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Abstract. We study numerical methods for dissipative particle dynamics, a system of stochastic
differential equations for simulating particles interacting pairwise according to a soft potential at
constant temperature where the total momentum is conserved. We introduce splitting methods and
examine the behavior of these methods experimentally. The performance of the methods, particularly
temperature control, is compared to the modified velocity Verlet method used in many previous
papers.
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1. Introduction. Dissipative particle dynamics (DPD) was first introduced by
Hoogerbrugge and Koelman in [9] to simulate complex hydrodynamic behavior. The
technique is based on simulation of particles that evolve according to a system of SDEs
(see (1) below). DPD particles should not be thought of as individual molecules; the
particles represent mesoscopic groups of fluid molecules that interact at short range
and according to a soft potential. This coarse graining provides a model, thought to be
realistic in some regimes, that is convenient computationally, allowing for large time
steps in simulations and for the exploration of long time scales. Recent applications of
DPD include polymer simulation, spinodal decomposition, and suspension rheology
[21, 12, 7, 4, 1]. Theoretical investigations of DPD have focused on understanding the
physics (see [5, 24, 8, 18]). The issue we tackle is the numerical simulation of a DPD
fluid.

DPD is described by the following system of SDEs. Consider N particles with
positions qi and momenta pi for i = 1, . . . , N evolving in dimension d:

dqi = pi dt,

dpi = −
∑
j �=i

aijV
′(qij)q̂ij dt− γ

∑
j �=i

wD(qij)(q̂ij · pij)q̂ij dt + σ
∑
j �=i

wR(qij)q̂ij dβij(t).

(1)

We take the simplest case and prescribe periodic boundary conditions on the posi-
tions qi in the domain [0, L]d (see [18] for a discussion of other boundary conditions).
The relative positions and momenta are denoted by qij and pij and the unit direction
from qj to qi by q̂ij and the length of qij by qij . We define q̂ij = 0 for qij = 0. The
pair potential

V (r) =

{
1
2 (1 − r/rc)

2, r < rc;

0 otherwise,

where rc is the radius of interaction. The parameters aij are positive and symmetric
(aij = aji ≥ 0) and describe the strength of repulsion between particles i and j. For
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i < j, βij are IID Brownian motions and for i > j, βij = −βji. We will use E to
denote averages with respect to realizations of the Brownian motion.

The functions wD and wR describe the dissipative and random forces,

wD(r) = wR(r)2 =

{
(1 − r/rc)

2, r < rc;

0 otherwise.

The strength of the dissipation is parameterized by γ and of the noise by σ.
The mathematical theory of solutions of SDEs is discussed in [10], for example.

A rigorous study of existence, uniqueness, and regularity is beyond the scope of the
present paper. The difficulty in (1) is that neither drift nor diffusion coefficients are
continuous at qij = 0, and this could lead to nonuniqueness of solutions (even of weak
solutions) for initial data with qij = pij = 0, some i �= j. This can be understood by
considering

dq = p dt, dp = q̂ dβ(t), q(0) = Q, p(0) = P,

for a standard Brownian motion β(t) and q̂ := q/‖q‖ (where ‖·‖ denotes the standard
Euclidean norm). For initial data Q = P = 0, no matter how q̂ is defined at q = 0,
the following

q(t) = ê

∫ t

0

β(s) ds, p(t) = ê β(t)

is a solution on a random time interval [0, τ ], where τ > 0 and ê ∈ Rd is a unit
vector. For dimension d > 1, this gives rise to multiple weak solutions. Even if we
assume the initial data is nonzero, there is a positive probability of reaching the zero
state. An extra condition is needed at q = p = 0 to specify the solution uniquely.
To the author’s knowledge, a rigorous analysis of this issue for DPD has not been
undertaken. We assume the existence of a Markov process ({qi}, {pi}) on the space
of configurations, which converges to the Gibbs canonical distribution (defined below)
and whose generator A satisfies

A =
∑
i

pi · ∇qi
−
∑
i �=j

aijV
′(qij)q̂ij · ∇pi

− γwD(qij)(q̂ij · pij)q̂ij · ∇pi

+ 1
2σ

2
∑
i<j

wR(qij)
2q̂T

ij(∇pi −∇pj )2q̂ij

(2)

and has domain D(A), a subset of the space of continuous functions on RdN ×RdN

that have period L in the spatial components.
The fluctuation dissipation theorem applies to (1): Suppose that σ2 = 2γkBT ,

where kB is Boltzmann’s constant and T is the equilibrium temperature. If

H({qi}, {pi}) := 1
2

∑
i

‖pi‖2 + 1
2

∑
i �=j

aijV (qij),

then the Gibbs canonical distribution

µ({qi}, {pi}) :=
1

Z
exp

[−H({qi}, {pi − p})

kBT

]
,(3)
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where Z is chosen so that µ is the density of a probability measure and p is the
average momentum (over the N particles). As shown in [5], µ is an invariant measure
of the SDEs (1) and

1

d

1

N
Eµ

N∑
i=1

‖pi‖2 − ‖p‖2

d
= kBT.(4)

(Eµ denotes expectation with respect to µ.)
The main emphasis of this paper is numerical methods for solving (1). Many

papers have used a modified version of the velocity Verlet method (defined in sec-
tion 2.1) to do this [8, 5, 6, 24]. The velocity Verlet scheme itself is a method for
solving the Hamiltonian equations for H(q, p) = 1

2p
2 + V (q) and consists of iterating

the following for a time step ∆t:

p
n+

1
2

= pn − 1
2∆t V ′(qn), qn+1 = qn + ∆t p

n+
1
2
, pn+1 = p

n+
1
2
− 1

2∆t V ′(qn+1).

This scheme is second order, symplectic, and will conserve linear and angular mo-
mentum if this holds for the Hamiltonian system. The force function, which is the
most expensive part of the iteration, is computed only once per time step. For further
discussion, see, for example, [19]. The modified Verlet method accounts for the noise
and dissipation terms in (1). In DPD linear momentum is conserved; angular momen-
tum is conserved when qi evolve on the spatial domain Rd rather than the periodic
domain [0, L]d. The modified Verlet scheme inherits these properties. The method
gives satisfactory results in many applications, but the time step must be small for
the method to be stable. This becomes a more severe problem when the dissipation
parameter γ or the density of particles is large. Marsh and Yeomans [13] discuss this
issue in some detail and derive critical temperatures and densities for the method to
be stable.

A large density or dissipation in (1) gives rise to stiffness, which is usually dealt
with by applying an implicit numerical method. This approach has been tried by
Pagonabarraga, Hagen, and Frenkel [15], who investigate an implicit method but find
it expensive to run. Another implicit method was attempted during the writing of
the present paper, based on replacing the relative momenta pn

ij at time step n with

a semi-implicit momenta pn
i − pn+1

j . This leads to an implicit numerical method
where only block diagonal matrices need be inverted. This method is cheap to run
but destroys the underlying conservation of linear and angular momentum, and poor
behavior is observed [22].

Splitting is a widely used and important technique for solving differential equa-
tions; one important application to the Langevin equations is described in [20]. The
main contribution of this paper is an implicit method based on splitting the vector
field into a sum of conservative terms and pairwise fluctuation-dissipation terms. We
solve the conservative system defined by the Hamilitonian H (and the boundary con-
ditions) using the velocity Verlet method. Following this, we solve an SDE for the
fluctuation and dissipation between particles i and j. We choose an implicit method
that conserves the invariance of the momenta and that may be solved efficiently. This
is possible because of the simple structure of the pair equations. Looping over all
possible pairs, we can find an approximation for the equation as a whole. There are
a number of ways of combining the solvers for the split systems.

To introduce the splitting method, we restrict attention to weak convergence.
That is, for a functional φ (such as temperature) on the set of configurations {qi}, {pi},
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we want to generate approximations {qn
i }, {pn

i } such that the averages (over the set of
Brownian paths) of φ({qn

i }, {pn
i }) converge to the average of φ({qi(n∆t)}, {pi(n∆t)}).

Weak convergence is of most interest in molecular dynamics and gives convergence
of approximations to time correlations and, under ergodic assumptions, to averages
with respect to the canonical distribution.

For weak convergence, we approximate the action of the semigroup, eAt, with
generator A on the functional φ. This allows us to introduce splitting methods by
writing the generator A = A1 + A2. We will consider first order splitting,

eAn∆t = (eA1∆teA2∆t)n + O(n∆t2) ,

and the following second order splitting,

eAn∆t = (eA1∆t/2eA2∆teA1∆t/2)n + O(n∆t3) .

The first order splitting was introduced by Trotter; the second order splitting was
introduced by Strang [23] for numerical approximation. Numerical analysts exploit
these relations by approximating eA1∆t, eA2∆t separately and using the above rela-
tions to generate a consistent approximation to eA∆t. The splitting formula may be
applied recursively to deal with a generator A split into multiple components. A
rigorous statement of the convergence properties depends on the regularity of the
test function φ and the generators A1,2 and is not described herewith. We do define
split methods for (1) in section 2.2 and demonstrate that the methods are valuable
for DPD. It is not trivial to establish regularity of the generator in (1), because the
diffusion is not uniformly elliptic nor are the coefficients smooth. Further discussion
of splitting methods for SDEs includes [17, 3, 14].

DPD is used to simulate fluids in thermal equilibrium, where the solution of (1)
is evolving in the canonical distribution (3). The temperature with respect to the
canonical distribution is known and this provides a convenient way to evaluate the
numerical methods. Assuming ergodicity of DPD, we expect time averages of the
temperature to converge to the average given in (4). To evaluate the methods, we
compute the time average

1

d

1

N − 1

1

T1 − T0

�T1/∆t�∑
n=�T0/∆t�

N∑
i=1

‖pn
i ‖2∆t,(5)

where T0 is chosen to allow the system to reach equilibrium and T1 is chosen large to
reduce the variance in the result. Notice that the average is computed by dividing by
N − 1 (the number of degrees of freedom) rather than N (the number of particles).
We will take initial conditions with zero total linear momentum, in which case the
computed temperature (5) will be compared to kBT .

After defining the methods in section 2, results are presented in section 3 for pa-
rameter values that test the modified Verlet scheme with large density and dissipation.
The results indicate the advantage of using the first order splitting method: 1% tem-
perature control is achieved with ∆t = 0.04 in section 3.1 for the first order splitting
scheme whilst the modified Verlet method needs ∆t = 0.02. Though the modified
Verlet method is less computationally expensive per time step, it is faster to use the
splitting technique to get 1% temperature control (the first order splitting method
with ∆t = 0.04 is 40% faster than the modified Verlet method with ∆t = 0.02). The
improvements are more dramatic when the dissipation (see section 3.2) or density is
increased (see section 3.3).
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Temperature control is a convenient way to evaluate the methods, because we
know the correct value when in equilibrium, but it does not describe the physical
system completely. The velocity autocorrelation function

1

d(N − 1)
E
∑
i

(pi(t) − p) · (pi(0) − p)(6)

and the radial distribution function (the density of the average number of particles
distance r from a fixed particle normalized by the density under the uniform distri-
bution with the same density of particles) are two important averages that should be
reproduced correctly by the numerical methods. In section 3, we describe computa-
tions of velocity autocorrelation and radial distribution functions. The computations
indicate agreement between the methods, with much poorer behavior for the modified
Verlet method as the dissipation is increased.

The computations for the second order splitting show good behavior, but there
is no evidence that the results are substantially better than the first order splitting
method. This may indicate that the regularity of (1) is insufficient to gain second
order convergence.

In section 4 we go some way to explain the stability properties of the splitting
method of section 2.2 by generalizing an argument used by [16, 2] for the approxima-
tion to the Langevin equations

dq = p dt,

dp = − γp dt + σ dβ(t)

given by the Bruenger, Brooks, Karplus (BBK) method

pn+1/2 = pn − 1
2γp

n∆t + 1
2σβ

n(∆t),

qn+1 = qn + pn+1/2∆t,

pn+1 = pn+1/2 − 1
2γp

n+1∆t + 1
2σβ

n(∆t),

where βn(∆t) := β((n + 1)∆t) − β(n∆t). It is not hard to verify in this case that
Ep2

n converges to σ2/2γ, the correct equilibrium temperature, as n → ∞. It would be
inefficient to apply the BBK method to the full DPD system because of the structure
of the linear equations. We choose a generalization of this approximation to solve the
linear SDE for (i, j) fluctuation-dissipation equations. The behavior of the tempera-
ture in the numerical solution is discussed in section 4. We describe a sense in which
the average temperature of the pair of particles i, j will approach that given by (4)
with p = (pi + pj)/2.

2. The numerical methods. Let ∆t denote the time step and define

fD
i ({qi}, {pi}) := − γ

∑
j �=i

wD(qij)(q̂ij · pij)q̂ij∆t,

fC
i ({qi}) := −

∑
j �=i

aijV
′(qij)q̂ij∆t,

fR,n
i ({qi}) := σ

∑
j �=i

wR(qij)q̂ijW
n
ij(∆t).

Wn
ij(∆t) for n = 0, 1, 2, . . . are normally distributed random variables with mean zero

and variance ∆t, with Wn
ij(∆t) independent for i < j and n = 0, 1, . . . and with
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Wn
ij(∆t) = −Wn

ji(∆t). We again use E to denote averages with respect to realizations
of the Wn

ij(∆t).
In practise, for those only interested in average properties, it is sufficient to gener-

ate Wn
ij(∆t) that satisfy certain moment conditions; see [11]. For instance, for second

order numerical methods, it is convenient to generate Wn
ij(∆t) such that for i < j,

Wn
ij(∆t) are IID with

P(Wn
ij(∆t) = ±

√
3∆t) =

1

6
, P(Wn

ij(∆t) = 0) =
2

3
,

and Wn
ij(∆t) = −Wn

ji(∆t) for i > j. The computations in section 3 use this rule to
generate Wn

ij(∆t).

2.1. Modified Verlet method. Consider initial conditions q0
i = Qi and p0

i =

p
−1/2
i = Pi. The modified Verlet method is the following iteration:

p
n+1/2
i = pn

i + 1
2

[
fD
i ({qn

i }, {pn−1/2
i }) + fC

i ({qn
i }) + fR,n

i ({qn
i })

]
,

qn+1
i = qn

i + ∆tp
n+1/2
i ,

pn+1
i = p

n+1/2
i + 1

2

[
fD
i ({qn+1

i }, {pn+1/2
i }) + fC

i ({qn+1
i }) + fR,n

i ({qn+1
i })

]
.

The algorithm is described in detail in Groot and Warren [8]. The method conserves
linear and angular momentum. Without the random or dissipative forces, the al-
gorithm is second order, but the dissipative term in the above algorithm introduces
errors at order ∆t2.

By defining q̂ = 0 at q = 0, we see that qn
ij = pn

ij = 0 if and only if qn+1
ij =

pn+1
ij = 0, for some i �= j. This property guarantees that particles do not coalesce

and the system cannot reduce to a system where qi = q,pi = p for all i. To ensure
the particles have distinct dynamics for all time, we require that the initial data obey
(Qij ,Pij) �= 0 for all i �= j.

2.2. Splitting. We describe the splitting method for (1).
Consider the conservative terms

dqi

dt
= pi,

dpi

dt
= −

∑
j �=i

aijV
′(qij)q̂ij(7)

and select a numerical method for this system. Denote by SC,∆t({qn
i }, {pn

i }) the
result of applying the method with step ∆t to initial data ({qn

i }, {pn
i }).

The (i, j) fluctuation-dissipation terms are

dqk = 0 dt for all k = 1, . . . , N,

dpk = 0 dt for all k �= i, j,

dpi = − γwD(qij)(q̂ij · pij)q̂ij dt + σwR(qij)q̂ij dβij(t),

dpj = − γwD(qij)(q̂ij · pji)q̂ij dt− σwR(qij)q̂ij dβij(t).

(8)

Choose a one step method for this problem and denote the solution operator by
Si,j,∆t,n; that is, Si,j,∆t,n({qn

i }, {pn
i }) is the result of applying the method at time

level n to initial data ({qn
i }, {pn

i }).
Notice that the generator of (8) is

1
2σ

2wR(qij)
2q̂T

ij(∇pi −∇pj )2q̂ij − γwD(qij)(q̂ij · pij)q̂ij · (∇pi −∇pj )
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and of (7) is ∑
i

pi∇qi −
∑
i �=j

aijV
′(qij)q̂ij · ∇pi

.

The sum of the generators of (7) and of (8) for i < j equals the generator of the DPD
equations (2). If SC,∆t and Sij,∆t weakly converge with rate ∆t, the following

SC,∆t ◦ S1,1,∆t,n ◦ S1,2,∆t,n ◦ · · · ◦ SN−1,N,∆t,n(9)

will generate an order ∆t weak approximation. (Regularity of the densities would
need to be established before this could be made rigorous.) Moreover, if the methods
converge weakly with rate ∆t2, we expect the following

SN−1,N,
∆t
2 ,n ◦ · · · ◦ S1,2,

∆t
2 ,n ◦ S1,1,

∆t
2 ,n ◦ SC,∆t ◦ S1,1,

∆t
2 ,n ◦ S1,2,

∆t
2 ,n ◦ · · · ◦ SN−1,N,

∆t
2 ,n

(10)

to weakly converge with rate ∆t2 (again depending on regularity of the underlying
process).

Choose SC,∆t to be the Verlet method and Sij,∆t,n to be the BBK method. That
is,

(i) let SC,∆t({qn
i }, {pn

i }) = ({qn+1
i }, {pn+1

i }), where

p
n+1/2
i = pn

i + 1
2f

C
i ({qn

i }), qn+1
i = qn

i + ∆t p
n+1/2
i ,

pn+1
i = p

n+1/2
i + 1

2f
C
i ({qn+1

i });

(ii) let Si,j,∆t,n({qn
i }, {pn

i }) = ({qn+1
i }, {pn+1

i }), where

qn+1
k = qn

k for all k,

pn+1
k = pn

k for all k �= i, j,

p
n+1/2
i = pn

i − 1
2γw

D(qnij)(q̂
n
ij · pn

ij)q̂
n
ij∆t + 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t),

p
n+1/2
j = pn

j + 1
2γw

D(qnij)(q̂
n
ij · pn

ij)q̂
n
ij∆t− 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t),

pn+1
i = p

n+1/2
i − 1

2γw
D(qnij)(q̂

n
ij · pn+1

ij )q̂n
ij∆t + 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t),

pn+1
j = p

n+1/2
j + 1

2γw
D(qnij)(q̂

n
ij · pn+1

ij )q̂n
ij∆t− 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t).

Notice that the equations for pn+1
i and pn+1

j are implicit, but can be simpli-
fied considerably by using(

I + αqqT −αqqT

−αqqT I + αqqT

)−1

=

(
I + βqqT −βqqT

−βqqT I + βqqT

)
,

where β = −α/(1 + 2α). Apply this equation with α = 1
2γw

D(qnij)∆t and
q = q̂n

ij to get

pn+1
i = p

n+1/2
i + 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t)

− 1
2

γwD(qnij)∆t

1 + γwD(qnij)∆t

(
(q̂n

ij · pn+1/2
ij )q̂n

ij + σwR(qnij)q̂
n
ijW

n
ij(∆t)

)
,

pn+1
j = p

n+1/2
j − 1

2σw
R(qnij)q̂

n
ijW

n
ij(∆t)

+ 1
2

γwD(qnij)∆t

1 + γwD(qnij)∆t

(
(q̂n

ij · pn+1/2
ij )q̂n

ij + σwR(qnij)q̂
n
ijW

n
ij(∆t)

)
.
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Fig. 1. Error in temperature for γ = 4.5, σ = 3 with L = 10 for methods V (solid line),
S1 (dashed), and S2 (dash dot).

These equations are shown to give a weak second order approximation in the ap-
pendix (subject to regularity of the underlying SDE). It is easily checked that both
methods preserve linear and angular momentum. Again, (qn

ij ,p
n
ij) = 0 if and only if

(qn+1
ij ,pn+1

ij ), so that each particle has a different trajectory if the initial data satisfy
(Qij ,Pij) �= 0 for all i �= j.

3. Computations. We evaluate three numerical methods:

V—the Verlet method of section 2.1,
S1—the first order splitting method (9) described in section 2.2,
S2—the second order splitting method (10) described in section 2.2.

For the following experiments, we take N = 4000 identical particles on a domain
[0, L]3 with the repulsion parameter aij = 25. The critical radius rc = 1. The initial
distribution Qi of positions is IID uniformly distributed over [0, L]3. The initial
momenta Pi = P̃i − 1

N

∑
P̃i, where P̃i are IID normally distributed with mean zero

and variance kBT . We describe three cases with kBT = 1: (γ, σ) = (4.5, 3) for L = 10
(this case is used as a test in [8]) and (γ, σ) = (40.5, 9) for L = 10 (increasing the
dissipation) and (γ, σ) = (4.5, 3) for L = 7 (increasing the density).

The time averaged temperature given in (5) is compared with the average kBT = 1
under the canonical distribution (3). The time averaged temperature was computed
for ten different realizations of the Brownian motions. The tables in sections 3.1–3.3
give the mean (column 1) and variance (column 2) of the ten computed average
temperatures for the three sets of parameter values. Figures 1, 2, and 4 plot the log
of the error against the log of the time steps ∆t together with 90 percent confidence
intervals. Figure 3 indicates the error in using the methods for a given CPU time. The
benefit in using the splitting methods, in terms of the amount of temperature control
available for a given CPU time, is clearly described by Figure 3. As can be seen in
Figure 2, the computed error in temperature for ∆t = 0.02 and 0.01 for methods S1
and S2 is dominated by the sampling error; i.e., the error in temperature is the same
magnitude as the confidence interval. This explains why the lower plot in Figure 3 is
flat for very small errors.

Two radial distribution functions are plotted in Figure 5, which indicates signif-
icant errors in the approximation by method V at ∆t = 0.04. The resulting error
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Fig. 2. Error in temperature for γ = 40.5, σ = 9 with L = 10 for methods V (solid),
S1 (dashed), and S2 (dash dot).
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Fig. 3. Plots of CPU time against error for the methods V (solid), S1 (dashed), and S2 (dash
dot). Upper plot is (γ, σ) = (4.5, 3) with L = 10 and lower plot is (γ, σ) = (40.5, 9) with L = 10.
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Fig. 4. Error in temperature for γ = 4.5, σ = 3 with L = 7 for methods V (solid), S1 (dashed),
and S2 (dash dot).
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Fig. 5. The computed radial distribution function g(r) for (γ, σ) = (4.5, 3) with L = 10 (top)
and (γ, σ) = (40.5, 9) with L = 10 (bottom) for ∆t = 0.04 and methods V (solid), S1 (dashed), and
S2 (dash dot).
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computed with ∆t = 0.01 by method S2. Parameter values (γ, σ) = (4.5, 3) with L = 10 (left) and
(γ, σ) = (40.5, 9) with L = 10 (right), for methods V (solid), S1 (dashed), and S2 (dash dot).

depends strongly on the parameter values chosen, and it is not until the dissipation
is increased that the error for method V becomes significantly larger than that given
by the splitting methods. The error can be seen in greater detail in Figure 6, where
the computations for ∆t = 0.04, 0.02 are compared to a well-resolved computation.
The largest error in the computation of g(r) occurs when r is small. A velocity au-
tocorrelation function (see (6)) is plotted in Figure 7, together with comparisons of
computations for ∆t = 0.02, 0.04 with a well-resolved computation. Method V gives
poor results for computations of the velocity autocorrelation function. Even when
the equilibrium temperature has less than 2.5 percent error, the error in velocity
autocorrelation may become out of control for small time.

3.1. Parameter values (γ, σ) = (4.5, 3) and L = 10. We compute the
average temperature (5) with T0 = 4 and T1 = 200. See Figure 1.

∆t V S2 S1
0.16 15.481 1.7e-2 9.13177 8.7e-3 12.7872 1.9e-2
0.08 1.1448 8.04e-4 1.05193 6.2e-4 1.0536 7.0e-4
0.06 1.06211 9.6e-4 1.02122 6.14e-4 1.0217 1.2e-3
0.04 1.02687 9.6e-4 1.00748 5.5e-4 1.00768 6.6e-4
0.02 1.00996 8.2e-4 1.00143 8.3e-4 1.00153 1.06e-3
0.01 1.00378 7.4e-4 1.00018 7.8 e-4 0.999544 6.65e-4

The following table gives CPU times (in seconds) per unit time.

∆t V S2 S1
0.04 6.445 8.197 7.42

3.2. Parameter values (γ, σ) = (40.5, 9) and L = 10. We compute the
average (5) with T0 = 1 and T1 = 100. See also Figure 2.

∆t V S2 S1
0.16 unstable 1.6229 1e-3 2.748 4e-3
0.08 unstable 1.01769 6.2e-4 1.0208 6e-4
0.06 unstable 1.00659 2.83e-4 1.0068 7.17e-4
0.04 1.47304 1.5e-3 1.00232 3.02e-4 1.00203 3.4e-4
0.02 1.02499 2.4e-4 1.00006 7.3e-4 0.99974 4.88e-4
0.01 1.0084 7.5e-4 0.999943 6.1e-4 0.99967 4.88e-4

The following table gives CPU times (in seconds) per unit time.

∆t V S2 S1
0.04 6.35 8.2 7.35
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Fig. 7. Velocity autocorrelation function for (γ, σ) = (40.5, 9) with L = 10 computed by S2
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methods V (solid), S1 (dashed), and S2 (dash dot).
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3.3. Parameter values (γ, σ) = (4.5, 3) and L = 7. We compute the aver-
age (5) with T0 = 1 and T1 = 150. See also Figure 4.

∆t V S2 S1
0.16 27.1299 4.8e-2 21.809 1.1 56.06 1.01937
0.08 9.08654 8.01e-2 1.0888 3.7e-4 1.126 6.7e-4
0.06 1.10077 7.5e-2 1.01895 4.64e-4 1.02163 2.58e-4
0.04 1.0243 4.8e-4 1.0046 4.08e-4 1.00713 8.84e-4
0.02 1.00929 9.74e-4 1.00112 9.43e-4 1.00127 9.4e-4
0.01 1.00386 7.94e-4 0.9992 6.69e-4 0.999383 1.15e-3

The following table gives CPU times (in seconds) per unit time.

∆t V S2 S1
0.04 5.679 7.94 7.16

4. Temperature control in the splitting method. Consider the method
described in section 2.2 for solving the (i, j) fluctuation-dissipation equations. We
explain how the temperature of particles i and j evolves according to this method.

Lemma 4.1. Let ({qn+1
i }, {pn+1

i }) := Si,j,∆t,n({qn
i }, {pn

i }); then

E(pn+1
i · q̂n

ij)
2+ E(pn+1

j · q̂n
ij)

2 − kBT −E(pn · q̂n
ij)

2

= λ
(
E(pn

i · q̂n
ij)

2 + E(pn
j · q̂n

ij)
2 − kBT −E(pn · q̂n

ij)
2
)
,

where λ := (
1−γwD(qij)∆t
1+γwD(qij)∆t

)2 and pn := 1
2 (pn

i + pn
j ).

This equation describes precisely how the numerical method for the (i, j) fluctua-
tion-dissipation equations effects the temperature of the two particles. If the particles
interact (qij < rc), then 0 ≤ λ < 1. Therefore, when pn

i + pn
j = 0 and the particles

interact, the average temperature in the interparticle direction of the two particles i
and j approaches kBT . If pn

i +pn
j �= 0 and the particles interact, the pair temperature

in the interparticle direction approaches the correct equilibrium temperature given by
(3) for the pair rather than for the whole ensemble of particles. The pair system cannot
see the total momentum for the whole system and so will not get the equilibrium
temperature correct.

Proof. First recall that if for scalars a, b and for mean zero, variance ∆t IID
random variables Wn(∆t),

Xn+1 = aXn + bWn(∆t),

then

Xn = anX0 + b

n−1∑
i=0

an−i−1W i(∆t).

Thus,

EX2
n = a2nX2

0 + b2
n−1∑
i=0

a2(n−i−1)∆t = a2nX2
0 + b2

1 − a2n

1 − a2
∆t,

where E denotes average over the realizations of W i(∆t). Assume a2 < 1. Let
X2

∞ = b2∆t/(1 − a2). Then

EX2
n+1 −X2

∞ ≤
[
EX2

n −X2
∞
]
a2.
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We apply this to the equation for pnij := pn
ij · q̂n

ij given by

pn+1
ij =

1 − γwD(qnij)∆t

1 + γwD(qnij)∆t
pnij + σ(wR(qnij) + wR(qnij))

1

1 + γwD(qnij)∆t
Wn

ij(∆t).(11)

Now,

∆t
σ2(wR(qnij) + wR(qnij))

2

(1 + γwD(qnij))
2

(
1 −

(1 − γwD(qnij)∆t

1 + γwD(qnij)∆t

)2)−1

=
∆tσ2(wR(qnij) + wR(qnij))

2

2γ(wD(qnij) + wD(qnij))∆t + γ2∆t2(wD(qnij)
2 − wD(qnij)

2)

= 2kBT.

Hence,

E(pn+1
ij )2 − 2kBT = λ(E(pnij)

2 − 2kBT ), λ :=
(1 − γwD(qij)∆t

1 + γwD(qij)∆t

)2

.(12)

Suppose that the total linear momentum of the two particles is zero; then pi = −pj

and we have

E(pn+1
i · q̂n

ij)
2 + E(pn+1

j · q̂n
ij)

2 − kBT = λ
(
E(pn

i · q̂n
ij)

2 + E(pn
j · q̂n

ij)
2 − kBT

)
.

For general initial momentum, the above argument can be repeated with pi − pn

instead of pi.

5. Appendix. Consider the following SDE:

dq = p dt,

dp = f(q, p)dt + g(q)Θ dW (t),

where q, p ∈ Rd and f ∈ C2(Rd,Rd;Rd) and g ∈ C2(Rd;Rd×d) and Θ is a d×m ma-
trix. W (t) is a standard Brownian motion in Rm. Note that these assumptions do not
apply to the DPD equations. We show that the methods used for the (i, j) fluctuation-
dissipation equations in section 2.2 are weakly second order consistent [11]. That
is, we show the Itô–Taylor expansions agree to terms with coefficients 1, ∆t, ∆t2,
and W (∆t) and ∆tW (∆t). The method can be written more simply for the above
SDE as

qn+1 = qn + pn∆t + 1
2f(qn, pn)∆t2 + 1

2∆t g(qn)ΘWn(∆t),

pn+1 = pn + 1
2∆t

[
f(qn, pn) + f(qn+1, pn+1)

]
+ 1

2

(
g(qn) + g(qn+1)

)
ΘWn(∆t).

Expand out the terms around (qn, pn) and denote higher order terms by hot. First

g(qn+1) = g(qn) + gq(qn)pn∆t + hot.

Expand f(qn+1, pn+1) around (qn, pn),

f(qn+1, pn+1) = f(qn, pn) + fq(qn, pn)pn∆t

+ fp(qn, pn)
[

1
2∆t(f(qn, pn) + f(qn+1, pn+1)) + 1

2 (g(qn) + g(qn+1))Wn(∆t)
]

+ 1
2 (g(qn)ΘΘT g(qn)T )ijfpipj (qn, pn)∆t + hot,
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where the sum over i, j is implied in the end term. Eliminating f(qn+1, pn+1) terms
on the right-hand side,

f(qn+1, pn+1) = f(qn, pn) + fq(qn, pn)pn∆t

+ fp(qn, pn)
[
f(qn, pn)∆t + (g(qn) + g(qn+1))ΘWn(∆t)

]
+ 1

2 (g(qn)ΘΘT g(qn)T )ijfpipj
(qn, pn)∆t + hot.

Consequently,

pn+1 = pn +
∆t

2

[
2f(qn, pn) + fq(qn, pn)pn∆t

+ fp(qn, pn)
(
f(qn, pn)∆t + (g(qn) + g(qn+1))ΘWn(∆t)

)]
+ 1

2∆t 1
2 (g(qn)ΘΘT g(qn)T )ijfpipj (qn, pn)∆t

+ 1
2 (g(qn) + g(qn+1))Wn(∆t) + hot

= pn + f(qn, pn)∆t + fp(qn, pn) g(qn)ΘWn(∆t)

+ fp(qn, pn)g(qn) Θ Wn(∆t)∆t

+
∆t2

2

[
fq(qn, pn)pn + fp(qn, pn)f(qn, pn) + 1

2 (g(qn)ΘΘT g(qn)T )ijfpipj

]
+ hot.

We now compute the Itô–Taylor expansion for this problem: let tn = n∆t, then

p(tn+1) = p(tn) +

∫ tn+1

tn

f(q(s), p(s)) ds +

∫ tn+1

tn

g(q(s))Θ dW (s).

Now, for tn ≤ s ≤ tn+1,

f(q(s), p(s)) =f(q(tn), p(tn)) +

∫ s

tn

fq(q(s′), p(s′))p(s′) ds′

+

∫ s

tn

fp(q(s′), p(s′))
(
f(q(s′), p(s′)) ds′ + g(q(s′))Θ dW (s′)

)

+ 1
2

∫ s

tn

[g(q(s′))ΘΘT g(q(s′))]ijfpipj
(qn, pn) ds′.

Thus,

p(tn+1) = p(tn) +

∫ tn+1

tn

f(q(tn), p(tn)) ds +

∫ tn+1

tn

∫ s

tn

fq(q(s′), p(s′))p(s′) ds′ ds

+

∫ tn+1

tn

∫ s

tn

fp(q(s′), p(s′))
(
f(q(s′), p(s′)) ds′ + g(q(s′))Θ dW (s′)

)
ds

+ 1
2

∫ tn+1

tn

∫ s

tn

[g(q(s′))ΘΘT g(s′))T ]ijfpipj
(q(s′), p(s′)) ds′ ds

= p(tn) + ∆tf(q(tn), p(tn)) + 1
2∆t2fq(q(tn), p(tn))p(tn)

+ 1
2∆t2fp(q(tn), p(tn))f(q(tn), p(tn))

+

∫ tn+1

tn

∫ s

tn

fp(q(tn), p(tn))g(q(tn))Θ dW (s′) ds

+ 1
4∆t2[g(q)ΘΘT g(q)T ]ijfpipj

(q(tn), p(tn)) + hot.
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In this case, we see the two expansions agree and we conclude that the method is
weakly second order.
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