H,R), ‖wk

xx(t, x)‖L(H×H,R) ≤ K(1 + ‖x‖p−1).

Proof The differentiability and bounds on the derivatives in x follow from the hypothesis on
ψ,Ψ together with Corollary 2.4. To understand the time derivative, argue as follows:

(i) First note that vk
x(t, x) = Eφ′(πSX

k(t;x))πSX
k
x(t;x). Thus,

vk
x(t, x)ψ(x) = Eφ′(πSX

k(t;x))πSX
k
x(t;x)ψ(x) = EG(Zk

1 (t;x), Zk
2 (t;x)),

where G(Z1, Z2) = φ′(πSZ1)πSZ2, Z
k
1 (t;x) = Xk(t;x), and Zk

2 (t;x) = Xk
x(t;x)ψ(x).

Note that (Zk
1 , Z

k
2 ) satisfies (4.1) with h = ψ(x). The growth condition (4.3) is given by

Theorem 2.3. The drift and diffusion functions in (4.1) are locally Lipschitz and obey (4.4)
by using the boundedness of the derivatives given in Hypothesis 1.1(i). The regularity of the
test functional G is easily derived from the conditions on φ. Hence, Corollary 4.1 applies in
this situation. Thus, we conclude that vk

x(t, x)ψ(x) is uniformly continuously differentiable in
time on bounded subsets of R+ ×H.

(ii) Similarly, for h1, h2 ∈ H,

vk
xx(t, x)(h1, h2) =Eφ′′(πSX

k(t;x))(πSX
k
x(t;x)h1, πSX

k
x (t;x)h2)

+ Eφ′(πSX
k(t;x))πSX

k
xx(t;x)(h1, h2).

Thus,

vk
xx(t, x)(Ψ(x)h1,Ψ(x)h2) =Eφ′′(πSX

k(t;x))(πSX
k
x(t;x)Ψ(x)h1, πSX

k
x(t;x)Ψ(x)h2)

+ Eφ′(πSX
k(t;x))πSX

k
xx(t;x)(Ψ(x)h1,Ψ(x)h2).
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Let ei be an orthonormal basis for Rd, so that

Tr vk
xx(t, x)Ψ(x)Ψ∗(x) =E

[

d
∑

i=1

φ′′(πSX
k(t;x))(πSX

k
x(t;x)Ψ(x)ei, πSX

k
x(t;x)Ψ(x)ei)

+ φ′(πSX
k(t;x))πSX

k
xx(t)(Ψ(x)ei,Ψ(x)ei)

]

=

d
∑

i=1

EG(Zk
1 (t;x), Zk

2,i(t;x), Z
k
3,i(t;x))

for G(Z1, Z2, Z3) := φ′′(πSZ1)(πSZ2, πSZ2) + φ′(πSZ1)πSZ3 and Zk
1 (t;x) := Xk(t;x) and

Zk
2,i(t;x) := Xk

x(t;x)Ψ(x)ei, Zk
3,i(t;x) := Xk

xx(t;x)(Ψ(x)ei,Ψ(x)ei).

Again, it can be shown that the processes Zk
1 , Z

k
2,i, Z

k
3,i and the test function G satisfy the

hypothesis of Corollary 4.1 (for each i, case m = 3). The sum is finite, which means regularity
of EG(Z1, Z2,i, Z3,i) for each i gives the same regularity for Tr vk

xx(t, x)Ψ(x)Ψ∗(x). QED

6 Proof of Theorem 1.2

The following argument gives weak convergence of order ∆t of the forward Euler method. The
argument follows that of Kloeden-Platen [14], Theorem 14.1.5.

Proof (of Theorem 1.2) Consider vk(t, x) := E(φ(πSX
k(T − t;x)) and

Lkv(t, x) := vt(t, x) + 1
2 Tr

[

vxx(t, x)B(x)B(x)∗
]

+ vx(t, x)Akx+ vx(t, x)F (x).

As in Theorem 5.1, we have that Lkvk(t, x) = 0 and that vk satisfies the hypothesis of Itô’s
formula. Apply the Itô formula to the approximations X∆t,k defined in (3.3):

vk(T,X∆t,k(T ;x)) − vk(0, X∆t,k(0;x))

=E
[

∫ T

0

{

vk
x(s,X∆t,k(s;x))

(

ÃkX
∆t,k(s;x) +

(

C∆t

0

)

PkX
∆t,k(ŝ;x)

)

+ vk
x(s,X∆t,k(s;x))F (X∆t,k(ŝ;x))

+ 1
2 Tr

[

vk
xx(s,X

∆t,k(s;x))B(X∆t,k(ŝ;x))B(X∆t,k(ŝ;x))∗
]

+ vk
t (s,X∆t,k(s;x))

}

ds
]

(subtracting off 0 = Lkvk(s,X∆t,k(s;x)))

=E
[

∫ T

0

1
2 Tr

[

vk
xx(s,X

∆t,k(s;x))B(X∆t,k(ŝ;x))B(X∆t,k(ŝ;x))∗
]

− 1
2 Tr

[

vk
xx(s,X

∆t,k(s;x))B(X∆t,k(s;x))B(X∆t,k(s;x))∗
]

+ vk
x(s,X∆t,k(s;x))

(

[C∆tPkX
∆t,k(ŝ;x), 0]T + F (X∆t,k(ŝ;x))

)

− vk
x(s,X∆t,k(s;x))

(

[CPkX
∆t,k(s;x), 0]T + F (X∆t,k(s;x))

)

ds
]

.
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Define for h1, h2 ∈ H

wk
1(t, h1;h2) :=vk

x(t, h1)[CPkh2, 0]
T + vk

x(t, h1)F (h2)

wk
2(t, h1;h2) :=vk

x(t, h1)[CPkh1, 0]
T + vk

x(t, h1)F (h1)

wk
3(t, h1;h2) :=1

2 Tr(vk
xx(t, h1)B(h1)B(h1)

∗)

wk
4(t, h1;h2) :=1

2 Tr(vk
xx(t, h1)B(h2)B(h2)

∗).

Clearly,

Eφ(πSX
∆t,k(T ;x)) −Eφ(πSX

k(T ;x)) = vk(T,X∆t,k(T ;x)) − vk(0, X∆t,k(0;x))

and hence
∣

∣

∣
Eφ(πSX

∆t,k(T ;x)) −Eφ(πSX
k(T ;x))

∣

∣

∣

≤
∫ T

0

4
∑

i=1

|Ewk
i (s,X∆t,k(s;x);X∆t,k(ŝ;x)) −Ewk

i (s,X∆t,k(ŝ;x);X∆t,k(ŝ;x))| ds

+
∣

∣

∣

∫ T

0
Evx(s,X∆t,k(s;x))

(

(C − C∆t)PkX
∆t,k(ŝ;x)

0

)

ds
∣

∣

∣
.

(6.1)

By definition of C and C∆t, the modulus of the integrand of the last term is

≤(E‖vx(s;X∆t,k(s;x))‖2
L(H,R))

1/2

×
(

E
∥

∥

∥

∫ 0

−τ
a(dr)

(

PkX
∆t,k(ŝ;x)(r) −PkX

∆t,k(ŝ;x)(r̂)
)
∥

∥

∥

2

Rd

)1/2
.

The term E‖vx(s;X∆t,k(s;x))‖2
L(H,R) is bounded by K(1 + ‖x‖p−1) by using Corollary 2.4

and (3.7). Let α(s, r;x) := PkX
∆t,k(s;x)(r) − PkX

∆t,k(s;x)(r̂). Using this notation and
assuming that τ is an integer multiple of ∆t,

E
[∥

∥

∥

∫ 0

−τ
a(dr)α(ŝ, r;x)

∥

∥

∥

2

Rd

]

=
−1
∑

i=−bτ/∆tc

−1
∑

j=−bτ/∆tc

E
[〈

∫ (i+1)∆t

i∆t
a(dr)α(ŝ, r;x),

∫ (j+1)∆t

j∆t
a(dr)α(ŝ, r;x)

〉]

.

By the second part of Lemma 3.4, the cross terms (i 6= j) obey

E
[〈

∫ (i+1)∆t

i∆t
a(dr)α(ŝ, r;x),

∫ (j+1)∆t

j∆t
a(dr)α(ŝ, r;x)

〉]

≤K(1 + ‖x‖ + ‖πDx‖Lip)
2∆t4 + o(k−1)

and by the first part of Lemma 3.4 and Hypothesis 1.1(ii) the diagonal terms

E
∥

∥

∥

∫ (i+1)∆t

i∆t
a(dr)α(ŝ, r;x)

∥

∥

∥

2

Rd

≤K(1 + ‖x‖ + ‖πDx‖Lip)2∆t3 + o(k−1).

Consequently,

E
[
∥

∥

∥

∫ 0

−τ
a(dr)α(ŝ, r;x)

∥

∥

∥

2]

≤K(1 + ‖x‖ + ‖πDx‖Lip)
2
(

bτ/∆tc∆t3 + (bτ/∆tc)2∆t4
)

+ o(k−1)

≤K(1 + ‖x‖ + ‖πDx‖Lip)
2∆t2 + o(k−1).
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Thus the final term in (6.1) is bounded by K(1 + ‖x‖p + ‖x‖p−1‖πDx‖Lip)∆t+ o(k−1).
We wish to apply Lemma 4.2 to show that each pair of terms in wi in (6.1) is order ∆t.

Because s > ŝ, it is sufficient to apply the lemma to wk(t, x) = wk
i (t, x;h2). We now verify

the hypothesis of Lemma 4.2.
We require that wk, wk

t , wk
x, wk

xx exist, be uniformly continuous on bounded subsets of
R+ ×H, and obey the growth bounds (4.8)–(4.9) specified in Lemma 4.2. In each case, this
is a consequence of Proposition 5.2. Part (i) covers wk

1 and wk
2 , while part (ii) covers wk

3 and
wk

4 . To establish the hypothesis of this proposition, we use the Lipschitz continuity of F , the
boundedness of B, and the continuity of [CPkh, 0] implied by Hypothesis 1.1(ii).

We further require that for some operator Q ∈ L(H ′,Rd) that

|wk
x(t, x)Ãkh| ≤ K(1 + ‖x‖p−1)

[

‖h‖ + ‖Qh‖Rd

]

, for h ∈ D(A).

We look at wk(t, x) = wk
2(t, x;x) in detail; the others are similar. Note

wk
x(t, x)Ãkh =vk

x(t, x)[CPkÃkh, 0]
T + vk

x(t, x)Fx(x)Ãkh

+ vk
xx(t, x)([CPkx, 0]

T , Ãkh) + vk
xx(t, x)(F (x), Ãkh).

(6.2)

Now, by Corollary 2.4,

|vk
x(t, x)[CPkÃkh, 0]

T | ≤ K(1 + ‖x‖p−1)‖CPkÃkh‖Rd .

Let Ψ(t) :=
∫ t
0 (PkÃkh)(s) ds; then CΨ′ = CPkÃkh. Using Hypothesis 1.1(ii),

CPkÃkh =

∫ 0

−τ
a(s)Ψ′(s) ds =

[

a(s)Ψ(s)
]0

−τ
−

∫ 0

−τ
a′(s)Ψ(s) ds.

Note that Ψ = PkX
∗, where (πDX

∗)(t) =
∫ t
0 (πDÃkh)(s) ds = (Pkh)(t) − (Pkh)(0) and

πSX
∗ = 0. Thus, using smoothness of the density a(s) and ‖Pkh‖L2([−τ,0],Rd) ≤ ‖h‖,

‖CPkÃkh‖Rd ≤K
∥

∥

∥
Ψ(−τ) − Ψ(0)

∥

∥

∥

Rd

+K‖Ψ‖L2([−τ,0],Rd)

≤K‖Qh‖Rd +K‖h‖,

where Qh = (PkX
∗)(−τ). Notice that

‖Qh‖Rd ≤ K‖X∗‖H′ ≤ K‖h‖H′

and hence Q ∈ L(H ′,Rd). We conclude that the first term in (6.2) is bounded by K(1 +
‖x‖p−1) (‖h‖ + ‖Qh‖Rd).

The second term vanishes because Fx(x)Ãk = 0, using the fact that F is independent of
the delay and the definition of Ãk (see (3.2)).

For the third and fourth terms, write out the terms in vk
xx using the notations ξk,g =

πSX
k
x(t;x)g and ηk,(g,h) = πSX

k
xx(t;x)(g, h) and Q = [CPkx, 0]

T :

vk
xx(t, x)(Q, Ãkh) =Eφ′′(πSX

k(t;x))(ξk,Q, ξk,Ãkh) + Eφ′(πSX
k(t;x))ηk,(Q,Ãkh)

vk
xx(t, x)(F (x), Ãkh) =Eφ′′(πSX

k(t;x))(ξk,F (x), ξk,Ãkh) + Eφ′(πSX
k(t;x))ηk,(F (x),Ãkh).

Theorem 2.3 gives bounds on ξk,h, Lemma 3.5 on ξk,Ãkh and Lemma 3.6 on ηk,(h,Ãkg). There
results a bound on both terms of the form (1 + ‖x‖p−1)‖h‖. We conclude that the required
bound on |wx(t, x)Ãkh| holds.
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Thus, Lemma 4.2 applies to the terms in the summation in (6.1), giving bounds of the
form

K
[

1 + ‖x‖p + (1 + ‖x‖p−1) sup
−τ≤s≤0

‖YD(s)‖Rd

]

∆t.

In our case,
sup

−τ≤s≤0
‖YD(s)‖Rd ≤ ‖x‖ + τ‖YD‖Lip.

Taking this observation with the bound for the last term in (6.1), we have a bound on the
weak error in the Yosida approximation of the form Kx∆t + o(k−1), where Kx is described
in (1.3).

We have shown that

|Eφ(πSX
∆t,k(T ;x)) −Eφ(πSX

k(T ;x))| ≤ Kx∆t+ o(k−1). (6.3)

Note that Xk(t;x) → X(t;x) (resp., X∆t,k(t;x) → X(t;x)) almost surely by Lemma 2.6
(resp., 3.1) and that E|φ(πSX

k(t;x))| can be bounded uniformly in k by using the properties
of φ with Theorem 2.3 (resp., Lemma 3.2). Consequently, dominated convergence applies and
Eφ(πSX

k(t;x)) → Eφ(πSX(t;x)) (resp., Eφ(πSX
∆t,k(t;x)) → Eφ(πSX

∆t(t;x))) as k → ∞.
Hence, taking the limit in (6.3) as k → ∞ completes the proof.

QED

7 Numerical Experiments

We present results of numerical experiments corresponding to examples of (1.1). Our objective
is to illustrate the convergence of the weak Euler method with respect to decreasing step-size
by computing first moments, that is we compute Eφ(Y (T )) for φ(Y ) = Y where Y (T ) denotes
a solution of (1.1).

Example 7.1 Consider

dY (t) =
[

∫ t

t−1
Y (s) ds+ exp(−1)Y (t)

]

dt+ (σ1 + σ2 Y (t))dW (t), (7.1)

for t ∈ [0, T ] and Y (s) = exp(s) for −1 ≤ s ≤ 0 and W (t) is a one dimensional Wiener process.

Let m(t) := EY (t) for t ≥ 0. Then, m(t) satisfies the delay-integro-differential equation

m′(t) =

∫ t

t−1
m(s) ds+ exp(−1)m(t), (7.2)

with initial condition
m(s) = exp(s) for − 1 ≤ s ≤ 0. (7.3)

Equation (7.2) subject to (7.3) has the solution m(t) = exp(t).
With a step-size ∆t = T/N and k = τ/∆t = 1/∆t, the weak Euler method takes the form

Y ∆t
n+1 = Y ∆t

n + ∆t
(

exp(−1)Y ∆t
n + ∆t

n−1
∑

j=n−k

Y ∆t
j

)

+ (σ1 + σ2Y
∆t
n ) ∆Wn (7.4)

for n = 0, . . . , N − 1 and with Y ∆t
j = exp(j∆t) for j ≤ 0. The ∆Wn denote IID N (0,∆t)

distributed random variables approximating W ((n + 1)∆t) − W (n∆t). We have used the
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composite explicit Euler rule to approximate the integral. To illustrate the convergence of
the method, we have simulated 30,000 sample trajectories with each of the step-sizes ∆t =
2−3, 2−4, .., 2−8 and computed the error

µ∆t(T ) = |EY ∆t
N −EY (T )| (7.5)

at the final time T = 2. In Figure 1, we have plotted log2(µ
∆t(T )) versus log2(∆t).
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Figure 1: log2(µ
∆t(T )) versus log2(∆t) for (7.1) with left: σ1 = 0.2, σ2 = 0, right: σ1 =

0.0, σ2 = 0.2 .

A well-known feature of weak approximation methods is that the Gaussian random num-
bers ∆βn can be replaced by simpler random variables ∆β̂n (see [14]). We have performed
numerical experiments with two-point distributed random variables with

P(∆Ŵn = ±
√

∆t) = 1
2 .

In Figure 2 we present corresponding error-plots.
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Figure 2: log2(µ
∆t(T )) versus log2(∆t) for (7.1) with left: σ1 = 0.2, σ2 = 0, right: σ1 =

0.0, σ2 = 0.2 .

For illustration purposes we also include some trajectories in the following figure, the thick
line corresponds to m(t) = exp(t).

The computations follow the exposition in [3].
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Figure 3: Trajectories of (7.1) with σ1 = 0.2, σ2 = 0.
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Figure 4: Trajectories of (7.1) with σ1 = 0.0, σ2 = 0.2.
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