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TONY SHARDLOW†

Department of Mathematics, Oxford Road, University of Manchester,

Manchester M13 9PL, UK. email: shardlow@ma.man.ac.uk

Abstract.

Weak convergence with respect to a space of twice continuously differentiable test
functions is established for a discretisation of a heat equation with homogeneous Dirich-
let boundary conditions in one dimension, forced by a space-time Brownian motion.
The discretisation is based on finite differences in space and time, incorporating a
spectral approximation in space to the Brownian motion.
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1 Introduction.

Consider the following stochastic heat equation on [0, 1] with homogeneous
Dirichlet boundary conditions:

(1.1) du + Au dt = dW (t), u(0) = U,

where the initial data U ∈ L2(0, 1), A := −∆, the Laplacian scaled to be pos-
itive definite with domain H2(0, 1) ∩ H1

0 (0, 1), and W (t) is a Wiener process
with covariance Q. For simplicity, we suppose that Q has eigenvalues αj ≥ 0
corresponding to the eigenfunctions ej :=

√
2 sin(jπ·) of ∆; in other words,

W (t) =
∞∑

j=1

α
1/2
j ejβj(t),

where βj(t) are independent and identically distributed Brownian motions. Equa-
tion (1.1) admits a unique mild solution for initial condition U ∈ L2(0, 1), namely

u(t;U) = e−AtU +
∫ t

0

e−A(t−s) dW (s),

where e−At is the semigroup with infinitesimal generator −A. This theory is
developed further in [2].
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We now define a simple discretisation of (1.1) based on the θ method in time
and the standard three point approximation to the Laplacian. Consider a time
step ∆t and a grid size ∆x = 1/J , some J ∈ N. We construct a numerical
approximation as follows. The Wiener process is approximated by truncating
its Fourier expansion to J − 1 terms. Let PJ−1 denote the operator taking f to
its first J − 1 modes,

PJ−1f = 2
J−1∑
j=1

〈f, sin(πj·)〉 sin(jπ·).

(〈·, ·〉 denotes the L2(0, 1) inner product.) Define the approximation to the
Wiener process by

dB∆t(n) :=
∫ (n+1)∆t

n∆t

PJ−1dW (s).

This gives an L2(0, 1) function. The numerical method evaluates this function
at the grid points j∆x for j = 1, . . . , J − 1. The initial condition chosen is
u0 = PJ−1U . Then, for 0 ≤ θ ≤ 1, we iterate

(1.2) un+1 − un +
∆t

∆x2A∆((1 − θ)un + θun+1) =




dB∆t(n)(∆x)
...

dB∆t(n)((J − 1)∆x)




where

A∆ =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




.

Let

(1.3) ũ(n∆t;U) =
J−1∑
j=1

ũjej ,

where ũj are chosen so that ũ(n∆t;U)(j∆x) equals the jth component of un for
j = 1, . . . , J − 1.

The above numerical method has been studied in [12] for the problem of space-
time white noise (case Q = I) in terms of strong convergence. Let E denote the
average with respect to the law of W (t). The conclusion is that for T, ε > 0,
there exists Kε such that

(E ‖u(n∆t;U) − ũ(n∆t;U)‖2)1/2 ≤ Kε∆x(1−ε)/2(1 + ‖U‖)
(
1 +

1
(n∆t)1−ε

)
,
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0 < n∆t ≤ T , as ∆t, ∆x → 0 with ν := ∆t/∆x2 constrained by ν(1 − θ) ≤ 1/4
(the norm ‖ · ‖ is the standard L2(0, 1) norm) (the stability condition can be
relaxed to ν(1 − 2θ) ≤ 1/2 by using Lemma 2.4 of the present paper). Studies
of similar methods for more general equations are available in [6, 7, 3, 4, 11] for
space-time white noise and for more general noise terms in [8]. The studies indi-
cate that standard approximations to (1.1) of the type described above converge
in root mean square with rate ∆x1+(r−ε)/2, where −2 < r ≤ 0 is determined by
the following trace condition on the correlation operator

(1.4)
∞∑

j=1

αjj
r < ∞.

Results of this type have been extended to some nonlinear stochastic PDEs such
as the Navier–Stokes equations. See for example, [8, 5].

In this paper, weak convergence is studied for the linear stochastic heat equa-
tion (1.1). For the most part, studies of weak convergence of numerical methods
for (1.1) have been lacking in the literature, even though it is average proper-
ties that are often most interesting. Though we only tackle a linear equation,
the technique of proof, the Kolmogorov equation, is used to understand weak
convergence for numerical methods of SDEs in generality [13, 10, 9]. To the au-
thor’s knowledge, this is the first paper to apply the Kolmogorov equation to the
analysis of numerical methods for parabolic stochastic PDEs. It is certainly be-
lievable that the analysis can be extended to nonlinear PDEs to some extent, see
for example an application to a nonlinear delay equation in [1]. The conclusion
of our analysis is that subject to the trace condition (1.4) and for smooth initial
data the numerical method (1.2) converges with rate ∆x2+r−ε, each ε > 0, with
respect to the space of twice boundedly continuously differentiable test func-
tions. That is, order ∆x1−ε for space time white noise (where (1.4) holds with
r < −1). As in the finite dimensional situation, we observe that the rate of weak
convergence is twice that of strong convergence.

Theorem 1.1. Let u(t;U) (respectively, ũ(t;U)) denote a solution of (1.1)
(resp., the trigonometric interpolant of the numerical solution (1.2) defined in
(1.3)) corresponding to initial data U ∈ L2(0, 1). Suppose that

∑∞
j=1 αjj

r <
∞, for some −2 < r ≤ 0. For ε, T > 0 and a twice continuously boundedly
differentiable function φ : L2(0, 1) → R, there exists a constant K > 0 such that

∣∣∣Eφ(u(n∆t;U))− Eφ(ũ(n∆t;U))
∣∣∣ ≤ K∆x2+r−ε(1 + ‖U‖2), T = n∆t

as ∆t, ∆x → 0 with ν = ∆t/∆x2 fixed and (1 − 2θ)ν < 1/2.
The proof of this result is given in §3. We do not study the dependence of

K on T in this theorem; further information can be gleaned from the proof of
Lemma 3.4.
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2 Background.

We will work on the space L2(0, 1) with norm ‖f‖ := (
∫ 1

0
f(x)2dx)1/2. Let Hp

denote the Sobolev space of L2(0, 1) functions with norm

‖u‖Hp :=
( ∞∑

j=1

j2p〈u, ej〉2‖ej‖2
)1/2

.

We denote the projection operator from L2(0, 1) to the first J eigenfunctions
by PJ ; that is, PJu =

∑J
j=1〈u, ej〉ej . Fractional powers are denoted Aγ so

that Aγu =
∑∞

j=1(jπ)2γ〈u, ej〉ej . Throughout the paper, we will make use of
a generic constant K, which will be independent of the initial data U and the
smoothing parameter k.

Before proving the main result, we develop an abstract framework for our
problem and give some basic results useful in the proof. The next Lemma is well
known and describes a smoothing property of the heat semigroup:

Lemma 2.1. For γ > 0, there exists a constant Cγ > 0 with

‖Aγe−Atej‖ ≤ Cγt
−γ‖ej‖, t > 0.

The following describes conditions on Q for the boundedness of the solution
of (1.1) in Hp.

Lemma 2.2. Consider initial data U ∈ L2(0, 1). Suppose that the eigenvalues
αj of Q obey

∑∞
j=1 jrαj < ∞, for some r > −2. For 0 ≤ p ≤ (2 + r)/2 and

T > 0, there exists K > 0 with(
E ‖u(t;U)‖2

Hp

)1/2

≤ K
[ 1
tp/2

‖U‖+ 1
]
, 0 ≤ t ≤ T.

Proof. The solution

u(t;U) = e−AtU +
∫ t

0

e−A(t−s) dW (s)

so that
(
E ‖u(t;U)‖2

Hp

)1/2

≤ K

tp/2
‖U‖ +

( ∞∑
j=1

∫ t

0

j2pe−2j2π2(t−s)αj ds

)1/2

≤ K

tp/2
‖U‖ +

( ∞∑
j=1

j2p 1 − e−2j2π2t

2j2π2
αj

)1/2

≤ K

tp/2
‖U‖ + K

( ∞∑
j=1

j2p−2−r(1 − e−2j2π2t)(jrαj)
)1/2

≤ K

tp/2
‖U‖ + K

( ∞∑
j=1

jrαj

)1/2

if 2p− 2 − r ≤ 0.
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The Laplacian operator A is unbounded. We will frequently approximate A
by a bounded approximation Ak, defined as follows: Let Ak := PkA; that is,
Ak is the operator where ej has eigenvalue j2π2 for j = 1, . . . , k and eigenvalue
0 for j = k + 1, . . . . By use of this approximation, we find strong solutions of
an SDE that converge to the mild solutions of (1.1) and that yield to the Itô
formula (see [2]).

Lemma 2.3. For initial data U ∈ L2(0, 1), consider the mild solution u(t;U)
of

du = Au dt + dW (t), u(0) = U,

and the strong solution uk(t;U) of

(2.1) duk = Aku
k dt + Pk dW (t), uk(0) = PkU.

Then, for p ≥ 2,

sup
0≤t≤T

E ‖u(t;U)− uk(t;U)‖p → 0, as k → ∞.

Proof. This is elementary.
We wish to express the numerical method first as a difference equation on

L2(0, 1) and then write down an interpolant of the numerical solution that solves
a stochastic evolution equation on L2(0, 1). Consider the following difference
equation on L2(0, 1)

ũn+1 − ũn +
∆t

∆x2 Ã
[
(1 − θ)ũn + θũn+1

]
= dB∆t(n), ũ0 = PJ−1U.

Here Ã is defined by
Ãej = λjej , j = 0, 1, . . .

where λj = λj+nJ = 4 sin2(jπ∆x/2) for n ∈ Z. The solutions ũn of this iteration
evaluated at j∆x for j = 1, . . . , J − 1 agree with the solution of the numerical
method (1.2) (see [12] for further details). This equation can be rearranged to
achieve

ũn+1 = (I − C∆t)ũn + Q∆xdB∆t(n)

where

C =
1
∆t

(
I −

[
I +

∆t

∆x2 θÃ
]−1[

I − ∆t

∆x2 (1− θ)Ã
])

, Q∆x =
[
I +

∆t

∆x2 θÃ
]−1

.

The eigenvalue of C corresponding to the eigenfunction ej is

µj :=
1
∆t

(
1 − 1 − ν(1 − θ)λj

1 + νθλj

)
=

1
∆t

νλj

1 + νθλj
, ν = ∆t/∆x2.
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Clearly µj are increasing for j = 1, . . . , J − 1. The corresponding eigenvalue of
Q∆x is

1
1 + θνλj

, j = 1, . . . .

The continuous interpolant, which we denote by ũ, is the solution of

(2.2) dũ(t, U) = −Cũ(t̂, U) dt + dW̃ (t), ũ(0;U) = PJ−1U,

where t̂ = max{n∆t : n∆t ≤ t, n = 0, 1, . . .} and W̃ (t) is a Wiener process on
L2(0, 1) with covariance, Q̃, defined by
(2.3)
Q̃ej = α̃jej , α̃j =

αj

(1 + θνλj)2
for j = 1, . . . , J − 1, α̃j = 0 for j = J, . . . .

Clearly, α̃j ≤ αj . Note that ũ(n∆t;U) agrees with ũn and hence with the
trigonometric interpolant defined in (1.3).

We describe some important properties of this approximation in the next two
Lemmas. The first Lemma deals with the approximations we have made from
the Laplacian A and the covariance operator Q:

Lemma 2.4. Consider 0 ≤ θ ≤ 1 and ν = ∆t/∆x2 fixed.

1. For j = 1, . . . , J − 1 and γ > 0,

‖A−γ(Q− Q̃)ej‖ ≤ (2θνπ2(1−γ))αjj
2(1−γ)∆x2‖ej‖

and for j = J, . . . ,

‖A−γ(Q− Q̃)ej‖ ≤ 2
π2γ

αjj
−2γ‖ej‖.

2. There exists σ > 0 such that

π2 − σ2∆x2j2 ≤ µj/j
2 ≤ π2, j = 1, . . . , J − 1.

Thus, j2π2 − µj ≤ σ2∆x2j2.

3. If ν(1 − θ) < 1/4, then for all ∆t > 0 we have 0 ≤ (1 − µj∆t) ≤ e−µj∆t.
If ν(1 − 2θ) < 1/2, there exists c > 0 such that |1 − µj∆t| ≤ e−c j2∆t for
j = 1, . . . , J − 1 as ∆t → 0 with ν fixed.

Proof.

1. Notice that

1 − 1
(1 + θνλj)2

=
(
1 − 1

1 + θνλj

)(
1 +

1
1 + θνλj

)
≤ 2

(
1 − 1

1 + θνλj

)
.
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Now for j = 1, . . . , J − 1, from (2.3)

‖A−γ(Q− Q̃)ej‖ ≤ 2αj

(j2π2)γ
(
1 − 1

1 + θνλj

)
=

2αj

j2γπ2γ

θνλj

1 + θνλj

=
2ναj

j2γπ2γ

4 sin2(jπ∆x/2)
1 + θνλj

≤ 2αjν

j2γπ2γ
4(jπ∆x/2)2 = 2αjνj

2(1−γ)π2(1−γ)∆x2.

A similar argument applies for j = J, J + 1, . . . .

2. This is Lemma 2.3 of [12].

3. The first part is contained in [12]. For the second part,

|1 − µj∆t| = eln |1−µj∆t| = e(ln |1−µj∆t|/j2∆t)j2∆t.

Now for ν(1 − 2θ) < 1/2, |1 − µj∆t| is uniformly bounded less than one
and j2∆t for j = 1, . . . , J − 1 is uniformly bounded above. Hence, there
exist c > 0 such that |1 − µj∆t| ≤ e−cj2∆t, j = 1, . . . , J − 1.

The next Lemma gives boundedness of the interpolated numerical solution
in Hp:

Lemma 2.5. Let ν := ∆t/∆x2 and suppose that ν(1 − 2θ) < 1/2. For p ≥ 0,
the numerical interpolant ũ(t;U) obeys for t > 0

E
[
‖ũ(t;U)‖2

Hp

]1/2

≤ K
1

tp/2
‖U‖ + K(1 + ∆x1+r/2−p),

E
[
‖ũ(t;U)− ũ(t̂;U)‖2

Hp

]1/2

≤ K∆t
1

tp/2
‖U‖ + K∆x1+min{0,r/2−p},

for a constant K independent of U , uniformly as ∆t,∆x → 0 with ν fixed.
Proof. Start with

(2.4) (E ‖ũ(t;U)‖2
Hp)1/2 ≤ (E ‖ũ(t;U) − ũ(t̂;U)‖2

Hp)1/2 + (E ‖ũ(t̂;U)‖2
Hp)1/2.

We estimate the ũ(t;U) − ũ(t̂;U) term at the end of the proof. There are two
terms to estimate in ũ(t̂;U): the part resulting from the initial data: for t > ∆t,
we have by Lemma 2.4

‖(I − C∆t)t̂/∆tU‖2
Hp =

J−1∑
j=1

j2p(1 − µj∆t)2t̂/∆tU2
j ≤

J−1∑
j=1

j2pe−2cj2 t̂U2
j .

Now, using 1/t̂ ≤ 2/t for t > ∆t and Lemma 2.1, we have for p > 0

‖(I − C∆t)t̂/∆tU‖2
Hp ≤ K

1
t̂p
‖U‖2 ≤ K

1
tp
‖U‖2.
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For 0 ≤ t < ∆t, using ũ(t̂;U) = U and ∆t/∆x2 fixed, the following holds

‖U‖2
Hp =

J−1∑
j=1

j2pU2
j ≤ K J2p‖U‖2 ≤ K∆t−p‖U‖2 ≤ Kt−p‖U‖2.

One can show that −1 < 1 − µj∆t < 1 for ν(1 − 2θ) < 1/2 and that

1 − 1
2µj∆t =

1 + ν sin2(jπ∆x/2)(4θ − 2)
1 + 4θν sin2(jπ∆x/2)

≥ 1 − |4θ − 2|ν
1 + 4θν

=: Kν,θ > 0.

The second part of the solution ũ(t̂;U) is the stochastic integral

n−1∑
i=0

∫ (i+1)∆t

i∆t

(I − C∆t)i dW̃ (s), t = n∆t.

This is bounded in E ‖ · ‖2
Hp by

n−1∑
i=0

J−1∑
j=1

α̃jj
2p(1 − µj∆t)2i∆t

(as the eigenvalues α̃j ≤ αj)

≤
n−1∑
i=0

J−1∑
j=1

αjj
2p(1 − µj∆t)2i∆t

≤
J−1∑
j=1

αjj
2p 1 − (1 − µj∆t)2n

1 − (1 − µj∆t)2
∆t

(using 1− (1 − µj∆t)2 = 2∆tµj(1 − 1
2µj∆t))

≤
J−1∑
j=1

(αjj
r)

j2p−r

2Kθ,νµj
.

If Y = sin2(jπ∆x/2)/(∆x/2)2, then it is easy to show 4j2 ≤ Y ≤ j2π2 for
j = 1, . . . , J − 1. This gives

µj =
Y

1 + θ∆tY
≥ 4j2

1 + θ∆tj2π2
≥ 4j2

1 + θνπ2
.

Hence,
J−1∑
j=1

(αjj
r)

j2p−r

µj
≤ K

J−1∑
j=1

(αjj
r)j2p−r−2,

which is uniformly bounded in the limit ∆t,∆x → 0 with (1 − 2θ)ν < 1/2 if
2p− r ≤ 2 and grows like ∆x2+r−2p if 2p− r > 2. We have shown that

(2.5) E
[
‖ũ(t̂;U)‖2

Hp

]1/2

≤ K
1

tp/2
‖U‖+ K(1 + ∆x1+r/2−p),
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To complete the proof, consider

ũ(t;U)− ũ(t̂;U) = (I − C∆t)ũ(t̂;U)(t− t̂) + (W̃ (t) − W̃ (t̂)).

Then, for t̂ > 0, as |1 − µj∆t| < 1

(
E ‖ũ(t;U) − ũ(t̂;U)‖2

Hp

)1/2 ≤
(
E ‖ũ(t̂;U)‖2

Hp

)1/2
∆t +

[ J−1∑
j=1

(αjj
r)j2p−r∆t

]1/2

≤
(
E ‖ũ(t̂;U)‖2

Hp

)1/2
∆t + K∆t1/2Jmax{0,p−r/2}.

With (2.5) and (2.4), this completes the proof.

3 Proof of Theorem 1.1.

We introduce the Kolmogorov equation for the stochastic evolution equa-
tion (1.1). The background theory is developed in Da Prato and Zabczyk [2],
where further references are also given.

Theorem 3.1. Let φ : L2(0, 1) → R be twice continuously Frechet differen-
tiable with bounded derivatives. The function vk(t,X) := Eφ(uk(t;X)), where
uk is defined in (2.1), is once differentiable in time and twice differentiable in
space and satisfies

vk
t (t,X) = 1

2 Tr
[
vk

XX(t,X)QPk

]
− vk

X(t,X)AkX.

Moreover, the derivatives vk
t , v

k
X , and vk

XX are uniformly continuous on bounded
subsets of R+ × L2(0, 1).

Proof. The truncation uk is finite dimensional and so the Kolmogorov equa-
tion is simply the usual Kolmogorov equation written on an infinite dimensional
space.

Proof. (of Theorem 1.1) Let vk(t,X) := E (φ(uk(T − t;X)) for t ≥ 0 and
X ∈ L2(0, 1), and

Lkv(t,X) := vt(t,X) + 1
2 Tr

[
vXX(t,X)QPk

]
− vX(t,X)AkX.

After reversing time, Theorem 3.1 states that Lkvk(t,X) = 0 and that vk satisfies
the hypothesis of Itô’s formula. Apply the Itô formula to the approximations ũ
defined in (2.2) and then take averages to get

vk(T, ũ(T ;U))− vk(0, ũ(0;U))

= E
[∫ T

0

{
− vk

X(s, ũ(s;U))Cũ(ŝ;U) + 1
2 Tr

[
vk

XX(s, ũ(s;U))Q̃
]

+ vk
t (s, ũ(s;U))

}
ds

]

(subtracting off 0 = Lkvk(s, ũ(s;U)))
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= E
[∫ T

0

1
2 Tr

[
vk

XX(s, ũ(s;U))Q̃
]
− 1

2 Tr
[
vk

XX(s, ũ(s;U))QPk

]

− vk
X(s, ũ(s;U))Cũ(ŝ;U) + vk

X(s, ũ(s;U))Akũ(s;U) ds

]
.

Clearly,

Eφ(ũ(T ;U))− Eφ(uk(T ;U)) = vk(T, ũ(T ;U))− vk(0, ũ(0;U))

and hence

∣∣∣∣Eφ(ũ(T ;U))− Eφ(uk(T ;U))
∣∣∣∣ ≤

∣∣∣∣E
∫ T

0

1
2 Tr

[
vk

XX(s, ũ(s;U))(Q̃−QPk)
]

+ vk
X(s, ũ(s;U))(Ak − C)ũ(ŝ;U)

+ vk
X(s, ũ(s;U))Ak(ũ(s;U)− ũ(ŝ;U)) ds

∣∣∣∣.

(3.1)

Now, we have that

vk
X(s;U) = Eφ′(uk(T − s;U))uk

X(T − s;U)

and

vk
XX(s;U)(ξ1, ξ2) =Eφ′′(uk(T − s;U))(uk

X(T − s;U)ξ1, u
k
X(T − s;U)ξ2)

+ φ′(uk(T − s;U))uk
XX(T − s;U)(ξ1, ξ2).

Because we are working on a linear equation (2.1),

uk
X(s;U)ξ = e−Aksξ, uk

XX(s;U) = 0.

Thus,

(3.2) vk
X(s;U) = Eφ′(uk(T − s;U))e−Ak(T−s)

and

(3.3) vk
XX(s;U)(ξ1, ξ2) = Eφ′′(uk(T − s;U))(e−Ak(T−s)ξ1, e

−Ak(T−s)ξ2).

Consider the first term on the right hand side of (3.1). As φ′′ is bounded,

Tr
[
vk

XX(s, ũ(s;U))(Q̃−QPk)
]

=
∞∑

j=1

〈
Eφ′′(uk(T − s; ũ(s;U)))e−Ak(T−s)(Q̃−QPk)ej , e

−Ak(T−s)ej

〉

≤K

∞∑
j=1

〈
e−Ak(T−s)(Q̃−QPk)ej , e

−Ak(T−s)ej

〉

=K Tr e−2Ak(T−s)(Q̃−QPk).
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Take k large enough that k > J . Then, using Lemma 3.3 and the condition
r ≤ 0, we have for each ε > 0, a K such that

Tr
[
vk

XX(s, ũ(s;U))(Q̃−QPk)
]
≤ K

1
(T − s)1−ε

∆x2+min{0,r−2ε}(3.4)

≤ K
1

(T − s)1−ε
∆x2+r−2ε.

Consider the second term in (3.1). Using the boundedness of φ′ and (3.2),

|vk
X(s, U)(C −Ak)ũ(ŝ;U)| ≤K‖e−Ak(T−s)(C −Ak)ũ(ŝ;U)‖.

From Lemma 3.2, we see that

(3.5) |vk
X(s, U)(C −Ak)ũ(ŝ;U)| ≤ K

1
(T − s)1−ε

∆x2−2ε · ‖ũ(ŝ;U)‖.

Then, using Lemma 2.5 with r > −2,

(3.6) |E vk
X(s, U)(C −Ak)ũ(ŝ;U)| ≤ K

1
(T − s)1−ε

∆x2−2ε(1 + ‖U‖).

The integral of the third term in (3.1) is bounded by Lemma 3.4. Integrating
the terms (3.4) and, (3.6), and adding to that in Lemma 3.4, we have

|Eφ(ũ(T ;U))− Eφ(uk(T ;U))| ≤ K∆x2+r−2ε(1 + ‖U‖2).

The constant K is independent of k and is uniform in the limit ∆t,∆x → 0 with
∆t/∆x2 = ν fixed subject to the stability condition ν(1 − 2θ) < 1/2. Use the
convergence of uk → u in the sense of Lemma 2.3 with the continuity of φ, to
complete the proof.

Lemma 3.2. Consider ν = ∆t/∆x2 fixed. For all ε > 0, there exists K > 0
such that for k > J

‖e−sAk(C −Ak)X‖ ≤ K

s1−ε
∆x2−2ε‖X‖, s > 0, X ∈ L2(0, 1).

Proof. The eigenvalues of C are µj and of Ak j2π2 with corresponding
eigenfunctions ej . Thus,

‖e−sAk(C −Ak)X‖2 =
J−1∑
j=1

e−2j2π2sX2
j (j

2π2 − µj)2

(using Lemma 2.4) ≤
J−1∑
j=1

e−2j2π2sX2
j (σ

2∆x2j2)2

(using Lemma 2.1) ≤K

J−1∑
j=1

s−γj−2γX2
j (σ

2∆x2j2)2
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≤K
J−1∑
j=1

s−γj−2γ+4X2
j ∆x4

≤Ks−γ∆x4Jmax(0,−2γ+4)‖X‖2

≤Ks−γ∆xmin(4,2γ)‖X‖2.

Put γ = 2 − 2ε; then

‖e−Aks(C −Ak)X‖2 ≤ Ks−2+2ε∆xmin{4,4−4ε}‖X‖2.

Lemma 3.3. Assume the eigenvalues of the correlation operator Q satisfy∑∞
j=1 jrαj < ∞. Consider ν := ∆t/∆x2 fixed. For all ε > 0, there exists K > 0

such that for k > J

Tr e−2Aks(Q̃−QPk) ≤ K
1

s1−ε
∆x2+min(0,r−2ε), s > 0.

Proof. Let γ > 0. Then, as k > J ,

Tr e−2Aks(QPk − Q̃) =
k∑

j=1

(πj)2γe−2j2π2s ‖A−γ(QPk − Q̃)ej‖
‖ej‖

(using Lemma 2.4 and Lemma 2.1)

≤K
J−1∑
j=1

s−γαjj
2(1−γ)∆x2 + K

k∑
j=J

s−γj−2γαj

≤K

J−1∑
j=1

s−γ(jrαj)j−r+2(1−γ)∆x2 + K

k∑
j=J

s−γj−2γ−r(jrαj)

≤Ks−γ
[
Jmax(0,2−2γ−r)∆x2 + J−2γ−r

]

≤Ks−γ∆xmin(2,2γ+r).

Finally, put γ = 1− ε, to complete the proof.
Lemma 3.4. Let ν := ∆t/∆x2 and suppose that ν(1 − 2θ) < 1/2. Let T > 0,

−2 < r ≤ 0, and U ∈ L2(0, 1). Let vk(t, U) = Eφ(uk(t;U)) for 0 ≤ t ≤ T and a
function φ : L2(0, 1) → R with two bounded derivatives. For ε > 0, there exists
K > 0 (independent of U) such that

∫ T

0

|E vk
X(s, ũ(s;U))Ak(ũ(s;U) − ũ(ŝ;U))| ds ≤ K(1 + ‖U‖2)∆x2+r−2ε.
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Proof. Let δ = ũ(s;U)− ũ(ŝ;U). First note that by (3.2)

|E vk
X(s, ũ(s;U))Akδ| ≤ K‖e−Ak(T−s)A1−ε

k ‖ · (E ‖Aε
kδ‖2)1/2.

Using Lemma 2.5 with p = 2ε, we have

|E vk
X(s, ũ(s;U))Akδ| ≤

K

(T − s)1−ε

[
∆t

1
sε
‖U‖ + ∆x1+min{0,r/2−2ε}

]
.

This estimate is not enough to complete the proof, and so further investigation
is given below. The estimate can be used on the interval 0 ≤ s < ∆t as an
extra ∆t is introduced when integrating. Thus to simplify arguments below we
assume s ≥ ∆t in the following analysis.

Let Fs be the σ-algeba generated by W (s) and use the notation E [· | Fs] to
denote conditional expectations with respect to Fs. By the intermediate value
theorem,

vk
X(s, ũ(s;U))Akδ =vk

X(s, ũ(ŝ;U))Akδ +
[
vk

X(s, ũ(s;U)) − vk
X(s, ũ(ŝ;U))

]
Akδ

=vk
X(s, ũ(ŝ;U))Akδ + vk

XX(s, Zs)(δ, Akδ),

where Zs := ũ(ŝ;U) + z1 δ, some 0 ≤ z1 ≤ 1, and is Fs measurable. Similarly

E
[
vk

X(s, ũ(ŝ;U))Akδ
∣∣∣Fŝ

]
=vk

X(s, ũ(ŝ;U))E
[
Akδ

∣∣∣Fŝ

]

=vk
X(s, 0)E

[
Akδ

∣∣∣Fŝ

]

+ vk
XX(s, Zŝ)

(
ũ(ŝ;U),E

[
Akδ

∣∣∣Fŝ

])
,

where Zŝ := z2 ũ(ŝ;U), some 0 ≤ z2 ≤ 1, and is Fŝ measurable. Then,

E vk
X(s, ũ(s;U))Akδ =vX(s, 0)AkE δ + E

[
vk

XX(s, Zŝ)
(
ũ(ŝ;U), AkE

[
δ
∣∣∣Fŝ

])]

+ E
[
vk

XX(s, Zs)
(
δ, Akδ

)]
.

(3.7)

We deal with the three terms on the right hand side separately. First note that
by Lemma 2.4 for ε > 0,

‖C(I − C∆t)ŝ/∆tej‖H2ε = j2εµj(1 − µj∆t)ŝ/∆t ≤ j2(1+ε)π2e−cj2 ŝ ≤ K

ŝ1+ε
.

From (2.2),

E δ =− CE ũ(ŝ, U)(s− ŝ) = −C(I − C∆t)ŝ/∆tPJ−1U (s− ŝ).

Using (3.2), this gives the following estimate for the first term in (3.7):
∣∣∣ vk

X(s, 0)AkE δ
∣∣∣ ≤ K‖A1−ε

k e−Ak(T−s)‖ · ‖E δ‖H2ε ≤ K

(T − s)1−ε
‖U‖ ∆t

ŝ1+ε
.
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Then integrating, ∫ T

∆t

∣∣∣ vk
X(s, 0)AkE δ

∣∣∣ ds ≤ K ‖U‖ ∆t1−ε.

From (2.2)

E
[
δ
∣∣∣Fŝ

]
= E

[
ũ(s;U)− ũ(ŝ;U)|Fŝ

]
= −Cũ(ŝ;U)(s− ŝ).

Because vXX is symmetric and φ′′ bounded and by (3.3), we have the following
for p > 0

|vk
XX(s, Z)(ξ1, ξ2)| ≤ K‖Ap/2

k e−Ak(T−s)ξ1‖ · ‖A−p/2
k e−Ak(T−s)ξ2‖.

Estimate the second term in (3.7) as follows: for any ε > 0,∣∣∣E[
vk

XX(s, Zŝ)
(
ũ(ŝ;U), AkE

[
δ
∣∣∣Fŝ

])] ∣∣∣
≤K(E ‖Ap/2

k ũ(ŝ;U)‖2)1/2(E ‖e−Ak(T−s)A
1−p/2
k Cũ(ŝ;U)‖2)1/2 ∆t

≤K(E ‖Ap/2
k ũ(ŝ;U)‖2)1/2‖A1−ε

k e−Ak(T−s)‖ · (E ‖A1−p/2+ε
k ũ(ŝ;U)‖2)1/2∆t.

Now, by Lemma 2.5, for 0 ≤ p ≤ 1 + r/2,

(E ‖Ap/2
k ũ(ŝ;U)‖2)1/2 ≤K

[ 1
ŝp/2

‖U‖+ 1
]

(E ‖A1−p/2+ε
k ũ(ŝ;U)‖2)1/2 ≤K

[ 1
ŝ1−p/2+ε

‖U‖ + ∆x1+r/2−2+p−2ε
]
.

Set p = 1+ r/2 so that 1+ r/2− 2+ p− 2ε = r− 2ε. Then, taking the previous
three together,∣∣∣E[

vXX(s, Zŝ)
(
ũ(ŝ;U), AkE

[
δ
∣∣∣Fŝ

])] ∣∣∣
≤ K

(T − s)1−ε

(‖U‖
ŝp/2

+ 1
)[ 1

ŝ1−p/2+ε
‖U‖+ ∆xr−2ε

]
∆t

≤ K

(T − s)1−ε

(‖U‖2

ŝ1+ε
∆t + ‖U‖∆t

( 1
ŝ1−p/2+ε

+
∆xr−2ε

ŝp/2

)
+ ∆t∆xr−2ε

)
.

As −2 < r ≤ 0 and 0 < p ≤ 1, integration yields∫ T

∆t

∣∣∣E[
vXX(s, Zŝ)

(
ũ(ŝ;U), AkE

[
δ
∣∣∣Fŝ

])] ∣∣∣ ds ≤ K(1 + ‖U‖2)∆x2+r−2ε.

For the third term in (3.7), by using Lemma 2.5,∣∣∣E[
vk

XX(s, Zs)
(
δ, Akδ

)] ∣∣∣ ≤K(E ‖δ‖2)1/2 · (E ‖A1−ε
k e−Ak(T−s)Aε

kδ‖2)1/2

≤ K

(T − s)1−ε

[
∆t ‖U‖+ ∆x1+min{0,r/2}

]

·
[∆t‖U‖

sε
+ ∆x1+min{0,r/2−2ε}

]

≤ K

(T − s)1−ε

1
sε

∆x2+min{0,r−2ε}(‖U‖2 + 1).
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After integrating and using r ≤ 0, we conclude that
∫ T

0

∣∣∣E[
vk

XX(s, Zs)
(
δ, Akδ

)] ∣∣∣ ds ≤ K(1 + ‖U‖2)∆x2+r−2ε.

This completes the proof.
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