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Abstract

We discuss the numerical solution of a number of stochastic perturbations of the Barkley model of excitable
media, widely used in the study of spiral waves. Two numerical methods are considered for solving this equation,
one based on Barkley’s original formulation and one based on spectral methods. It is found to be beneficial to
modify the nonlinearity describing the reaction kinetics. An efficient method of approximating the Wiener process
is presented. The effectiveness of the methods depends on the stochastic PDE under consideration.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, much work has been devoted to understanding waves in excitable media, motivated
by a wealth of natural systems that exhibit spiral waves[25]. One example is the heart, where waves
of electrical activity propagate in cardiac muscle to stimulate the heartbeat; irregularities in the cardiac
rhythm, such as fibrillations, are related to the self-sustaining activity of spiral and scroll waves[16].
Therearemanyother examples, suchas theBelousov–Zhabotinsky chemical reaction[26] and thepatterns
of slime mould amoebae[23]. Two basic features are common to models of excitable media: spatially
localised excitationwhich (i) diffuses in space and (ii) falls into a recovery state after a short time. Cellular
automata and PDEs can be used to model excitable media.
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Cellular automata models include theWiener–Rosenbluth[24] and Greenberg–Hastings models[13].
The Greenberg–Hastings model is posed on a lattice with stateXij at site(i, j) ∈ Z2 that takes discrete
values corresponding to one quiescent,E excitable, andR refractory states. A quiescent state becomes
excitedwhen a nearest neighbours is excited.An excited state cycles through theEexcited states, and then
becomes refractory. A refractory site cycles through theR refractory states and then becomes quiescent.
Cellular automata are simple to solve computationally, but most models fail to model curvature effects
that are important in spiral wave motion.
PDE models overcome some of the drawbacks of cellular automata. Two well-known PDEs are the

FitzHugh–Nagumo[9] and the Barkley[2] equations. We focus on the simpler Barkley PDE, which is
for excitation fieldu and inhibitor fieldv:

�u
�t

=D∇2u+ f (u, v)/�,

�v
�t

= g(u, v), (1.1)

for diffusion coefficientD, where initial conditions are specified foru and v at t = 0 and boundary
conditions are applied on the domain[0, L]2 (usually, periodic or Neumann conditions). The parameter
�>0 is small and controls the separation of the excitation and inhibitor time scales. The reaction terms

f (u, v)= u(1− u)

(
u− v + b

a

)
, g(u, v)= u− v (1.2)

for a, b >0. Typical values area = 0.75 andb = 0.01. The reaction kinetics are understood from the
(u, v) phase plane of the corresponding ODE

�u
�t

= f (u, v)/�,
�v
�t

= g(u, v). (1.3)

SeeFig. 1. The key feature is the heteroclinic orbit leading tou= v = 0. A small perturbation from the
stable zero state causes a large excursion, which models the excited (u ≈ 1) and refractory (v ≈ 1) cycle.
Adding in spatial diffusion to this reaction kinetics yields spiral wave dynamics.
A number of stochastic perturbations of thesemodels have been introduced in the literature. The earliest

is perhaps[20], where the recovery time is distributed randomly over space in a cellular automata.
Another type of stochastic perturbation is[5], where spatial inhomogeneities in diffusion are added
to FitzHugh–Nagumo and Greenberg–Hastings to model diseased heart tissue. In this paper, we are
concerned with the effect of forcing the PDE (1.1) by a space-timeWiener process.
The simplest such perturbation is adding noise to theu field as

du= [D∇2u+ f (u, v)/�]dt + �dW(t, x),
dv = g(u, v)dt, (1.4)

where� ∈ R is the noise intensity andW(t, x) is a Wiener process to be specified (see (2.1) below).
Discrete versions of this type of model, where additive noise stimulates the level of excitation is found in
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Fig. 1. Illustration of dynamics ofdudt =f (u, v)/�, dvdt =g(u, v) for a=0.75, b=0.01, �=0.02. The arrows illustrate the vector
field.The four nullclines are plotted. For initial condition(0.2,0.1), the systembecomesexcited and takesa largeexcursion before
approaching the stable fixed point 0. For initial condition(1.2,1.1), the solution diverges to infinity along the lineu= (v+b)/a.

[4,15]. Nucleation of waves results in this model from the background noise in the excitation levelu, even
from the homogeneous stateu= v = 0. This is demonstrated inFigs. 2and3. Fig. 2shows an example
where a target wave is nucleated andFig. 3 an example where a spiral is nucleated. This behaviour is
related to the size of� and is analysed further in[22].
A number of authors have suggested stochastic PDEs that exhibit stochastic resonance. For example,

the following is considered by[1] for a functionh(u):

du= [D∇2u+ f (u, v)/�]dt + h(u)dW(t, x),

dv = g(u, v)dt (1.5)

(where the equation is interpreted in the Itô sense) and the following by[6]:

du= [D∇2u+ f (u, v)/�]dt,
dv = g(u, v)dt + �dW(t, x). (1.6)

Space time stochastic resonance (STSR) has been observed in these systems. This means that waves
are sustained even for parameters values that do not support such behaviour in the deterministic model.
In particular, a sharp peak in the level of coherence (as measured by mutual information) of the spatial
structures is observed as the parameters describing the noise is varied (typically, intensities and correlation
lengths).
Another variation is the following Itô stochastic PDE[12]:

du= [D∇2u+ f (u, v)/�]dt,
dv = g(u, v)dt + u�dW(t, x). (1.7)
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Fig. 2. Nucleation of a target pattern for (1.4) witha = 0.75, b = 0.01, � = 0.03, L= 80 and noise has correlation length� = 2
and intensity� = 0.09. The left hand plot shows a realisation of theu field (black indicatesu ≈ 1, whiteu ≈ 0).

In this case, one of the rate parameters in thev equation is replaced by a random process. This model
exhibits break down of spiral patterns, by “backfiring”, spirals throw of new wave forms which interact
and break up existing patterns. This process is shown inFig. 4.
Thenumerical solutionofmodels (1.4) and (1.7) are considered in this paper.The remainder of thepaper

is organised as follows. In Section 2, the stochastic PDEs are precisely formulated. The reaction terms are
first considered. Due to an inherent instability in the reaction terms, easily stimulated in the presence of
noise, we modify the reaction terms. TheWiener process is rigorously defined and motivated.We choose
a noise white in time, but with exponentially decaying correlations in space. In Section 3, we formulate
the numerical methods and discuss their performance. The two methods we consider are (i) Barkley’s
method[2], which is a finite difference method with a very efficient and effective approximation to the
Laplacian, and (ii) a spectral approximation. In both cases, we provide an efficient method for simulating
the noise, exploiting the rapid decay properties of the Fourier coefficients of the noise. In Section 4 and
5, we present some comments on the numerical solution of (1.7) and conclusions.

2. Formulation of a stochastic PDE

We formulate precisely the stochastic PDEs that we study. The first task is to consider the choice
of reaction term. Solutions of ODE (1.3) diverge to infinity for certain initial data, for example in
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Fig. 3. Nucleation of a spiral pattern, with parameters as inFig. 2except for� = 0.05 and� = 0.125.

Fig. 1 the initial data(u0, v0) = (1.2,1.1) diverges along the lineu = (v + b)/a. This behaviour is
not apparent to those interested in deterministic models, as initial data is chosen within an invari-
ant region: if 0�u0(x), v0(x)�1, then 0�u(t, x), v(t, x)�1 for t�0. When forcing the model by
an additive noise as in (1.4), the variableu can be kicked into any part of phase space, which may
stimulate the divergent behaviour. This appears when simulating equation (1.4) numerically. This
divergence can be seen inFig. 5, where the‖ u‖∞ is plotted against time. The numerically sim-
ulated divergence may be a numerical artifact, as the diffusion may control the growth inu when
the model is more accurately discretised. However, numerical experiments with the method
described in[8] indicate that the divergence is problematic even with an implicit update rule
for (1.4).
The reaction terms can be modified such that the basic mechanisms of the excitable media are not

changed, but the model remains well-behaved—the excitation levelu remains close to the interval
[0,1]—when some noise is added. One way of doing this is

f̃ (u, v)=
{
f (u, v), u�1,

−|f (u, v)|, u�1,
g̃(u, v)=

{
g(u, v), v�0,

|g(u, v)|, v <0.
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Fig. 4. Plots of theufield in a numerical simulation of (1.7)with parameter valuesa=0.75, b=0.01,D=1, L=80, �=0.03, �=1,
and correlation length� = 2. The resolution is 2562 grid points with time step 0.02. Time runs from top left to bottom right and
figures are separated by 8 time units.

The(u, v) phase plane for the corresponding ODE system is shown inFig. 6. In this case, the trajectories
are bounded for all initial data, while the heteroclinic orbit is unchanged. This modified nonlinearity is
used in the numerical experiments presented in this paper.
Wewill nowbepreciseabout thechoiceofWienerprocessW(t, x).Wewish theprocess tobeconvenient

for numerical simulation and in particular it will be convenient to generate the process using Fast Fourier
Transforms. To develop this, weworkwith homogeneousNeumann boundary conditions, though periodic
conditions would suit equally well. Let

W(t, x)=
∑
i,j �0

�ijeij (x)�ij (t), (2.1)

where�ij are coefficients to be determined,�ij are independent standard Brownianmotions, andeij (x)=
ei(x)ej (y) wherex = (x, y)T,

e0(x)=√1/L, ej (x)=√2/L cos(�jx/L), j = 1,2,3, . . .
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Fig. 5. Plot of‖ u‖∞ against time for numerical solutions of (1.4) with zero initial data. The left hand plot uses an explicit method
to simulate the reaction kinetics, the right hand uses implicit. Parameter values:a=0.75, b=0.01,D=1, L=40, �=0.02, �=0.1,
and correlation length�=2, with 1282 grid points and time step 0.01. Theu=1 plateau indicates wave formation that is coherent
for a period of time, but which becomes unstable.

are the orthonormal eigenfunctions of the Laplacian on[0, L] with Neumann boundary conditions. We
derive coefficients�ij , so that

EW(t, x)W(t ′, x′) ≈ C(x − x′)min{t, t ′}, C(x)= 1

4�2
exp

(
−�

4

‖ x‖2
�2

)
,

where‖ · ‖ is the standard Euclidean norm,E denotes expectation,� is the spatial correlation length, and
C(x) describes the spatial correlation. When‖ x − x′ ‖ is much bigger than�, C(x − x′) ≈ 0 and there
is no correlation betweenW(t, x) andW(t, x′). For‖ x′ − x ‖ < �, there is correlation, indicating that
random fluctuations effect the excitable media over a particular length scale. As� → 0,Capproaches a�
function and the noiseW(t, x) approaches space-time white noise, with no correlation between distinct
points.As the correlation length tends to zero, the amount of energy in theWiener process goes to infinity
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Fig. 6. Illustration of dynamics ofdudt = f̃ (u, v)/�, dvdt = g̃(u, v) for a=0.75, b=0.01, �=0.02. The arrows illustrate the vector
field. For initial condition(0.2,0.1), the system performs an excursion as before. For initial condition(1.2,1.1), the solution
converge to the fixed point(1,1).

and this makes it hard or impossible to develop an existence and uniqueness theory for the stochastic
PDE with� = 0; see[7]. To perturb the equations and keep the existing deterministic dynamics in mind,
we will choose small but nonzero� and� (�>L and�>1).
We now compute�ij in expansion (2.1). For any Brownian motion�(t), E�(t)�(t ′)=min{t, t ′}. With

the independence of�ij , this provides

EW(t, x)W(t ′, x′)=min{t, t ′}
∑
i,j �0

�2ijeij (x)eij (x
′).

Setx′ = 0 andt = t ′ and multiply byek�(x) and integrate overx:

t

∫ L

0

∫ L

0
C(x)ek�(x)dx ≈ �2k�ek�(0)t.

To enable explicit computation of�k�, we assume�>L and takex away from the boundary. Because of
the strong exponential decay, the integrals on[0, L] can be approximated by those on the whole domain,
which may be evaluated exactly. Thus, we define

�2k�=
1

ek�(0)

∫
R2

1

4�2
exp

(
−�

4

‖ x‖2
�2

)
ek�(x)dx

= 1

4�2
1

ek�(0)

∫ ∞

−∞
exp

(
−�

4

x2

�2

)
ek(x)dx

∫ ∞

−∞
exp

(
−�

4

x2

�2

)
e�(x)dx.

It can be verified that∫ ∞

−∞
exp

(−�x2

4�2

)
cos(�x)dx = 2�exp

(−�2�2

�

)
.

Let �k� = (�/L)2(k2 + �2), so that∇2ek� = −�k�ek�. Then
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�2k� = exp

(−�k��
2

�

)
. (2.2)

The noiseW(t, x) defined by (2.1) satisfies

EW(t, x)W(t ′, x′)= C(x − x′)min{t, t ′} + correction on boundary.

This type of noise is discussed in Garcia-Ojalvo and Sancho[11].

3. Numerical methods

How should the stochastic PDE (1.4) be simulated numerically? The basic finite difference update rule
for this type of equation is of the following form: for a time step�t , we seek approximationunij , v

n
ij for

i, j = 0, . . . , N − 1 at timen�t to u(xi, yj ), v(xi, yj ) where(xi, yj ) is the spatial grid. We useun to
denote the matrixunij , i, j = 0, . . . , N − 1. The update rule is

un+1ij = unij +D(Aun)ij�t + (�t/�)f (unij , v
n
ij )+ �Wn

ij ,

vn+1ij = vnij + �tg(unij , v
n
ij ),

whereA approximates the Laplacian on the grid, and the random variableWn
ij is an approximation to∫ (n+1)�t

n�t
dW(t, (xi, xj )). (3.1)

Wenowdiscuss thedetailed implementationof thismethodby choosinganapproximation to theLaplacian
and showing howWn

ij can be approximated efficiently.

3.1. Approximating the Wiener process

First, we wish to exploit the very rapid decay in Fourier coefficients in expansion (2.1). The idea is
contained in the following lemma.

Lemma 1. For an integerM>0, consider the solutionsu(t) anduM(t) of

du(t)= ∇2u(t)dt + dW(t, x), u(0)= 0,

duM(t)= ∇2uM(t)dt + dWM(t, x), uM(0)= 0,

subject to homogeneous Neumann boundary conditions on[0, L]2 whereWM(t, x) is the Wiener process

WM(t, x)=
M−1∑
i,j=0

�ijeij (x)�ij (t). (3.2)

Then,

E ‖ u(t)− uM(t)‖2
L2([0,L]2)�

1

8�M0

L2

�2
exp

(
−�(M − 1)2

�2

L2

)
.
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Proof. By the Variation of Constants formula

u(t)− uM(t)=
∑

(i,j)∈M

∫ t

0
�ij e

−�ij (t−s)eij d�ij (s),

where the sum is taken over the setM of positive integersi, j with one ofi, j�M. The Itô Isometry
yields

E ‖ u(t)− uM(t)‖2
L2([0,L]2) =

∑
(i,j)∈M

∫ t

0
�2ij e

−2�ij (t−s) ds�
∑

(i,j)∈M

�2ij
2�ij

. (3.3)

Each�ij in this sum is bounded from below by�M,0. The sum over the�2ij is bounded by an integral on
the exterior of a circle of radiusM − 1:

∑
(i,j)∈M

�2ij �
1

4

∫
‖(x,y)‖�M−1

e−�‖(x,y)‖2�2/L2 dx dy� exp

(
−�(M − 1)2�2

L2

)
L2

4�2
, (3.4)

using the definition of�ij in (2.2) and
∫∞
R

∫ 2�
0 e−(x2+y2)/ar dr d	 = �ae−R2/a. Together (3.3) and (3.4)

complete the proof. �

This lemma describes how truncating the Fourier expansion of theWiener process changes the solution
of a linear stochastic PDE. Such results can be generalised to semi-linear PDEs, using standard techniques
(see for example[21]).We use the error in the approximation to select a suitable truncation of theWiener
process. The discreteL2 error estimate for a deterministic semi linear heat equation with standard five
point approximation to the Laplacian is of the formO(�x2 + �t) , where�x denotes the spacing of a
uniform grid. When the stochastic forcing is white in time and correlated strongly in space as in (2.1),
the root mean square error estimate is typically of the formO(�x2+ �t1/2) [14] (in some problems with
additive noise, it is possible to getO(�t) rates of convergence; see[18]). Thus, choosing�t/�x2 fixed,
the estimate becomesO(�x) and using the lemma it is appropriate to truncate the expansion by taking
the smallestM such that

1

8D�M0

L2

�2
exp

(
−�(M − 1)2

�2

L2

)
�c�x2 (3.5)

some constantc. ForN large, this can always be achieved withM<N . In fact, this can often be achieved
by takingM>N even when�>L. Consider for exampleL= 80,� = 2,N = 256,�x = L/N yielding
�x2 = 9.7656× 10−2 whilst the LHS of (3.5) forM = 128 equals 8.9× 10−11.
For Eq. (1.4), we have in mind the noise intensity�>1. Thus,� could be used in Eq. (3.5) to achieve

some further smallness on the LHS. However, this could lead to choosing zero Fouriermodes for the noise
which eliminates large deviation behaviour important in the nucleation of waves. Even if the probability
of the noise being significant is small we would like to include it and this does not happen ifM is
too small.
By using the truncatedWiener process defined in (3.2), we can easily generate an approximation toWn

ij

by using the FFT. Consider Neumann boundary conditions and choose the spatial gridxk = (k+ 1
2)L/N



T. Shardlow / Journal of Computational and Applied Mathematics 175 (2005) 429–446 439

andyk = (k + 1
2)L/N for k = 0, . . . , N − 1. Substituting forx and truncating toM2 terms in (2.1), we

form approximation (3.1)

�Wn
k� =

M−1∑
i,j=0

ek�,ij �̂ijwnij , (3.6)

wherewnij are independent Gaussian random variables with mean 0 and variance�2�t/L2, andek�,ij =
ek,ie�,j , where

ek,0 = 1, ek,i = 2 cos(�i(k + 1/2)/N), i �= 0

and

�̂ij = exp

[
−�ij�

2

2�

]
×
{1, i = j = 0,
1/

√
2, one of i, j equals zero,

1/2, otherwise.

Given �̂ij andwnij , expression (3.6) can be computed using the FFTW3.0[10] routine DCT-III. In the
appendix, we show how the FFT should be used to generate the Wiener process for periodic boundary
conditions.
WerequireM2 independent samples fromaGaussiandistributionateach timestep.Evenwith truncating

theW(t, x) expansion fromN = 256 toM = 128 Fourier modes per spatial dimension, a factor of four
saving in the number of Gaussian random variables, there are 16,384 samples to be made each time step
and it is still important to generate the random variables efficiently. In experiments, we choose the recent
Ziggurat method of Marsaglia and Tsang[19], which uses a set of look up tables to significantly improve
speed in comparison to the established methods of Box-Mueller and Polar-Marsaglia methods[17] (by a
factor of four). Some authors recommend using a three point distribution approximation to the Gaussian
and prove convergence in the weak sense in this case. There appears to be no advantage to such a scheme
in the present setting.

3.2. Approximating the Laplacian

The PDE (1.1) was introduced as a computationally convenient model of spiral waves. A numerical
methodwas provided to take advantage of the structure of the PDE alongwith an efficient implementation
[3]. The numerical method takes advantage of the shape of the typicalu field, which is zero away from a
wave, by updating the Laplacian approximation only at grid points whereu is bigger than some threshold
�. Thus, we takeAbu =A�u, where(�u)ij = 0 if uij < � and=uij otherwise. Barkley uses a nine point
approximationA to the Laplacian, which has better stability than a five point approximation. The update
rule for i, j = 0, . . . , N − 1 is

un+1ij =
{
unij +D(Abun)ij�t + (�t/�)f (unij , v

n
ij ), unij > �,

D(Abun)ij�t, otherwise,

vn+1ij = vnij +
{

�tg(unij , v
n
ij ), unij > �,

�tg(0, vnij ), otherwise.
(3.7)

We generalise this algorithm to (1.4) in the following manner, which we will refer to as method M1:
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un+1ij = unij + �Wn
ij +

{
D(Abun)ij�t + (�t/�)f (unij , v

n
ij ), |unij |> �,

D(Abun)ij�t, otherwise,

vn+1ij = vnij +
{

�tg(unij , v
n
ij ), |unij |> �,

�tg(0, vnij ), otherwise.
(3.8)

Notice absolute value signs have been used to determine which update to use andunij is added tou
n+1
ij in

all cases. These changes are cheap to implement and are important as we cannot guarantee thatunij will
not be large and negative in the presence of noise.
Given our approach to generatingWn

ij , it is natural to look for a spectral approximation to∇2. By

applying a splitting method, we can approximate∇2 by calculating one extra FFT and one multiplication
by the diagonal matrix of eigenvalues. Specifically, we will consider the following method M2:

(1) Compute coefficientŝunij by the FFT such thatu
n
ij =∑N−1

k,�=0 ûnk�ek�,ij . Update

û
n+1/2
ij =

{
exp(−D�ij�t)(û

n
ij + �ijw

n
ij ), i, j <M,

exp(−D�ij�t)û
n
ij , otherwise.

Calculateun+1/2ij as the inverse transform ofûn+1/2ij .
(2) Apply reaction terms

un+1ij = u
n+1/2
ij + (�t/�)f (un+1/2ij , vnij ),

vn+1ij = vnij + �tg(un+1/2ij , vnij ).

We have chosen to approximate the diffusion and noise terms by the method described in[18], where a
higher order convergence rate is proved for a one dimensional example.
Fig. 7indicates the efficiency of the two methods, along with different choices ofM and�. We see for

the case� = 0 that method M1 is most efficient. ForN = 512, M1 is four times faster than M2 and three
times faster thanM1 with � = 0. Under the cut off, we compute the Laplacian only on a fraction of the
spatial domain and this leads to more dramatic results asN is increased. The dependence on the accuracy
of M1 on the choice of� has not been investigated, but it is clear that� should be made smaller asN is
increased.
Consider now� �= 0. The behaviour of the thresholding method M1 becomes progressively worse as

the noise level is increased, as the fieldu is rarely below the threshold�. We see method M2 is most
efficient in this case, though the difference depends onN. Further, the truncated Wiener process (3.2) is
shown to give a 10% improvement in performance.
Similar results are obtained with periodic boundary conditions. The noticeable difference in this case

is that, under FFTW3.0, it is much faster to use periodic boundary conditions.
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Fig. 7. Time to compute to timeT = 30 with�t/�x2 = 0.02 against� for N = 64,128,256,512. Plots are given for M1 with
� = 0.001 (solid line), M1 with� = 0 (dotted line), M2 (dashed line). Each of these methods generates the noise choosingM

from (3.5) withc = 10−6. To compare timings for M2 without truncation of the Wiener Process are shown (dash dotted line).
Parameter values used areL= 80, � = 0.02,a = 0.75,b = 0.01,D = 1.

There are no known exact solutions for this problem and it is therefore difficult to evaluate the error in
computing solutions numerically and to compare the relative accuracy of the twomethods. The qualitative
behaviour of the two methods is observed to be the same in the examples given forN = 128.

4. Numerical solution of (1.7)

In examining the numerical solution of (1.4) in detail in the previous subsection, we arrive at recom-
mendations for the numerical simulation of (1.7). It remains effective to use the truncation of theWiener
process in (3.2). But there are different considerations in approximating the Laplacian.
The generalisations to (1.7) of the methods for (1.4) are the following explicit method, which we

denote M1′,

un+1ij = unij +
{
D(Abun)ij�t + (�t/�)f (unij , v

n
ij ), |unij |> �,

D(Abun)ij�t, otherwise,
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vn+1ij = vnij + �unijW
n
ij +

{
�tg(unij , v

n
ij ), |unij |> �,

�tg(0, vnij ), otherwise
(4.1)

and the spectral method M2′,

(1) Compute coefficientŝunij by the FFT such thatu
n
ij =∑N−1

k,�=0 ûnk�ek�,ij . Update

û
n+1/2
ij = exp(−D�ij�t)û

n
ij .

Calculateun+1/2ij as the inverse transform ofûn+1/2ij .
(2) Apply reaction terms and noise:

un+1ij = u
n+1/2
ij + (�t/�) f (un+1/2ij , vnij ),

vn+1ij = vnij + �tg(un+1/2ij , vnij )+ �un+1/2ij Wn
ij .

To apply this spectral method, three FFTs are required to updateunij andv
n
ij at each time step, two for

the Laplacian and one to generate the noise. Thus, for a given time step and spatial resolution, the cost
of computing one step of M2′ compared to M2 has increased, whilst the cost of computing with M1′ is
unchanged.
Fig. 8 shows timings for a simulation using these methods. We observe that M1′ is much faster as it

can take advantage of the smooth regionsu ≈ 0. For (1.7), significant noise only appears whenu ≈ 1
and therefore the regions whereu ≈ 0 are not effected by noise. Strangely, an increasing noise level
allows for faster simulation by M1′ in some case. For the resolutionN = 128, the noise at intensity� = 8
causes much of the excitation to die away and much of the spatial domain is near to the equilibrium
u= 0= v. Under this situation, the switch in the definition of M1′ is activated and faster simulations are
observed. Simulating the same system for resolutionN = 512, this does not happen on the time scale
being examined. It is clear that one must be very careful to resolve all the dynamics in the system, and
not consider speed of simulation only.
The choice of reaction term appears less important than in (1.4). For (1.7), it is observed that the

reaction terms (1.2) can be simulated for large time scales without instability. It would be interesting to
try and prove the equations are well posed over long time.

5. Conclusion

We have reviewed the use of noise in the modelling of excitable media, emphasising the Barkley PDE
forced by a space-time Wiener process. For additive noise in the excitation fieldu, we demonstrated the
benefits of modifying the reaction term used in an existing model. Without the modification, the level of
excitationumay leave the interval[0,1] and become much larger than one. This happens for numerical
simulations, even with an implicit numerical method.
We considered a spatially correlated noise and suggested an efficient way of generating sampling paths

by using the Fourier expansion to reduce the number ofGaussian randomvariables thatmust be generated.
The best choice of method depends on the PDE and level of noise under consideration. For (1.1) and

�>0, it is better to use a spectral method M2, but for (1.7) it is possible to take advantage of the structure
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Fig. 8. Time to compute to timeT = 1 with �t/�x2 = 0.02 against� for N = 128,256,512. Plots are given for M1′ with
� = 0.001 (solid line) and M2′ (dashed line). Each of these methods generates the noise choosingM from (3.5) withc = 10−6.
Parameter values used areL= 80, � = 0.02,a = 0.75,b = 0.01,D = 1.

of theu field using Barkley’s approximation to the Laplacian M1′. We noted some spurious behaviour in
the solution of (1.7), as excitation in the system decayed away for M1′ at low resolutions and large noise.
Some consideration should be given to an implicit approximation of the reaction term. It should be

possible tomodify theonesuggested in[8] toworkwithourmodifiednonlinearity.Thiswasnot considered
in this paper.

Appendix A. Periodic case

We show how to compute�Wn
k� with FFT3.0 in the case of periodic boundary conditions. In this case,

the expansion of the Wiener process is

W(t, x)=
∑
i,j �0

4∑
k=1

�ijekij (x)�ij (t), (A.1)
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where�ij are defined by (2.2) with�ij = (2�/L)2(i2 + j2). The basis functionse1ij (x) = ei(x)ej (y),
e2ij (x)= ẽi(x)ej (y), e3ij (x)= ei(x)ẽj (y), ande4ij (x)= ẽi(x)ẽj (y), ande0(x)=√

1/L, ẽ0(x)= 0,

ej (x)=√2/L cos(2�jx/L), ẽj (x)=√2/L sin(2�jx/L), j = 1,2,3, . . .

are the orthonormal eigenfunctions of the Laplacian on[0, L] with periodic boundary conditions (we
introduceẽ0 = 0 for convenience of notation).
Now consider the gridxk = kL/N andy� = �L/N for k, �= 0, . . . , N − 1. Truncating the series, we

define�Wn
k� by

�Wn
k�=�00w

n
00,1 +√

2
N/2∑
i=1

�i0(cos(ki2�/N)w
n
i0,1 + sin(ki2�/N)wni0,2)

+√
2
N/2∑
j=1

�0j (cos(�j2�/N)w
n
0j,1 + sin(�j2�/N)wn0j,2)

+ 2
N/2∑
i,j=1

�ij (cos(ki2�/N) cos(�j2�/N)w
n
ij,1 + cos(ki2�/N) sin(�j2�/N)wnij,2

+ sin(ki2�/N) cos(�j2�/N)wnij,3 + sin(ki2�/N) sin(�j2�/N)wnij,4),

wherewnij,k are independent Gaussian random variables with mean 0 and variance�2�t/L2. This can be
re-expressed in terms of complex exponentials, as follows. Forj >0,

cos(�j2�/N)wnij,2k−1 + sin(�j2�/N)wnij,2k = 1
2[znij,ke

√−1�j2�/N + z̄nij ,ke
−√−1�j2�/N ],

whereznij,k = wnij,2k−1 −√−1wnij,2k. Denote the fourth term in�Wn
kl by 
4, then


4=
N/2∑
i,j=1

�ij (cos(ki2�/N)[znij,1e
√−1�j2�/N + z̄nij ,1e

−√−1�j2�/N ]

+ sin(ki2�/N)[znij,2e
√−1�j2�/N + z̄nij ,2e

−√−1�j2�/N ]).

Substituting cosX = (e
√−1X + e−

√−1X)/2 and sinX = −√−1(e
√−1X − e−

√−1X)/2


4=1
2

N/2∑
i,j=1

�ij (e
√−1ki2�/Ne

√−1�j2�/N [znij,1 −√−1znij,2]

+ e
√−1ki2�/Ne−

√−1�j2�/N [z̄nij ,1 −√−1z̄nij ,2]
+ e−

√−1ki2�/Ne
√−1�j2�/N [znij,1 +√−1znij,2]

+ e−
√−1ki2�/Ne−

√−1�j2�/N [z̄nij ,1 +√−1z̄nij ,2]).
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Similarly, the third term can be written


3 = 1√
2

N/2∑
j=1

�0j (e
√−1�j2�/Nzn0j,1 + e−

√−1�j2�/N z̄n0j,1)

and the second term


2 = 1√
2

N/2∑
i=1

�i0(e
√−1ki2�/Nzni0,1 + e−

√−1ki2�/N z̄ni0,1).

The whole sum now be rewritten in the standard form, convenient for the FFTW3.0 DFT transform,

�Wn
k� =

N−1∑
i,j=0

�̂ijZ
n
ije

√−1ki2�/Ne
√−1�j2�/N ,

where fori, j = 1, . . . , N/2

�̂00= 1, �̂i0 = �i0/
√
2, �̂0j = �0j /

√
2, �̂ij = �̂N−i,j = �ij /2

and

Zn00= wn00, Zn0j = zn0j,1, Zn0,N−j = z̄n0j,1, Zni0 = zni0,1, ZnN−i,0 = z̄ni0,1

and

Znij = znij,1 −√−1znij,2, ZnN−i,j = znij,1 −√−1znij,2.
The remaining coefficients are defined by the symmetry�̂ij = �̂N−i,N−j andZnij =Z̄nN−i,N−j . It is simpler
to generateZnij for i, j = 1, . . . , N/2 as complex numbers with real and imaginary parts independent

N(0, �2�t/L2) random variables, taking modified coefficients�̂ij = �̂N−i,j = �ij /
√
2.

The thresholding algorithm may be applied to periodic boundary conditions, by summing over(i, j),
(N − i, j), (i, N − j), and(N − i, N − j), for i, j = 0, . . . ,M.M should be chosen from 0, . . . , N/2
such that (3.5) holds, where�M0 = (2�/L)2M2, an eigenvalue of the Laplacian with periodic boundary
conditions.
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