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ABSTRACT

The multiplicity of generic bifurcations of periodic orbits of one-parameter families of area-preserving
maps is computed. The numbers of bifurcation points (counting multiplicity) are computed at arbitrary
period for the case of the Henon family.

1. Introduction and statement of results

For a map/of a space X to itself, the periodic points of period q (or a factor) are
the solutions of

/«(*) = *, xeX. (1)

If A'is a manifold and/is differentiable, then the roots are generically simple, that is,
det(2)/| —/) ^ 0, where /is the identity. This is also true restricted to the class of C00

area-preserving maps of a surface, which is our special interest.
Given a family of maps^, with parameter p e R, a bifurcation point at period q is

defined by the equations
yj(*) = x,

det(DfMi-I) = 0. (2)

Remarkably, for families of area-preserving maps^, roots (X,JU) of (2) are frequently
not simple. They can have high multiplicity.

THEOREM 1. At an elementary real n-furcation of a periodic point of least period
p for a C00 one-parameter family of area-preserving maps, the multiplicity of the root
of the bifurcation equations (2) with q = np is Mn, where

Elementary ^-furcations are defined by Meyer [10]. The cases n = 1 and 2 are
better known as saddle-centre and period-doubling, respectively. The multiplicity of a
root can be quantified by tools from algebraic geometry, which we shall recall in
Section 2. Theorem 1 is proved in Section 3.
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Our next result is to compute how multiplicity of a bifurcation at period q appears
at periods which are multiples of q.

THEOREM 2. If a bifurcation point (x,fi) at period q has multiplicity M, and all
components off^Q{x) = x in C3 passing through (x,fi) are solutions off£(x) = x, then
regarded as a bifurcation point at period kq it also has multiplicity M.

This is proved in Section 4.
For the area-preserving Henon family,

the periodic orbits, their bifurcations and their multiplicities can be computed
explicitly up to period 4. The results are given in Section 5 and Figure 1. For the
saddle-centre, period-doubling and 3-furcation, we find the same multiplicities as in
Theorem 1, but the 4-furcation has multiplicity 22, rather than the generic result of
18. We conclude that the 4-furcation is non-elementary. This agrees with normal form
calculations (Turchetti, private communication). That the 4-furcation is non-
elementary can also be seen from the formulae for the period 4 orbits, which do not
exhibit the same asymptotic scaling laws near the bifurcation as in the elementary
cases.

2.0 •-
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FIG. 1. Bifurcation diagram for the area-preserving Henon family showing periodic orbits
and the multiplicities of bifurcations, up to period 4.

For the area-preserving Henon family, it is easy to compute the total number of
periodic points of period q in C2 (counting according to multiplicity) at any given
parameter value fi, because equation (1) can then be written as a system of q quadratic
equations in q unknowns (Section 5). In Section 6 we recall how to use Bezout's
theorem (see Section 2), to prove the following.

THEOREM 3. For any parameter value ji in the Henon map, the number of solutions
of{\) in C2 is 2", counting multiplicity.
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Similarly, it is easy to compute the total number of roots of the bifurcation
equation (2) at period q (counting multiplicity) for the Henon family. In Section 7 we
use Bezout's theorem to show that there are ql9 solutions in complex projective space
CP3. In this case, however, half the multiplicity for the solutions is at infinity.

THEOREM 4. For each # e N, the total multiplicity in C3 of the equations for
bifurcation at period q in the Henon family is q29~l.

This is proved in Section 7.
It follows that in the Henon family, the bifurcation diagram of Figure 1 exhausts

all the multiplicity for q = 1,2,3,4. However, at q = 5, we know there are two 5-
furcations from the fixed point and a period 5 saddle-centre [9]. Adding in the saddle-
centre of period 1 and assuming that the 5-furcations are elementary, as seems to be
the case numerically, this gives a total multiplicity of 2 x 27 + 5 x 1 + 1 = 60, whereas
5 x 24 = 80. This suggests that there are four more period 5 saddle-centre bifurcations
to be found. As already mentioned, the number of points of period 5 (or a factor) is
25 = 32, that is, two fixed point solutions and six period 5 orbits. The known
bifurcations at period 5 exhaust these, hence the four unknown saddle-centre
bifurcations must occur in pairs; either they turn some pairs of real orbits into
complex ones and back again; or they are complex conjugate pairs of purely complex
bifurcations, whereby pairs of complex period 5 orbits collide and separate.

One aim of this work is to help decide whether or not the area-preserving Henon
family has any backward bifurcations, that is, bifurcations which generate real orbits
as fx decreases. (We do not count the elementary 3-furcation and the case \K\ < 1 of
the elementary 4-furcation as backward bifurcations as they destroy as many real
periodic points of the relevant period as they create.) It is known that for ji < — 1
there are no real periodic orbits, while for ju large enough all 29 fixed points of p are
real and simple [3]. Backward bifurcations occur in the dissipative Henon map (with
fixed dissipation); this is proved in [8] by considering homoclinic tangencies, but is,
alternatively, a simple consequence of cusps in the saddle-node curves in parameter
space [7]. But they do not appear in the one-dimensional limit; this is a consequence
of a theorem of Douady and Hubbard which can be found in [4]. We conjecture that
there are no backward bifurcations in the area-preserving case either: none have been
seen, despite exhaustive searching up to period 20 by Davis [2].

2. Tools required from algebraic geometry

Let 0 be a set of m polynomials (or forms) {Gx,...,Gm] in m (respectively, m + 1)
indeterminates. (Algebraic geometers use the word form to mean a homogeneous
polynomial.) A root of ^ in Cm (respectively, CPm) is a simultaneous zero of
Gv..., Gm. The multiplicity of a root counts the generic number of (complex) roots
into which it breaks on perturbation of the equations. To define it formally, we first
need the following two concepts (see, for example, [5, 12]).

DEFINITION 1. For PeCm, the local ring Op is the set of rational functions which
are defined at P, with the natural ring structure.

DEFINITION 2. The ideal (Gv...,Gm) generated over the ring of polynomials
C[xlt ...,xm] is the set of finite sums ^ I ^ G ^ ^ G C [ X 1 5 ...,xm].
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DEFINITION 3. The multiplicity of a root PeCm of ^ is

, P) = dimc 0P/{Gx,..., GJ. (3)

All these definitions extend easily to the projective case, Definition 3 by use of affine
coverings.

Note that the multiplicity could equally well be defined using convergent power
series expansions instead of rational functions [6], which is more appropriate to our
context.

To calculate the multiplicity of a root, it is simplest first to shift the root to the
origin in affine space, and then to make use of the following properties of its
multiplicity, which we just denote by Ji{^). We have expressed them as in [5], though
only the case m = 2 is treated there. The general case is treated in [12], but we found
the presentation less easy to understand.

First we need one more definition.

DEFINITION 4. The tangent form of a polynomial G at zero is its terms of lowest
degree, and its degree is denoted by m(G).

PROPERTY 1.

with equality if zero is an isolated root of the set of tangent forms (we then say that
they are independent).

PROPERTY 2. If Gt = f ] fa Gfy, then

where the sum runs over all maps a: {1, ...,ra} -*N with a{i) < Jv

PROPERTY 3. For all A e (G2,..., GJ,

Properties 1, 2 and 3 lead to an algorithm for computing the multiplicity of a root
at zero, by reduction of ^ to a set of polynomials with independent tangent forms.
Although the theory of multiplicity of roots is best developed in the context of
polynomials, the definition extends to sufficiently smooth non-polynomial functions,
by using their Taylor expansions up to the degree necessary to break degeneracy.

The remaining result needed from algebraic geometry is Bezout's theorem. A
proof can be found for the case m = 2 in [5] and for the general case in [12].

BEZOUT'S THEOREM. Let Gv...,Gm be polynomials of degrees d1,...,dm re-
spectively in CP m . If the roots are isolated, then

2 (4)
roots P <•=!
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To apply this, we need a criterion for isolated roots. If m = 2, it is enough to show
that G15 G2 do not have a common factor. In general, we need the following.

PROPOSITION [5]. The set V a Cm of roots is finite if and only if the coordinate ring

is finite-dimensional over C.

This criterion could also be used to test for independence of the tangent forms in
Property 1, though in every case that we deal with, their independence is clear by
inspection.

3. The multiplicities of generic bifurcations

Proof of Theorem 1. At an ^-furcation, the eigenvalues of a fixed point pass
through e±2nivln, for some/? coprime to n (except/? = 0 in the case n = 1). Instead of
using Meyer's normal forms for area-preserving maps near elementary n-furcations,
we use Takens' normal forms. These are autonomous polynomial Hamiltonian flows
for which there exists a (parameter-dependent) C°° coordinate change C such that the
Taylor expansions of C~xf^C and <f>1oRp/n agree exactly, where (f>l is the time-1 map
of the Hamiltonian flow and Rp/n is rotation by 2np/n about the origin [14] (also
referred to in [1]). Actually, for n ^ 3, we rotate Takens' normal forms by n/n to
make the analysis easier. The fixed points off̂  then correspond to critical points of
a family of Hamiltonians H(x,y;e). The problem reduces to determining the
multiplicity of the solution x = y = s = 0 for the bifurcation equations for critical
points of H, namely

Hx = Hy = J = 0,
where

J=detD2H.

To prove the theorem, we use Properties 1, 2 and 3 above to compute the
multiplicity of{Hx, Hy, J) at the origin for Takens' normal forms. Afterwards, we shall
argue that the results do not change when we consider, instead, yj.

Case n = 1.
H{x,y;e) = y2/2-x*/3-ex,

Hx = -x2-s,

J = -2x.
Property 1 gives Jix = 1.

Case n = 2.

H(x,y;e)=y2/2±x

Jtt = Ji{x,y, ±3x2 + 2e} + J1{±x2 + 2e,y, ±3x2 + 2e}

= \+J?{2s±x2,y,±2x2},

using, in turn, Properties 2, 1 and 3. Using Property 1 again, we obtain J/2 = 3.
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Case n = 3.
H(x, y;e) = (x3 — 3xy2) + £(x2+y2).

It is easy to check that the polynomials Hx, Hy, J are independent quadratic forms,
and thus Mz = 8 (Property 1).

Case n = 4.

H(x,y;e) = xi-<

with / c ^ + 1;

Hx =

J =

It is then easy to see that

8(/c-3)xy
4x2(K-3)+\2y2(K+l) + 2e

J/{x,y,J} = 2, (5)

because we are allowed to ignore all terms with an x factor, thus factorising /.
Similarly,

J/{x, (4K - 12) x2 + (4 + 4K) y2 + 2e, J}

provided K # — 1 (if K = — 1, then M = oo). By interchanging x and y, we obtain the
same result for ^ { ( 4 + 4TC)A:2 + ( 4 / C - 1 2 ) / + 2£ ,^ ,7} .

To find the multiplicity of the final pair of factors, we work with the equivalent
set x2-y2, (4>C-12)X2 + (4 + 4K; ) / + 2£ and

We eliminate the £ term from / ' according to Property 3:

J" = (12/cjc2 + 4/cy2)(4x;;c2+ 12K: / ) - (8AC-24) 2 X 2 /

+ [{4K -12) x2 + (4 + 4K) y2] [(4K -12) x2 + (4 + 4K) y2

-4/cx2-12/c/-12o2-4/c/]

= (144 + 96*) X4 + (448K-672)X2/ + (16-32K:) / .

Then
,7"} = 8,

if K # 1. (By substituting x2 = y2 in /", we see that K = 1 is the unique value for which
x 2 - / divides /", and M is then infinite.)

Finally, by Property 2:

Jtx = 2 + 4 + 4 + 8= 18.
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Case n ̂  5.

where the sum runs over even/? from 0 to n. Suppose n is even (the odd case is similar).
Then

(« -P) xn-v-\iy)v + 4x(x2 +y2) + 2xe

= x(A+4(x2+y2) + 2e),

Hy = B + 4y(x2+y2)

where A,C,D,E are forms in x,y of degree n — 2, and B is a form in x,y of degree
n — \. The form D has a factor of x, and thus we see that

Jt{x,Hy,J) = Jf{x,y(-n(iy)n-2 + 4y2 + 2e),(C+4y2
 + 2E)(E+ \2y2 + 2e)}

To complete the calculation, we manipulate J according to Property 3 to eliminate e:

J' = 2 / 2 / 2 /

where
Jn=y2E+x2C-2xyD-(x2+y2)A. (6)

Using Property 3 again,

Now Jn is a form of degree n in x and y, and A2 is a form of degree 2(« —2) > n in
x and 7. The following calculation shows that B—Ay and /n are independent. Write
z = x + iy and z = x — iy (though note that z is not necessarily the complex conjugate
of z, as x and y may be complex). Then we may write

(7)

5 = ^(z«-1-z-1). (8)

Then
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If B—Ay = 0, then z/z must be an «th root of unity eie, 0 = 2nj/n for some integer
j . It follows that y/x = tan (0/2). Thus we can write

x = a cos (0/2), .y = a sin (0/2), z = <xem, z = v.e~im (10)

for some aeC. Now Jn can be written as

jn = ! !^_ l l ) ( z n -v+r i - 2 z 2 ) -^ (z«- 1 +z«- 1 ) . (11)

Substituting equation (10), we obtain

Jn = ±ann((n-l) cos 20-1), (12)

the sign depending on the parity of/ Now for n ^ 4, cos {Anj/n) never takes the value
l/(«— 1) (see the Appendix). Hence /„ # 0, except for the trivial case a = 0. Thus
A — By and / , are independent. We conclude that

Jtn = Jt{x, Hy, J} + M{A + 4(x2+/) + 2e, Hy, J'}

This completes the calculations of the multiplicities. To conclude the proof we
must show that taking the time-n map of Takens' normal forms, applying aC°°
coordinate change, and adding flat remainder terms does not change the results. The
equations for bifurcation of fixed points of the time-« map of a Hamiltonian flow are
identical to those for its critical points, provided the flow has no periodic orbits of
period n (or a factor). Near enough to the origin, however, it is not hard to show that
the above normal forms have no periodic orbits of period less than or equal to n, so
this problem does not arise. C00 coordinate change does not change intersection
numbers. Lastly, the addition of terms of high enough degree to independent tangent
forms does not affect their intersection number, unless it is infinite. Thus the
elementary ^-furcations have the same multiplicities as computed above for Takens'
normal forms.

4. Multiplicity of non-primitive bifurcations

Proof of Theorem 2. Recall that the multiplicity of a root at zero is

where 0 is the local ring of rational functions defined at the origin.
Let

It suffices to show that these ideals are equal in 0, because then O/K = O/L by a
linear isomorphism.

Modulo K,

L = I det
k

- / | ) = 0

and we see L c K. To show Ka L, similar arguments work when
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This is true in (9 if we assume there are no components of least period kq (or a factor
strictly bigger than q) at the origin, because each solution offj}(x) = x is generically
simple and a solution off£Q(x) = x.

5. Periods 1, 2, 3 and 4 in the area-preserving He'non family

We give the formulae for the periodic orbits for periods q = 1,2,3,4; they are
easily derived using the equivalent form of the equations

(13)

•*0 = Xq> Xq+1 =

and using time-reversal symmetry.

q=\: ^ = ( - l
q = 2: (x1,x2) =
q = 3: (xitxttx^ = (± V(M~ 1), 1 + V(M~ 1), ± V(M~ 1)),
q = 4 : (*!, X2, X3, X4) = (y//i, y/fl, - y/fl, - y/fl),

(± Vy", V(^+2 V//), ± ( ))

Note, in particular, that the periodic points of periods 1,2,3 and 4 are isolated, for
each fixed parameter value //.

The bifurcations and their multiplicities up to period 4 are indicated on Figure 1,
and again are easily derived from equation (13) plus the bifurcation equation

2xx 1
1 2x9

1

1 2xq

2xx 2

2 2xc

= 0, q>2,

= 0, q = 2,

= 0, q=\.

Note, in particular, that the bifurcation points at periods 1, 2, 3 and 4 are isolated.

6. The number of periodic points of period q in the He'non map

The result given in Theorem 3 is well-known: a proof is sketched by Simo [13], for
example. Another way to prove it would be along the lines of [11], where Moser
demonstrates a general result for even periods for polynomial area-preserving maps
with polynomial inverse of the same degree, subject to a non-degeneracy condition,
which one could check for the Henon map. We give here a proof closer to that of
Simo, whose advantage is that it will generalise easily to count the number of
bifurcation points, which we are not aware that anyone has done before.

Proof of Theorem 3. We have done the easy cases q = 1 and 2 in Section 5, and
so may fix q > 2, fieC and consider the ideal

N = (x\ + x +x2-/i,...,x
2 + xq_1 + x1-fii).
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Let V be the set of roots, so that Fis in one-one correspondence with the set of points
of period ^ o r a factor. Let Dm be the set of elements in the coordinate ring

C[V] = C[Xl,...,xQ]/N

which have representatives in C[xlt..., xg] of degree m or less. We first show Dm c Dg

for m^ q. An inductive argument proves this, if we can show each monomial in
C[xlt..., Xg] of degree greater than q is equivalent to a polynomial of smaller degree.
This is elementary, as such terms must have a square factor and, for example,
modulo TV

X\=fi-Xi-XQ.

Then C[V] = Dg; but Dg is spanned by residues of monomials of degree less than or
equal to q, thus C[V] is a finite-dimensional vector space, and we may apply the
proposition of Section 2 to C[V], to deduce that V is finite.

But then Bezout's theorem applied to the polynomials generating N, homogenised
to extend to CP9, namely

with xq = x0, gives total multiplicity 2Q in CP9. None of these are at infinity (Z = 0),
because the equations would then reduce to

(14)

which have only the zero solution, which is not permitted in CP9.

7. Total multiplicity for bifurcations in the Henon family

Proof of Theorem 4. Write the general homogeneous equations for a period q
bifurcation in the Henon family as

xi_xZ+x2
i+xi+1Z-nZ = 0, i =

z2x2 Z

Z

2xl

2Z

Z

Z
2*9

2Z
2x2

= 0, q>2,

(15)

(16)

= 0, q = 2,

= 0, q=\.

If all the roots are isolated, then Bezout's theorem tells us that the total number in
CP*+1 (counting multiplicity) is q2q.

These equations have a unique solution (xl 5 . . . ,/i, Z) = (0, . . . , 1,0) at projective
infinity (Z = 0). Moving the solution to the origin of C9+1, by fixing // = 1 and using
coordinates (xv...,xg,Z), leaves (16) unchanged, but (15) becomes

xi_lZ+x2
i+xi+1Z—Z = 0, i=\,...,q.

Apply Property 3, and subtract the first equation from the others, to obtain the set

XqZ+xl + x2Z-Z = 0, (17)

x2
i-x

2
1 + xi_1Z-xgZ+xi+1Z-x2Z = 0, 2^i^q. (18)
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Then we have q+l equations (16), (17) and (18) with minimal degrees q, 1 and 2
respectively, in (x1? ...,xg,Z). They satisfy the case of equality of Property 1, hence
there are q2"~1 bifurcations at infinity.

Lastly, we have to prove that all the bifurcations at period q are isolated. We did
this already for q = 1, 2 in Section 5. So fix q > 2, and define N to be the ideal
generated in C[xv..., xq, fi] by the q+l polynomials in (15), (16) above with Z—\
(that is, we consider the bifurcations away from projective infinity), and V to be the
set of roots. We saw there was a single bifurcation at infinity, meaning it is sufficient
to show that V, the set of affine bifurcations, is finite.

We first show that JU satisfies a monic polynomial over C[xv..., xg] of degree q. We
start from equation (16). By the product rule for determinants (throughout we
calculate modulo N),

0 =

1

* 1 A 2 « M

where each At is linear, for example, Ax = xJ2 + 2xl = xl/2 + 2(ji — xl — x3). Hence,
as each entry is linear or zero, we have

(19)

where hteC[xv ...,xQ], deght = q — i, and

1 2

2 1

2 1 2
2 1

Now ,4, # 0. One way to see this is that the spectrum of the matrix is

{1+4 cos 2nk/q :k= 1,..., q],

so for the determinant to be non-zero it is sufficient that cos (2nk/q) never take the
value — |. This is proved in the Appendix.

Now consider Dm, the elements of the coordinate ring

which have representatives in C[xl,...,xQ,/u] of degree m or less. This time we show
that the coordinate ring lives in D2q_v Again, we need consider only monomials. If
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Q is a monomial of degree larger than 2q — 1, then it must contain at least a factor
x\, some i, or a factor /J9. In the first case, we can reduce the degree modulo N as in
Section 6. In the second case, we use equation (19) to reduce the degree. Hence for
m ^ 2q, Dm_l c= Dm. Consequently, C[V] = D2q_x, a finite-dimensional vector space,
and we may apply the Proposition as before.

Appendix

LEMMA. The only rational values that cos 2np/q takes for rational p / q are ± 1, ± |
andO.

Proof. Proofs can be given using algebraic number theory or Galois theory, or
by examining recursion relations. We give an algebraic number theory proof. Write

c = cos 2np/q
and let

X = e2nip/9

be the corresponding point on the unit circle. Then X and its complex conjugate X
satisfy X9 = 1, which is a monic polynomial over the integers. Thus X and X are
'algebraic integers'. The algebraic integers form a ring, thus in particular

is an algebraic integer. But the only rational algebraic integers are the integers, and
\c\ ^ 1, therefore the only rational values that c can take are ± 1 , ±\ and 0.

The Galois theory proof is based on the fact that X also satisfies

/ L 2 - 2 a + l = 0 , (20)

which can be written as a quadratic polynomial over the integers if c is rational, and
an incompatibility of this with XQ = 1, if q # 1, 2, 3, 4 or 6.

The recursion relation proof is based on assuming c to be rational (not equal to
± 1 , ±\ or 0), and using equation (20) to express X9 in the form aQX + bg, with ag, bq

rational, and showing that aq can never be zero, so that the imaginary part of X9 is
never zero.
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