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1 Introduction

In long-term experiments, it is natural to wish to examine the data as they accumulate instead of

waiting until the conclusion. However it is clear that, with frequent looks at the data, there is an

increased probability of seeing spurious results and making a premature and erroneous decision. To

overcome this danger of over-interpretation of interim results, special statistical analysis methods

are required. To address this need, the first classic books on sequential analysis were published

by Wald (1947), motivated primarily by quality control applications, and by Armitage (1960) for

medical trials. In this chapter, we shall be concerned with the latter application. The benefits of

monitoring data in clinical trials are obvious:

Administrative. One can check on accrual, eligibility and compliance, and generally ensure the

trial is being carried out as per protocol.

Economic. Savings in time and money can result if the answers to the research questions become

evident early — before the planned conclusion of the trial.

Ethical. In a trial comparing a new treatment with a control, it may be unethical to continue

subjects on the control (or placebo) arm once it is clear that the new treatment is effective.

Likewise if it becomes apparent that the treatment is ineffective, inferior or unsafe, then the

trial should not continue.

It is now standard practice for larger Phase III clinical trials to have a Data Monitoring Committee

(DMC) to oversee the study and consider the option of early termination. Note that many of the

same considerations apply to animal and epidemiologic studies as well.

It was soon recognized by researchers that fully sequential procedures, with continuous

monitoring of the accumulating data, were often impractical and, besides that, much of the

economic savings could be achieved by procedures that examined the data on a limited number

of occasions throughout the trial — at six month intervals, for example, in a multi-year trial.

The corresponding body of statistical analysis and design techniques has become known as

group sequential methodology because the accumulated data are examined after observing each

successive group of new observations. There is a large body of literature in the biostatistical

and medical journals and there have been several comprehensive books published. These include

Whitehead (1997), Jennison and Turnbull (2000) and Proschan, Lan and Wittes (2006). Of related

interest are books on the practical considerations for the operation of DMCs by Ellenberg, Fleming
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and DeMets (2003) and Herson (2009) and a collection of case studies by DeMets, Furberg and

Friedman (2006).

In this chapter, we shall survey some of the major ideas of group sequential methodology. For

more details, the readers should refer to the aforementioned books. In particular, we shall cite most

often the book by Jennison and Turnbull (2000) — hereafter referred to as “JT”, because clearly

it is the most familiar to us! In the spirit of this current volume, we shall also show how much

flexibility and adaptability is already afforded by “classical” group sequential procedures. Then, we

shall show how these methods can naturally be embodied in the more recently proposed adaptive

procedures, and vice versa, and consider the relative merits of the two types of procedures. We

conclude with some discussion and also provide a list of sources of computer software to implement

the methods we describe.

2 The Canonical Joint Distribution of Test Statistics

The statistical properties of a group sequential procedure (GSP) will depend on the joint

distribution of the accumulating test statistics being monitored and the decision rules that have been

specified in the protocol. We start with the joint distribution. For motivation, consider the simple

“prototype” example of a balanced two-sample normal problem. Here we sequentially observe

responses XA1, XA2, . . . from Treatment A and XB1, XB2, . . . from Treatment B. We assume that

the {XAi} and {XBi} are independent and normally distributed with common variance σ2 and

unknown means µA and µB, respectively. Here θ = µA − µB is the parameter of primary interest.

At interim analysis (or “look” or “stage”) k (k = 1, 2, . . . ), we have cumulatively observed

the first nk responses from each treatment arm with n1 < n2 < . . . . Then the standardized test

statistic based on all the responses so far is Zk =
∑nk

i=1 (XAi −XBi)/(σ
√

2nk). It is easy to verify

that the joint distribution of Z1, . . . , ZK has the defining properties:

(i) (Z1, . . . , ZK) is multivariate normal,

(ii) E(Zk) = θ
√Ik, k = 1, . . . ,K, and

(iii) Cov(Zk1 , Zk2) =
√

(Ik1/Ik2), 1 ≤ k1 ≤ k2 ≤ K,

(1)

where Ik = nk/(2σ2) is termed the information or information level at stage k.

If a GSP with up to K analyses yields the sequence of statistics Z1, . . . , ZK for the parameter

of interest θ, and their joint distribution satisfies (1), we say that these statistics have the canonical

joint distribution with information levels {I1, . . . , IK} for θ. In fact, this canonical joint distribution
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arises in a great many situations, not just the balanced two sample normal problem defined

above; see Jennison and Turnbull (1997). The list includes unbalanced two-sample comparisons;

comparison of normal responses adjusted for baseline covariates; longitudinal data; parallel and

crossover designs, etc. Calculation of the {Zk} defined above requires σ2 to be known, but if the

variance is unknown the theory applies approximately to the sequence of t-statistics. The same

canonical joint distribution also holds approximately for binary and survival data. The specific

details on how to construct the appropriate {Zk} and {Ik} sequences in each application are

described in Chapter 3 of JT. Typically, Zk is the Wald statistic for testing θ = 0 and Ik is the

reciprocal of the variance of the maximum likelihood (or other efficient) estimator of θ, each based

on the accumulated data at stage k. The key conclusion is that statistical properties based on

particular decision boundaries can be computed from (1) and the results will be applicable to a

very wide variety of situations, enabling a unified theory.

3 Hypothesis Testing Problems and Decision Boundaries with

Equally Spaced Looks

A decision boundary provides critical values for Zk at each stage k, which determine whether to

stop or continue the trial. If the decision is to stop, the action to be taken is also specified. Various

shapes for boundaries have been proposed and these shapes depend on the hypotheses about θ to

be tested. Initially, we assume a maximum number of looks K is specified and these are to be taken

at equal increments of information — that is Ik = (k/K) IK , for k = 1, . . . , K. Later we shall relax

this assumption, but it will still be convenient to use the equal information increment assumption

initially for planning purposes.

3.1 Two-sided tests

For a two-sided test, the hypotheses are:

H0: θ = 0 versus HA: θ 6= 0.

We set Type I and Type II error probability constraints:

Prθ=0{Reject H0} = α, (2)

Prθ=±δ{Reject H0} = 1− β. (3)
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Here α and β are specified (typical values might be α = 0.05 and β = 0.1 or 0.2), and δ is a given

effect size that it is important to detect. A fixed sample test (K = 1) that meets these requirements

would reject H0 when |Z| ≥ zα/2 and requires information

If,2 = (zα/2 + zβ)2/δ2, (4)

where zγ denotes the upper 100 γ percentage point of the standard normal distribution.

The decision boundary for a procedure with a maximum of K looks takes the form:

After group k = 1, . . . , K − 1

if |Zk| ≥ ck stop, reject H0

otherwise continue to group k + 1,

After group K

if |ZK | ≥ cK stop, reject H0

otherwise stop and report failure to reject H0, i.e., “accept” H0.

(5)

A typical boundary for K = 5 is illustrated in Figure 1.

[Figure 1 about here.]

From (1) we see that, in this case of equally spaced information increments, the joint distribution

of Z1, . . . , ZK under H0 does not depend on IK . Therefore the Type I error rate depends solely

on the choice of c1, . . . , cK . Once these are chosen to satisfy (2), IK can be chosen to satisfy (3).

However, there are still many ways to choose the {ck} to satisfy (2).

Wang and Tsiatis (1987) suggested a family of boundaries indexed by the parameter γ, in which

ck = C(k/K)γ for k = 1, . . . ,K. The value of C is determined by constraint (2) and depends on

K, α and the value of γ. Taking γ = 0 yields a Pocock (1977) boundary where ck remains constant

over k. We denote by CP (K,α) the value of C for this test with K analyses and type I error

probability α, then ck = CP (K,α) for each k = 1, . . . ,K. The case γ = −1/2 yields an O’Brien

and Fleming (1979) boundary. For this case, we denote the value of C in the Wang and Tsiatis

formula by CB(K, α) and the boundary is ck = CB(K, α)
√

(K/k) for k = 1, . . . , K. These values

of ck decrease with k — similar to those depicted in Figure 1. Tables of the constants CP (K, α)

and CB(K,α) can be found in the papers referred to above and in JT, Chap. 2. The tables in JT

also give values of the so-called inflation factor, denoted by R. Then the value of IK needed to

satisfy (3) can be found from the formula IK = R If,2, where If,2 is given by (4). We reproduce
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Tables 2.1 to 2.4 of JT, Chap. 2 here for ease of reference as Tables 1 to 4. The constants CP (K, α)

and CB(K,α) are given in Tables 1 and 2 and inflation factors RP (K, α) and RB(K,α) in Tables 3

and 4. We discuss the construction of the entries in these tables of constants in Section 4.

[Tables 1 to 4 about here.]

As an example, suppose we specify an O’Brien and Fleming GSP with a maximum of K = 5

analyses and α = 0.05. From Table 2.3 of JT, we see that for γ = −1/2 the constant C = 2.04 and

the boundary values are c1 = 4.56, c2 = 3.23, c3 = 2.63, c4 = 2.28 and c5 = 2.04. These values

can be compared with the fixed sample critical value of z0.025 = 1.96. The wider boundary values

are to compensate for the fact that the test statistic is being examined multiple times (here five).

Suppose we additionally ask for power 1 − β = 0.9 at effect size ±δ. From Table 2.4 of JT, the

inflation factor is R = 1.026, which means that the maximum information needed will be 2.6% more

than the fixed sample test would require. For the prototype two-sample normal problem described

at the beginning of Section 2, the fixed sample information If,2 = (zα/2 + zβ)2/δ2 corresponds to

a sample size nf = 2σ2 If,2 per treatment arm. Of course, with the group sequential stopping

rule there is a good possibility of stopping earlier than stage K. For example, if µA − µB = δ the

expected information and number of observations at termination are only 76% of their values for

the fixed sample test. For µA − µB = 1.5 δ this proportion is 56%; see JT, Table 2.5. The modest

increase in maximum information (R > 1) is a small price to pay for the advantages of possible

early stopping.

Note that this decision boundary does not permit early stopping to accept H0, i.e., for futility.

It is possible to have an “inner wedge” boundary that does allow such a feature (see JT, Chap. 5),

but we shall not discuss this further here.

3.2 One-sided tests

Here we test

H0: θ = 0 versus HA: θ > 0.

We set Type I and Type II error probability constraints:

Prθ=0{Reject H0} = α, (6)

Prθ=δ{Reject H0} = 1− β. (7)

6



Typical values might be α = 0.025 and β = 0.1 or 0.2. A fixed sample test (K = 1) that meets

these requirements would reject H0 when Z ≥ zα and requires information

If,1 = (zα + zβ)2/δ2. (8)

The decision boundary for a procedure with a maximum of K looks takes the form:

After group k = 1, . . . , K − 1

if Zk ≥ bk stop, reject H0

if Zk ≤ ak stop, accept H0

otherwise continue to group k + 1,

After group K

if ZK ≥ bK stop, reject H0

if ZK < aK stop, accept H0,

(9)

where aK = bK to ensure termination at analysis K — see Figure 2. Typically, tests are designed

with analyses at equally-spaced information levels (or “group sizes”) so ∆1 = . . . = ∆K where

∆k = Ik−Ik−1, k = 2, . . . , K, and ∆1 = I1. Then, for given K, the maximum information IK and

boundary values (ak, bk), k = 1, . . . , K, can be chosen to satisfy (6) and (7). Several suggestions for

choice of boundary values are described in JT, Chap. 4 and results presented there show savings

in expected sample size are achieved under θ = 0 and θ = δ, and also at intermediate values of θ.

We shall discuss this one-sided testing problem in more detail later when we look at the case of

unequal and unpredictable increments of information between looks.

[Figure 2 about here.]

3.3 One-sided tests with a non-binding lower boundary

The upper boundary in Figure 2 is often called the efficacy boundary and the lower one the futility

boundary. Sometimes the futility boundary is considered just a guideline — that is, somewhat

arbitrary and non-binding, so that investigators may decide to continue a study even though the

futility boundary has been crossed with Zk < ak. In order to protect the Type I error in this case,

the left hand side of (6) must be computed assuming a1 = . . . = aK−1 = −∞, i.e., with no lower

boundary. This leads to a higher efficacy boundary and a small decrease in power, but the Type I

error probability will be maintained whatever futility boundary is actually used — a feature which
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is often important. If the efficacy boundary is constructed this way, it is still useful to have a futility

boundary in mind as a guide to stopping for negative results, but applying this futility boundary

can only decrease the Type I error and so (6) is always assured.

3.4 Other boundaries

Various other shapes of boundaries could be considered. For example, in a one-sided or two-sided

test it may only be desirable to stop early only for futility and not for efficacy. Alternatively, the

goal might be to demonstrate equivalence or non-inferiority. We shall not consider these more

specialized situations further here but direct the reader to the references cited in Section 1.

4 Computations for Group Sequential Tests — Armitage’s

Iterated Integrals

This section covers some technical computational details and may be omitted at a first reading.

We discuss how the Type I error, power, expected information (or sample size) and other statistical

properties of GSPs like the one-sided and two-sided tests discussed in Section 3 can be computed.

Our calculations are relevant for any of the models for accumulating data for which the canonical

representation (1) applies.

Let C1, . . . , CK be subsets of the real line < = (−∞,∞) representing the continuation regions of

a group sequential test. That is, if stage k has been reached, then the procedure stops if Zk /∈ Ck,

but otherwise it continues to stage k + 1. The sets Ck need not be intervals, but we must have

CK = ∅, the empty set, to ensure termination by stage K. The stopping region at stage k is Cc

k, the

complement of Ck, and this may be further partitioned into several sets, indicating the appropriate

action to be taken upon stopping. If the only action upon stopping is to choose between accepting

and rejecting a null hypothesis H0, then we have two sets, Ak and Bk say, where we stop to

accept H0 at stage k if Zk ∈ Ak, and stop to reject H0 at stage k if Zk ∈ Bk. In this case

Ak ∪ Bk ∪ Ck = (−∞,∞) is a partition of the real line.

As an example, the two-sided procedures of Section 3, are of the above form with

Ak = ∅, Bk = (−∞,−ck) ∪ (ck,∞), Ck = (−ck, ck), for k = 1, . . . , K − 1,

AK = (−cK , cK), BK = (−∞,−cK) ∪ (cK ,∞), CK = ∅.
Similarly, the one-sided procedures of Section 3 are of this form but with

Ak = (−∞, ak), Bk = (bk,∞), Ck = (ak, bk), k = 1, . . . ,K,
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where aK = bK so CK = ∅. Decision boundaries of the other procedures we have mentioned (inner

wedge designs, equivalence tests, etc.) can also be described in this way.

We define the stopping time T by

T = min{k : Zk /∈ Ck}. (10)

Note that 1 ≤ T ≤ K since CK = ∅. We assume Z1, . . . , ZK have the canonical joint distribution (1)

and define

Gk(z; θ) = Prθ{Zk ≤ z, T ≥ k}

and

gk(z; θ) =
∂

∂z
Gk(z; θ) (11)

for k = 1, . . . , K, −∞ < z < ∞ and −∞ < θ < ∞.

From the subdensity gk(z; θ) given by (11), we can obtain all the quantities we need. For

example, the distribution of the stopping stage is

Prθ{T = k} =
∫

Cc
k

gk(z; θ) dz, k = 1, . . . , K.

Similarly, the probability that the procedure stops and takes the action associated with the sets

{Ak}, say, is

Prθ{∪K
k=1Ak} =

K∑

k=1

∫

Ak

gk(z; θ) dz.

This last expression allows us to compute the size and power of our tests.

The quantities {gk(z; θ)} involve complicated multi-normal integrals, the numerical computation

of which would appear to be quite difficult, especially for larger values of K, say K > 5. However

the computation is facilitated by noting the Markov structure of the sequence Z1, Z2, . . . . The

recursive formulae of Armitage, McPherson and Rowe (1969) can be used to calculate each gk(z; θ)

in turn. These formulae are:

g1(z; θ) = φ(z − θ
√I1) (12)

and, for k = 2, . . . , K,

gk(z; θ) =
∫

Ck−1

gk−1(u; θ)
√Ik√

∆k
φ

(
z
√Ik − u

√Ik−1 −∆kθ√
∆k

)
du (13)

where φ(z) = (2π)−1/2 exp(−z2/2) denotes the standard normal density.

These equations follow directly from the joint distribution of {Z1, . . . , ZK} given by (1). The

first equation (12) is immediate and equation (13) follows by noting that (1) implies the sequence
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of score statistics Zk
√Ik, k = 1, . . . , K, is Markov with independent normal increments. Thus

Zk
√Ik − Zk−1

√Ik−1 ∼ N(θ∆k, ∆k)

and is independent of Z1, . . . , Zk−1. As before, ∆k = Ik−Ik−1 denotes the increment in information

between analyses k − 1 and k and for notational completeness we define Z0 = I0 = 0.

It follows that only a succession of K − 1 univariate integrations is needed to evaluate the

subdensities gk(z; θ) and related probabilities and not a rather complicated K-fold multivariate

integral. More details on these computations are given in JT, Chap. 19.

In fact, the computations can be simplified even more by realizing that we only need to carry

out the recursive integrations for one value of θ, say θ = 0. Emerson and Fleming (1990) note the

following “handy formula” that is useful in converting a sub-density gk evaluated under one value

of θ for computations at another:

gk(z; θ) = gk(z; 0) exp(θz
√Ik − θ2Ik/2), k = 1, . . . , K. (14)

This result clearly holds for k = 1. If we assume the result holds for k − 1, use of (13) and some

algebraic manipulation shows it holds for k and then (14) follows by induction. This is an example

of a likelihood ratio identity; see Siegmund (1985, Propositions 2.24 and 3.2).

The computational methods described in this section are used by the various commercial and

free software packages that are widely available to aid implementation of group sequential designs

and monitoring of accumulating data. More information on available computer software is provided

in Section 9.

5 Error Spending Procedures for Unequal, Unpredictable

Increments of Information

While monitoring the trial, the increments of information at successive analyses may not be equal.

For example, if the meetings of the DMCs are planned for certain calendar times, variations in

subject accrual will imply unequal and unpredictable increments in information. In our normal

prototype example of Section 2, the information level Ik at stage k depends on the value of σ2, which

may be unknown and, while the information levels at analysis k can be estimated using the current

estimate of σ2 in the formula Ik = nk/(2σ2), this value will not be known in advance. Similarly, if

we are collecting binary data and comparing proportions based on a normal approximation to the

binomial, the variance will be unknown (JT, Sec. 3.6) and variance estimates from the accumulating
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data must be used. In a two-armed trial, when the difference between two treatments is adjusted

for baseline covariates, the information at each stage depends on the baseline data which are only

observed as subjects enter the study. For survival data endpoints, information is approximately

proportional to the total number of events that have occurred so, again, increments are likely to

be unequal and unpredictable.

Lan and DeMets (1983) presented two-sided tests which “spend” Type I error as a function

of observed information. These methods start with the definition of a (Type I) error spending

function f(I). A typical function is depicted in Figure 3. It can be any non-decreasing function

with f(0) = 0 and f(I) = α for I ≥ Imax. The choice of Imax is discussed below.

[Figure 3 about here.]

The critical value ck for the stopping boundary at analysis k is chosen to give cumulative Type I

error probability f(Ik) at stage k. The null hypothesis H0 is accepted if Imax is reached without

earlier rejection of H0. The critical values {ck} are computed iteratively. At the first analysis, the

information I1 is observed and c1 is obtained by solving the equation: Prθ=0{|Z1| ≥ c1} = f(I1).

The test stops and rejects H0 if |Z1| > c1 and continues otherwise. Now suppose we are at stage

k ≥ 2 and we have observed I1, . . . , Ik. Having already obtained critical values c1, . . . , ck−1 at the

previous analyses, we compute the current critical value ck by solving for it in the equation:

Prθ=0{|Z1| < c1, . . . , |Zk−1| < ck−1, |Zk| ≥ ck} = f(Ik)− f(Ik−1).

This equation can be solved numerically using the computational formulae of Section 4. Note that

computation of ck does not depend on future information levels, Ik+1, Ik+2, . . . . In a “maximum

information design” the study continues until a boundary is crossed or an analysis reached with

Ik ≥ Imax. The maximum number of analyses K does not have to be pre-specified in advance

but if a particular maximum K is so specified, the study terminates at analysis K with f(IK)

defined to be α even if IK < Imax. The value of Imax should be chosen to meet the desired power

requirement under a typical or anticipated sequence of information levels. A usual choice is the

equally spaced one, i.e., Ik = (k/K) Imax for k = 1, . . . , K with a pre-specified K. Chapter 7 of

JT presents the family of error spending functions f(I) = min{α, α(I/Imax)ρ}, I ≥ 0, referred to

as the “ρ-family”, where the index ρ can take positive values. If ρ is large then less of the error

is spent early and the decision boundary at ±ck is wider there; conversely, early boundaries are

narrower when ρ is smaller. For equally spaced looks, the choice of ρ = 1 approximates a Pocock

(1977) boundary, while ρ = 3 approximates an O’Brien and Fleming (1979) boundary.
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The error spending construction ensures the Type I error probability is equal to α for any

observed sequence of information levels {Ik}. This property relies on the fact that the sequence

{Zk} follows the canonical joint distribution (1), given the observed {Ik}. It is therefore essential

that the values of Z1, . . . , Zk−1 do not affect the next information level Ik and this precludes, for

example, deciding to conduct the next analysis sooner when the current test statistic is close to

a boundary. Examples of how such practices can inflate the Type I error probability are given in

JT, Sec. 7.4. We shall discuss adaptive methods which do allow such response-dependent choice

of group sizes in Sections 7.4 and 8, but note for now that these procedures have to be defined in

special ways in order to protect Type I error in the presence of such adaptation.

We can construct a one-sided error spending test analogously. We define two non-decreasing

functions f(I) and g(I) with f(0) = g(0) = 0, f(Imax) = α and g(Imax) = β, specifying how the

Type I and II error probabilities are spent as a function of the accruing information. In a similar

manner to the two-sided case, we successively construct pairs of critical values (ak, bk) so that

Prθ=0{Reject H0 by analysis k} = f(Ik) and Prθ=δ{Accept H0 by analysis k} = g(Ik).

The value of Imax should be chosen so that the boundaries converge at the final analysis under

a typical sequence of information levels, e.g., Ik = (k/K) Imax, k = 1, . . . , K, for an anticipated

value K. If we reach IK > Imax (“over-running”) then solving for aK and bK is liable to yield

aK > bK . In this case, keeping bK as calculated and reducing aK to bK guarantees the Type I error

rate at α and gains extra power. If the final analysis K is reached with IK still less than Imax

(“under-running”), again keeping bK as calculated preserves the Type I error rate at α. However,

this time we must increase aK to bK and the attained power will be slightly below 1− β.

Finally we note that, for a fixed sequence of information levels there is a one-to-one

correspondence between the procedures of Sections 3.1 and 3.2 defined directly in terms of

boundaries for Z-values and the procedures discussed here which are defined by error spending

functions.

6 P -values and Confidence Intervals

So far we have concentrated on the design and monitoring of a group sequential study in a hypothesis

testing framework. However, once we have ended the study, we are usually interested in more

than just a decision to accept or reject the null hypothesis. In this section, we shall consider

the construction of P -values (which measure the evidence against the null hypothesis) and of
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confidence intervals (which give a range of effect sizes θ “consistent” with observed data). Both

are to be computed once the procedure has terminated. We shall also, in Section 6.3, describe

repeated confidence intervals and repeated P -values which may be used at any interim analysis.

The methods described here apply to the one-sided and two-sided procedures of Sections 3.1 and

3.2 which use parametric boundaries, as well as the error spending tests of Section 5.

6.1 P -values on termination

We use the notation of Section 4. Let Ω be the sample space defined by the group sequential design,

that is, the set of all pairs (k, z) where z /∈ Ck so the test can terminate with (T,ZT ) = (k, z). We

denote the observed value of (T,ZT ) by (k∗, z∗). The P -value is the minimum significance level

under which a test defined on the sample space Ω can reject H0 on seeing the observed outcome

(k∗, z∗), smaller P -values indicating stronger evidence against H0. For a continuous response

distribution, the P -value should be uniformly distributed under H0, i.e., Pr{P -value ≤ p} = p

for all 0 ≤ p ≤ 1.

The P -value for testing H0 on observing (k∗, z∗) can also be stated as

Prθ=0{Observe (k, z) as extreme or more extreme than (k∗, z∗)},

where “extreme” refers to the ordering of Ω implicit in the construction of tests of H0 at different

significance levels. However, there is no single natural ordering of the points in Ω and several

different orderings have been proposed (see JT, Sec. 8.4). Suppose a GSP has continuation regions

(ak, bk), k = 1, . . . , K−1, then in the “stagewise” ordering of Ω we say (k′, z′) is higher than (k, z),

denoted (k′, z′) Â (k, z), if any one of the following three conditions holds:

(i) k′ = k and z′ ≥ z, (ii) k′ < k and z′ ≥ bk′ , (iii) k′ > k and z ≤ ak.

When the GSP is a one-sided test, it is natural to consider a one-sided P -value for testing H0: θ = 0

versus θ > 0,

Prθ=0{(T, ZT ) Â (k∗, z∗)},

so higher outcomes in the ordering give greater evidence against H0.

If the GSP is a two-sided test of H0: θ = 0 versus θ 6= 0 with continuation regions (−ck, ck), we

start with the same overall ordering (with −ck and ck in place of ak and bk in the above definition)

but now consider outcomes in both tails of the ordering when defining a two-sided P -value. Consider

an O’Brien and Fleming two-sided procedure with K = 5 stages, α = 0.05 and equal increments
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in information. As stated in Section 3.1, the critical values are c1 = 4.56, c2 = 3.23, c3 = 2.63,

c4 = 2.28 and c5 = 2.04. The stagewise ordering for this GSP is depicted in Figure 4.

[Figure 4 about here.]

Suppose we observe the values shown by stars in Figure 4, Z1 = 3.2, Z2 = 2.9 and Z3 = 4.2, so the

boundary is crossed for the first time at the third analysis and the study stops to reject H0 with

T = 3 and ZT = 4.2. The two-sided P -value is given by

Prθ=0{|Z1| ≥ 4.56 or |Z2| ≥ 3.23 or |Z3| ≥ 4.2}

which can be calculated to be 0.0013, using the methods of Section 4.

Other orderings are possible, but the stagewise ordering has the following desirable properties:

(i) If the group sequential test has two-sided Type I error probability α, the P -value is less than

or equal to α precisely when the test stops with rejection of H0.

(ii) The P -value on observing (k∗, z∗) does not depend on values of Ik and ck for k > k∗, which

means the P -value can still be computed in an error spending test where information levels

at future analyses are unknown.

6.2 A confidence interval on termination

We can use a similar reasoning to construct a confidence interval (CI) for θ upon termination.

Suppose the test terminates at analysis k∗ with Zk∗ = z∗. A 100(1− α)% confidence interval for θ

contains precisely those values θ for which the observed outcome (k∗, z∗) is in the “middle (1−α)”

of the probability distribution of outcomes under θ.

This can be seen to be the interval (θ1, θ2) where

Prθ=θ1{(T, ZT ) Â (k∗, z∗)} = α/2

and

Prθ=θ2{ T, ZT ) ≺ (k∗, z∗)} = α/2.

This follows from the relation between a 100(1 − α)% confidence interval for θ and the family of

level α two-sided tests of hypotheses H: θ = θ̃.

Consider our previous example where an O’Brien and Fleming two-sided procedure with K = 5

stages and α = 0.05 ended at stage T = 3 with Z3 = 4.2 and suppose the observed information

levels are I1 = 20, I2 = 40 and I3 = 60. In this case, the computation using Armitage’s iterated
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integrals (Section 4) yields a 95% CI of (0.20, 0.75) for θ. In contrast, the “naive” fixed sample CI

would be (0.29, 0.79) but it is not appropriate to use this interval: failure to take account of the

sequential stopping rule means that the coverage probability of this form of interval is not 1− α.

Note that there is a consistency of hypothesis testing and the CI on termination. Suppose a

group sequential study is run to test H0: θ = 0 versus θ 6= 0 with Type I error probability α. Then,

a 1−α confidence interval on termination should contain θ = 0 if and only if H0 is accepted. This

happens automatically if outcomes for which we reject H0 are at the top and bottom ends of the

sample space ordering — and any sensible ordering does this.

6.3 Repeated confidence intervals and repeated P -values

Repeated confidence intervals (RCIs) for a parameter θ are defined as a sequence of intervals Ik,

k = 1, . . . ,K, for which a simultaneous coverage probability is maintained at some level, 1−α say.

The defining property of a (1− α)-level sequence of RCIs for θ is

Prθ{θ ∈ Ik for all k = 1, . . . , K} = 1− α for all θ. (15)

The interval Ik provides a statistical summary of the information about the parameter θ at the

kth analysis, automatically adjusted to compensate for repeated looks at the accumulating data.

As such, it can be presented to a Data Monitoring Committee (DMC) to be considered with all

other relevant information when discussing early termination of a study. The construction and use

of RCIs is described in JT, Chap. 9.

If τ is any random stopping time taking values in {1, . . . , K}, the guarantee of simultaneous

coverage (15) implies that the probability Iτ contains θ must be at least 1− α, i.e.,

Prθ{θ ∈ Iτ} ≥ 1− α for all θ. (16)

This property shows that an RCI can be used to summarize information about θ on termination and

the confidence level 1− α will be maintained, regardless of how the decision to stop the study was

reached. In contrast, the methods of Section 6.2 for constructing confidence intervals on termination

rely on a particular stopping rule being specified at the outset and strictly enforced.

When a study is monitored using RCIs, the intervals computed at interim analyses might also

be reported at scientific meetings. The basic property (15) ensures that these interim results will

not be “over-interpreted”. Here, over-interpretation refers to the fact that, when the selection

bias or optional sampling bias of reported results is ignored, data may seem more significant than
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warranted, and this can lead to adverse effects on accrual and drop-out rates, and to pressure to

unblind or terminate a study prematurely.

Repeated P -values are defined analogously to repeated confidence intervals. At the kth analysis,

a two-sided repeated P -value for H0: θ = θ0 is defined as Pk = max{α : θ0 ∈ Ik(α)}, where Ik(α) is

the current (1− α)-level RCI. In other words, Pk is that value of α for which the kth (1− α)-level

RCI contains the null value, θ0, as one of its endpoints. The construction ensures that, for any

p ∈ (0, 1), the overall probability under H0 of ever seeing a repeated P -value less than or equal to

p is no more than p and this probability is exactly p if all repeated P -values are always observed.

Thus, the repeated P -value can be reported with the usual interpretation, yet with protection

against the multiple-looks effect.

The repeated confidence intervals and P -values defined in this section should not be confused

with the CIs and P -values discussed in Sections 6.1 and 6.2, which are valid only at termination of a

sequential test conducted according to a strictly enforced stopping rule. Monitoring a study using

repeated confidence intervals and repeated P -values allows flexibility in making decisions about

stopping a trial at an interim analysis. These methodologies can, therefore, be seen as precursors

to more recent adaptive methods designed, also motivated by the desire for greater flexibility in

monitoring clinical trials.

7 Optimal Group Sequential Procedures

7.1 Optimizing within classes of group sequential procedures

We have described a variety of group sequential designs for one-sided and two-sided tests with early

stopping to reject or accept the null hypothesis. Some tests have been defined through parametric

descriptions of their boundaries, others through error spending functions. Since a key aim of

interim monitoring is to terminate a study as soon as is reasonably possible, particularly under

certain values of the treatment difference, it is of interest to find tests with optimal early stopping

properties. These designs may be applied directly or used as benchmarks to assess the efficiency of

designs which are attractive for other reasons. In our later discussion of flexible “adaptive” group

sequential designs, we shall see the importance of assessing efficiency in order to quantify a possible

tradeoff between flexibility and efficiency.

In formulating a group sequential design, we first specify the hypotheses of the testing problem

and the Type I error rate α and power 1−β at θ = δ. Let If denote the information needed by the
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fixed sample test, i.e., If,2 as given by (4) for a two-sided test with error probabilities α and β, or

If,1 as given by (8) for a one-sided test with error probability constraints (6) and (7). We specify

the maximum number K of possible analyses and the maximum information that may be required

Imax = R If , where R is the “inflation factor”. As special cases, K or R could be set to ∞ if we do

not wish to place an upper bound on them. With these constraints, we look within the specified

family of GSPs for that one which minimizes the average information on termination E(IT ) either

at one θ value or averaged over several θ values.

To find the optimum procedure for a given sequence of information levels {Ik}, we must search

for boundary values {ck} for a two-sided test or {(ak, bk)} for a one-sided test that minimize the

average expected sample size criterion subject to the error probability constraints. This involves

searching in a high dimensional space. Rather than search this space directly, we create a related

sequential Bayes decision problem with a prior on θ, sampling costs, and costs for a wrong decision.

The solution for such a problem can be found by a backward induction (dynamic programming)

technique. Then, a two-dimensional search over cost parameters leads to a Bayes problem whose

solution is the optimal GSP with error rates equal to the values α and β being sought. This is

essentially a Lagrangian method for solving a constrained optimization problem; see Eales and

Jennison (1992, 1995) and Barber and Jennison (2002) for more details.

7.2 Optimizing with equally spaced information levels

Let us consider one-sided tests with α = 0.025, power 1− β = 0.9, Imax = R If,1, and K analyses

at equally spaced information levels Ik = (k/K) Imax. For our optimality criterion, here we shall

take
∫
f(θ)Eθ(IT ) dθ, where f(θ) is the density of a N(δ, δ2/4) distribution and IT denotes the

information level on termination. This average expected information is centered on θ values around

θ = δ but puts significant weight over the range 0 to 2 δ, encompassing both the null hypothesis

and effect sizes well in excess of the value δ at which power is set. This is a suitable criterion when

δ is a minimal clinically significant effect size and investigators are hoping the true effect is larger

than this.

[Table 5 about here.]

Table 5 shows the minimum expected value of
∫
f(θ)Eθ(IT ) dθ for various combinations of K

and R. These values are stated as percentages of the required fixed sample information If,1 and as

such are invariant to the value of the effect size δ. For fixed R, it can be seen that the average E(IT )

decreases as K increases, but with diminishing returns. For fixed K, the average E(IT ) decreases as

17



R increases up to a point, R∗ say. For values of R > R∗, the larger increments in information (group

sizes) implicit in the definition Ik = (k/K)R If,1, are sub-optimal. It is evident that including just

a single interim analysis (K = 2) can significantly reduce E(IT ). If the resources are available to

conduct more frequent analyses, we would recommend taking K = 4 or 5 and R = 1.1 or 1.2 to

obtain most of the possible reductions expected sample size offered by group sequential testing.

We can use our optimal tests to assess parametric families of group sequential tests that have

been proposed for this one-sided testing problem. The assessment is done by comparing the criterion
∫
f(θ)Eθ(IT ) dθ for each test against that for the corresponding optimal procedure. We consider

three families of tests:

A. In Section 5 we introduced the ρ family of error spending tests with Type I and II

error spending functions f(x) = min{α, α(x/Imax)ρ} and g(x) = min{β, β(x/Imax)ρ},
respectively. For given Imax, the requirement that the upper and lower decision boundaries

of a one-sided test meet at Imax determines the value of ρ and vice versa. Since Imax = R If,1

the inflation factor R is also determined by ρ.

B. Hwang et al. (1990) proposed another family of error spending tests in which cumulative

error spent is proportional to (1−e−γ Ik/Imax)/(1−e−γ) instead of (Ik/Imax)ρ in the ρ family

defined in (A). In this case, the parameter γ determines the inflation factor R and vice versa.

C. Pampallona and Tsiatis (1994) proposed a parametric family for monitoring successive values

of Zk. This family is indexed by a parameter ∆ and the boundaries for Zk involve I∆−1/2
k .

The parameter ∆ determines the inflation factor R and vice versa.

Figure 5 shows values of
∫
f(θ)Eθ(IT ) dθ plotted against R for these three families of tests for the

case of K = 5 equally sized groups, α = 0.05 and 1− β = 0.9. The fourth and lowest curve is the

minimum possible average Eθ(IT ) for each value of R, obtained by our optimal tests.

[Figure 5 about here.]

It can be seen that both error spending families are highly efficient but the Pampallona and Tsiatis

(1994) tests are noticeably sub-optimal.

7.3 Optimizing over information levels

We can extend the computations of the previous section to permit the optimal choice of cumulative

information levels I1, . . . , IK with IK ≤ R If , as well as optimizing over the decision boundary
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values {(ak, bk)}. In particular, allowing the initial information level I1 to be small may be

advantageous if it is important to stop very early when there is a large treatment benefit —

the “home run” treatment. We still use dynamic programming to optimize for a given sequence

I1, . . . , IK , but add a further search over these information levels by, say, the Nelder and Mead

(1965) algorithm applied to a suitable transform of I1, . . . , IK .

Allowing a free choice of the sequence of information levels enlarges the class of GSPs being

considered, resulting in more efficient designs. We shall see in the next section that there are

tangible benefits from this approach, particularly for K = 2.

Although we consider arbitrary sequences I1, . . . , IK , these information levels and the boundary

values (ak, bk), k = 1, . . . , K, are still set at the start of the study and cannot be updated as

observations accrue. Relaxing this requirement leads to a further enlargement of the candidate

procedures which we discuss in the next section.

7.4 Procedures with data dependent increments in information

The option of scheduling each future analysis in a response-dependent manner has some intuitive

appeal. For example, it would seem reasonable to choose smaller group sizes when the current test

statistic lies close to a stopping boundary and larger group sizes when well away from a boundary.

Schmitz (1993) refers to such designs as “sequentially planned decision procedures”. Here, at each

analysis k = 1, . . . , K−1, the next cumulative information level Ik+1 and critical values (ak+1, bk+1)

are chosen based on the currently available data. The whole procedure can be designed to optimize

an efficiency criterion subject to the upper limit IK ≤ R If . There is an uncountable number of

decision variables to be optimized as one defines Ik+1(zk), ak+1(zk) and bk+1(zk) for each value of

Ik and every zk in the continuation region Ck = (ak, bk). However, by means of discretization of

the Ik scale, the dynamic programming optimization computation, though still formidable, can be

carried out. Note that, while the Schmitz designs are adaptive in the sense that future information

levels are allowed to depend on current data, these designs are not “flexible”. The way in which

future information levels are chosen, based on past and current information levels and Z-values,

is specified at the start of the study — unlike the flexible, adaptive procedures we shall discuss in

Section 8.

The question arises as to how much extra efficiency can be obtained by allowing unequal but

pre-specified information levels (Section 7.3) or, further, allowing these information levels to be

data dependent (Schmitz, 1993). Jennison and Turnbull (2006a) compare families of one-sided
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tests of H0: θ = 0 versus H1: θ > 0 with α = 0.025 and power 1− β = 0.9 at θ = δ. They use the

same efficiency criterion
∫
f(θ)Eθ(IT ) dθ we have considered previously, subject to the constraint

on maximum information IK ≤ R If . We can define three nested classes of GSPs:

1. GSPs with equally spaced information levels,

2. GSPs permitting unequally spaced but fixed information levels,

3. GSPs permitting data dependent increments in information according to a pre-specified rule.

Table 6, which reports cases in Table 1 of Jennison and Turnbull (2006a) with R = 1.2, shows the

optimal values of the efficiency criterion for these three classes of GSPs as a percentage of the fixed

sample information for values of K = 1 to 6, 8, and 10. We see that the advantage of varying group

sizes adaptively is small — but it is present. On the other hand, such a procedure is much more

complex than its non-adaptive counterparts.

[Table 6 about here.]

Although we have focused on a single efficiency criterion
∫
f(θ)Eθ(IT ) dθ, the same methods

can be applied to optimize with respect to other criteria, such as Eθ(IT ) at a single value of θ or

averaged over several values of θ. Results for other criteria presented in Eales and Jennison (1992,

1995) and Barber and Jennison (2002) show qualitatively similar features to those we have reported

here. Optimality criterion can also be defined to reflect both the cost of sampling and the economic

utility of a decision and the time at which it occurs; see Liu, Anderson, and Pledger (2004).

8 Tests Permitting Flexible, Data Dependent Increments in

Information

8.1 Flexible re-design protecting the Type I error probability

In the GSPs of Section 7.4, the future information increments (group sizes) and critical values

are permitted to depend on current and past values of the test statistic Zk, assuming of course

that the stopping boundary had not been crossed. These procedures are not flexible in that the

rules for making the choices are pre-specified functions of currently available Zk values. With this

knowledge, it is possible ab initio to compute a procedure’s statistical properties, such as Type I

and II error probabilities and expected information at termination. However, what can be done

if an unexpected event happens in mid-course and we wish to make some ad hoc change in the
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future information increment levels? This is often referred to as flexible sample size re-estimation

or sample size modification.

Consider the application of a classical group sequential one-sided design. The trial is under way

and, based on data observed at analysis j, it is desired to increase future information levels. If we

were to do this and continue to use the original values (ak, bk) for k > j in the stopping rule (9),

the Type I error rate would no longer be guaranteed at α. If arbitrary changes in sample size are

allowed, the Type I error rate is typically inflated — see Cui et al. (1999, Table A1) and Proschan

and Hunsberger (1995). (However, as an exception, note that if it is preplanned that increases in

sample size are only permitted when the interim treatment estimate is sufficiently high (conditional

power greater than 0.5), this implies that the actual overall Type I error rate may be reduced —

Chen, DeMets and Lan (2004).)

Suppose, however, that we do go ahead with this adaptation and the cumulative information

levels are now Ĩ(1), . . . , Ĩ(K); here, Ĩ(k) = Ik for k ≤ j but the Ĩ(k) differ from the originally

planned Ik for k > j. Let Z̃(k) be the usual Z-statistic formed from data in stage k alone and

∆̃k = Ĩ(k) − Ĩ(k−1). Again, the ∆̃k are as originally planned for k ≤ j but they depart from this

plan for k > j. We can still maintain the Type I error probability using the original boundary if we

use the statistics Z̃(k) in the appropriate way. Note that, even though the information increment

∆̃(k) is an ingredient of the statistic Z̃(k) and, for k > j, this can depend on knowledge of the

previously observed Z̃(1), . . . , Z̃(k−1), each Z̃(k) has a standard normal N(0, 1) distribution under

θ = 0 conditionally on the previous responses and ∆̃(k). It follows that this distribution holds

unconditionally under H0, so we may treat Z̃(1), Z̃(2), . . . as independent N(0, 1) variables. The

standard distribution of the {Z̃(k)} under H0 means we can use the original boundary values in (9)

and maintain the specified Type I error rate α, provided we monitor the statistics

Z̃k = (w1Z̃
(1) + . . . + wkZ̃

(k)) / (w2
1 + . . . + w2

k)
1/2, k = 1, . . . , K, (17)

where the weights wk =
√

∆k are the square roots of the originally planned information increments.

With this definition, the Z̃k follow the canonical joint distribution (1) under H0 that was originally

anticipated; see Lehmacher and Wassmer (1999) or Cui et al. (1999). Under the alternative θ > 0,

the Z̃(k) are not independent after adaptation and if information levels are increased, then so are

the means of the Z-statistics — which leads to the desired increase in power.

Use of a procedure based on (17) is an example of a combination test. In particular (17) is

a weighted inverse normal combination statistic (Mosteller and Bush, 1954). Other combination

test statistics can be used in place of (17), such as the inverse χ2 statistic proposed by Bauer and
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Köhne (1994). However, use of (17) has two advantages: (i) we do not need to recalculate the

stopping boundaries {(ak, bk)}, and (ii) if no adaptation occurs, we have Z̃k = Zk, k = 1, 2, . . . ,

and the procedure proceeds as originally planned.

8.2 Efficiency of flexible adaptive procedures

We have seen in Section 8.1 how, by using (17), the investigator has the freedom to modify a study

in light of accruing data and still maintain the Type I error rate. But what is the cost, if any,

of this flexibility? To examine this question, we need to consider specific strategies for adaptive

design. Jennison and Turnbull (2006a) discuss the example of a GSP with K = 5 analyses testing

H0: θ ≤ 0 against θ > 0 with Type I error probability α = 0.025 and power 1− β = 0.9 at θ = δ.

A fixed sample size test for this problem requires information If = If,1, as given by (8). Suppose

the study is designed as a one-sided test from the ρ-family of error-spending tests, as described in

Section 5, and we choose index ρ = 3. The boundary values a1, . . . , a5 and b1, . . . , b5 are chosen to

satisfy

Prθ{Z1 > b1 or . . . or Z1 ∈ (a1, b1), . . . , Zk−1 ∈ (ak−1, bk−1), Zk > bk} = (Ik/Imax)3 α,

Prθ{Z1 < a1 or . . . or Z1 ∈ (a1, b1), . . . , Zk−1 ∈ (ak−1, bk−1), Zk < ak} = (Ik/Imax)3 β

for k = 1, . . . , 5. At the design stage, equally-spaced information levels Ik = (k/5) Imax are assumed

and calculations show that a maximum information Imax = 1.049 If is needed for the boundaries

to meet up with a5 = b5. The boundaries are similar in shape to those in Figure 2.

Suppose external information becomes available at the second analysis, leading the investigators

to seek conditional power of 0.9 at θ = δ/2 rather than θ = δ. Since this decision is independent of

data observed in the study, one might argue that modification could be made without prejudicing

the Type I error rate. However, it would be difficult to prove that the data revealed at interim

analyses had played no part in the decision to re-design. Following the general strategy described

in Cui et al. (1999), it is decided to change the information increments in the third, fourth and fifth

stages to ∆̃k = γ∆k for k = 3, 4 and 5. The factor γ depends on the data available at stage 2 and

is chosen so that the conditional power under θ = δ/2, given the observed value of Z2, is equal to

1−β = 0.9. However, γ is truncated to lie in the range 1 to 6, so that sample size is never reduced

and the maximum total information is increased by at most a factor of 4. Figure 6 shows that

the power curve of the adaptive test lies well above that of the original group sequential design.

The power 0.78 attained at θ = 0.5 δ falls short of the target of 0.9 because of the impossibility of
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increasing conditional power when the test has already terminated to accept H0 and the truncation

of γ for values of Z2 just above a2.

It is of interest to assess the cost of the delay in learning the ultimate objective of the study. Our

comparison is with a ρ-family error-spending test with ρ = 0.75, power 0.9 at 0.59 δ and the first

four analyses at fractions 0.1, 0.2, 0.45 and 0.7 of the final information level I5 = Imax = 3.78 If .

This choice ensures that the power of the non-adaptive test is everywhere as high as that of the

adaptive test, as seen in Figure 6, and the expected information curves of the two tests are of a

similar form. Figure 7 shows the expected information on termination as a function of θ/δ for

these two tests; the vertical axis is in units of If . Together, Figures 6 and 7 demonstrate that the

non-adaptive test dominates the adaptive test in terms of both power and expected information

over the range of θ values. Also, the non-adaptive test’s maximum information level of 3.78 If is

10% lower than the adaptive test’s 4.20 If .

[Figure 6 about here.]

[Figure 7 about here.]

It is useful to have a single summary of relative efficiency when two tests differ in both power

and expected information. If test A with Type I error rate α at θ = 0 has power function 1− bA(θ)

and expected information EA,θ(I) under a particular θ > 0, Jennison and Turnbull (2006a) define

its efficiency index at θ to be

EIA(θ) =
(zα + zbA(θ))2

θ2

1
EA,θ(I)

,

the ratio of the information needed to achieve power 1− bA(θ) in a fixed sample test to EA,θ(I). In

comparing tests A and B, we take the ratio of their efficiency indices to obtain the efficiency ratio

ERA,B(θ) =
EIA(θ)
EIB(θ)

× 100 =
EB,θ(I)
EA,θ(I)

(zα + zbA(θ))2

(zα + zbB(θ))2
× 100.

This can be regarded as a ratio of expected information adjusted for the difference in attained

power. The plot of the efficiency ratio in Figure 8 shows the adaptive design is considerably less

efficient than the simple group sequential test, especially for θ > δ/2, and this quantifies the cost

of delay in learning the study’s objective.

Another motivation for sample size modification is the desire to increase sample size on seeing

low interim estimates of the treatment effect. Investigators may suppose the true treatment effect

is perhaps smaller than they had hoped and aim to increase, belatedly, the power of their study.
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Or they may hope that adding more data will make amends for an “unlucky start”. We have

studied such adaptations in response to low interim estimates of the treatment effect and found

inefficiencies similar to, or worse than, those in the preceding example. The second example in

Jennison and Turnbull (2006a) concerns such adaptation using the Cui et al. (1999) procedure. We

have found comparable inefficiencies when sample size is modified to achieve a given conditional

power using the methods of Bauer and Köhne (1994), Proschan and Hunsberger (1995), Shen and

Fisher (1999) and Li et al. (2002). When adaptation is limited to smaller increases in sample size,

the increase in power is smaller but efficiency loss is still present.

[Figure 8 about here.]

We saw in Section 7.4 that the pre-planned adaptive designs of Schmitz (1993) can be slightly

more efficient than conventional group sequential tests. One must, therefore, wonder why the

adaptive tests that we have studied should be less efficient than competing group sequential tests,

sometimes by as much as 30 or 40%. We can cite three contributory factors:

1. Use of non-sufficient statistics. In Jennison and Turnbull (2006a), it is proved all admissible

designs (adaptive or non-adaptive) are Bayes procedures. Hence, their decision rules and

sample size rules must be functions of sufficient statistics. Adaptive procedures using

combination test statistics (17) with their unequal weighting of observations are not based

on sufficient statistics. Thus, they cannot be optimal designs for any criteria. Since the

potential benefits of adaptivity are slight, any departure from optimality can leave room for

an efficient non-adaptive design, with the same number of analyses, to do better. Note that

this is stronger conclusion than that of Tsiatis and Mehta (2003) who allow the comparator

non-adaptive design to have additional analyses.

2. Sub-optimal sample size modification rule. Rules based on conditional power differ

qualitatively from those arising in the optimal adaptive designs of Section 7.4. Conditional

power rules invest a lot of resource in unpromising situations with a low interim estimate of

the treatment effect. The optimal rule shows greater symmetry, taking higher sample sizes

when the current test statistic is in the middle of the continuation region, away from both

boundaries. The qualitative differences between these two types of procedure are illustrated

by the typical shapes of sample size functions shown in Figures 9 and 10.

[Figure 9 about here.]
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[Figure 10 about here.]

3. Over-reliance on a highly variable interim estimator of θ. The sample size modification rules

of many adaptive designs involve the current interim estimator of effect size, often as an

assumed value in a conditional power calculation. Since this estimator is highly variable,

use of this estimate leads to random variation in sample size which is in itself inefficient;

see Jennison and Turnbull (2003) for further discussion of this point in the context of a

two-stage design.

Our conclusion in this section is that group sequential tests provide an efficient and versatile

mechanism for conducting clinical trials, but it can be useful to have adaptive methods to turn to

when a study’s sample size is found to be too small. Our first example depicts a situation where

a change in objective could not have been anticipated at the outset and an adaptive solution is

the only option. While good practice at the design stage should ensure that a study has adequate

power, it is reassuring to know there are procedures available to rescue an under-powered study

while still protecting the Type I error rate. What we do not recommend is use of such adaptive

strategies as a substitute for proper planning. Investigators may have different views on the likely

treatment effect, but it is still possible to construct a group sequential design that will deliver the

desired overall power with low expected sample size under the effect sizes of most interest; for

further discussion of how to balance these objectives, see Schäfer and Müller (2004) and Jennison

and Turnbull (2006b).

9 Discussion

In Sections 2 to 6 we described the classical framework in which group sequential tests are set,

presented an overview of GSPs defined by parametric boundaries or error spending functions, and

discussed inference on termination of a GSP. These classical GSPs are well studied; optimal tests

have been derived for a variety of criteria and error spending functions identified which give tests

with close to optimal performance.

GSPs adapt to observed data in the most fundamental way by terminating the study when

a decision boundary is crossed. Error spending designs have the flexibility to accommodate

unpredictable information sequences. In cases where information depends on nuisance parameters

that affect the variance of the outcome variable, Mehta and Tsiatis (2001) propose “information

monitoring” designs in which updated estimates of nuisance parameters are incorporated in error
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spending tests. Overall, classical group sequential methodology is versatile and can handle a number

of the problems which more recent adaptive methods have been constructed to solve.

A question which poses problems for both group sequential and adaptive methods is how to deal

with delayed responses which arrive after termination of a study. Stopping rules are usually defined

on the assumption that no more responses will be observed after the decision to terminate, but it

is not uncommon for such data to accrue, particularly when there is a significant delay between

treatment and the time the primary response is measured. Group sequential methods that can

handle such delayed data and methods for creating designs which do this efficiently are described

by Hampson (2009).

We discussed in Sections 7.4 and 8 how data dependent modification of group sizes can be

viewed as a feature of both classical GSPs and adaptive designs. It is our view that the benefits of

such modifications are small compared to the complexity of these designs. There is also a danger

that interpretability may be compromised, indeed, Burman and Sonesson (2006) give an example

where adaptive re-design leads to a complete loss of credibility.

A key role that remains for flexible adaptive methods is to help investigators respond to

unexpected external events. As several authors have pointed out, it is good practice to design a

study as efficiently as possible given initial assumptions, so the benefits of this design are obtained

in the usual circumstances where no mid-course change is required. However, if the unexpected

occurs, adaptations can be made following the methods described in Section 8 or, more generally,

by maintaining the conditional Type I error probability, as suggested by Denne(2001) and Müller

and Schäfer (2001). Finally, the use of flexible adaptive methods to rescue an under-powered study

should not be overlooked: while it is easy to be critical of a poor initial choice of sample size, it

would be naive to think that such problems will cease to arise.

It should be clear from our exposition that group sequential and adaptive methods involve

significant computation. Fortunately, there is a growing number of computer software packages

available for implementing these methods to design and monitor clinical trials. Self contained

programs include

EAST (http://www.cytel.com/Products/East/),

ADDPLAN (http://www.addplan.com/),

PEST (http://www.maths.lancs.ac.uk/department/research/statistics/mps/pest),

NCSS/PASS (http://www.ncss.com/passsequence.html), and
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ExpDesign Studio (Chang, 2008).

Several useful macros written for SAS are detailed in Dmitrienko et al. (2005, Chap. 4). The add-

on module S+SeqTrial (http://www.splus.com/products/seqtrial/) is available for use with

S-PLUS.

A number of websites offer software that can be freely downloaded. The gsDesign

package (http://cran.r-project.org/) is one of several packages for use with R. The

website http://www.biostat.wisc.edu/landemets/ contains FORTRAN programs for error

spending procedures. Our own FORTRAN programs, related to the book JT, are available at

http://people.bath.ac.uk/mascj/book/programs/general. For a review of the capabilities

of all these software packages, we refer the reader to the article by Wassmer and

Vandemeulebroecke (2006).

Our comments on adaptive design in this chapter relate to sample size modification as this is

the key area of overlap with GSPs. Adaptive methods do, of course, have a wide range of further

applications — as the other chapters in this book demonstrate.
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Figure 1: Two-sided decision boundary for K = 5.
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Table 1: Constants CP (K,α) for Pocock two-sided

tests with K groups of observations and type I error

probability α

CP (K,α)

K α = 0.01 α = 0.05 α = 0.10

1 2.576 1.960 1.645

2 2.772 2.178 1.875

3 2.873 2.289 1.992

4 2.939 2.361 2.067

5 2.986 2.413 2.122

6 3.023 2.453 2.164

7 3.053 2.485 2.197

8 3.078 2.512 2.225

9 3.099 2.535 2.249

10 3.117 2.555 2.270

11 3.133 2.572 2.288

12 3.147 2.588 2.304

15 3.182 2.626 2.344

20 3.225 2.672 2.392
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Table 2: Constants CB(K, α) for O’Brien & Fleming

two-sided tests with K groups of observations and

type I error probability α

CB(K, α)

K α = 0.01 α = 0.05 α = 0.10

1 2.576 1.960 1.645

2 2.580 1.977 1.678

3 2.595 2.004 1.710

4 2.609 2.024 1.733

5 2.621 2.040 1.751

6 2.631 2.053 1.765

7 2.640 2.063 1.776

8 2.648 2.072 1.786

9 2.654 2.080 1.794

10 2.660 2.087 1.801

11 2.665 2.092 1.807

12 2.670 2.098 1.813

15 2.681 2.110 1.826

20 2.695 2.126 1.842
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Table 3: Constants RP (K,α, β) to determine group sizes for Pocock two-sided

tests with K groups of observations, type I error probability α and power 1−β

RP (K,α, β)

1− β = 0.8 1− β = 0.9

K α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.092 1.110 1.121 1.084 1.100 1.110

3 1.137 1.166 1.184 1.125 1.151 1.166

4 1.166 1.202 1.224 1.152 1.183 1.202

5 1.187 1.229 1.254 1.170 1.207 1.228

6 1.203 1.249 1.277 1.185 1.225 1.249

7 1.216 1.265 1.296 1.197 1.239 1.266

8 1.226 1.279 1.311 1.206 1.252 1.280

9 1.236 1.291 1.325 1.215 1.262 1.292

10 1.243 1.301 1.337 1.222 1.271 1.302

11 1.250 1.310 1.348 1.228 1.279 1.312

12 1.257 1.318 1.357 1.234 1.287 1.320

15 1.272 1.338 1.381 1.248 1.305 1.341

20 1.291 1.363 1.411 1.264 1.327 1.367
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Table 4: Constants RB(K, α, β) to determine group sizes for O’Brien & Fleming

two-sided tests with K groups of observations, type I error probability α and

power 1− β

RP (K,α, β)

1− β = 0.8 1− β = 0.9

K α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.001 1.008 1.016 1.001 1.007 1.014

3 1.007 1.017 1.027 1.006 1.016 1.025

4 1.011 1.024 1.035 1.010 1.022 1.032

5 1.015 1.028 1.040 1.014 1.026 1.037

6 1.017 1.032 1.044 1.016 1.030 1.041

7 1.019 1.035 1.047 1.018 1.032 1.044

8 1.021 1.037 1.049 1.020 1.034 1.046

9 1.022 1.038 1.051 1.021 1.036 1.048

10 1.024 1.040 1.053 1.022 1.037 1.049

11 1.025 1.041 1.054 1.023 1.039 1.051

12 1.026 1.042 1.055 1.024 1.040 1.052

15 1.028 1.045 1.058 1.026 1.042 1.054

20 1.030 1.047 1.061 1.029 1.045 1.057
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Table 5: Minimum values of
∫
f(θ)Eθ(IT ) dθ expressed as a percentage of If,1.

R

K 1.01 1.05 1.1 1.15 1.2 1.3 minimum over R

2 79.3 74.7 73.8 74.1 74.8 77.1 73.8 at R = 1.1

3 74.8 69.0 67.0 66.3 66.1 66.6 66.1 at R = 1.2

4 72.5 66.5 64.2 63.2 62.7 62.5 62.5 at R = 1.3

5 71.1 65.1 62.7 61.5 60.9 60.5 60.5 at R = 1.3

10 68.2 62.1 59.5 58.2 57.5 56.7 56.4 at R = 1.5

20 66.8 60.6 58.0 56.6 55.8 54.8 54.2 at R = 1.6

Table 6: Optimized
∫
f(θ)Eθ(IT ) dθ as a percentage of If,1 for tests with inflation factor R = 1.2.

K 1. Optimal GSP with K 2. Optimal GSP with K 3. Optimal adaptive

equal group sizes optimized group sizes design of Schmitz

1 100.0 100.0 100.0

2 74.8 73.2 72.5

3 66.1 65.6 64.8

4 62.7 62.4 61.2

5 60.9 60.5 59.2

6 59.8 59.4 58.0

8 58.3 58.0 56.6

10 57.5 57.2 55.9
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